메뉴 건너뛰기




Volumn 9, Issue 4, 2012, Pages 280-293

Exploiting metabolic differences in glioma therapy

Author keywords

Astrocyte; Glycolysis; Hypoxia inducible factor; Lactate; Metabolism; Mitochondria

Indexed keywords


EID: 84868010309     PISSN: 15701638     EISSN: 18756220     Source Type: Journal    
DOI: 10.2174/157016312803305906     Document Type: Article
Times cited : (21)

References (99)
  • 2
    • 33749179056 scopus 로고    scopus 로고
    • Neuron-astrocyte interactions in the regulation of brain energy metabolism: A focus on NMR spectroscopy
    • DOI 10.1111/j.1471-4159.2006.04083.x
    • Escartin C, Valette J, Lebon V, et al. Neuron-astrocyte interactions in the regulation of brain energy metabolism: a focus on NMR spectroscopy. J Neurochem 2006; 99(2): 393-401. (Pubitemid 44477197)
    • (2006) Journal of Neurochemistry , vol.99 , Issue.2 , pp. 393-401
    • Escartin, C.1    Valette, J.2    Lebon, V.3    Bonvento, G.4
  • 3
    • 33846423878 scopus 로고    scopus 로고
    • Energy metabolism in astrocytes: High rate of oxidative metabolism and spatiotemporal dependence on glycolysis/glycogenolysis
    • DOI 10.1038/sj.jcbfm.9600343, PII 9600343
    • Hertz L, Peng L, Dienel GA. Energy metabolism in astrocytes: high rate of oxidative metabolism and spatiotemporal dependence on glycolysis/ glycogenolysis. J Cereb Blood Flow Metab 2007; 27(2): 219-49. (Pubitemid 46148451)
    • (2007) Journal of Cerebral Blood Flow and Metabolism , vol.27 , Issue.2 , pp. 219-249
    • Hertz, L.1    Peng, L.2    Dienel, G.A.3
  • 4
    • 0032904685 scopus 로고    scopus 로고
    • Energetics of functional activation in neural tissues
    • DOI 10.1023/A:1022534709672
    • Sokoloff L. Energetics of functional activation in neural tissues. Neurochem Res 1999; 24(2): 321-9. (Pubitemid 29067977)
    • (1999) Neurochemical Research , vol.24 , Issue.2 , pp. 321-329
    • Sokoloff, L.1
  • 5
    • 34047112720 scopus 로고    scopus 로고
    • Neuronal-glial networks as substrate for CNS integration
    • Verkhratsky A, Toescu EC. Neuronal-glial networks as substrate for CNS integration. J Cell Mol Med 2006; 10(4): 826-36.
    • (2006) J Cell Mol Med , vol.10 , Issue.4 , pp. 826-836
    • Verkhratsky, A.1    Toescu, E.C.2
  • 6
    • 12244300930 scopus 로고    scopus 로고
    • Astrocyte glycogen metabolism is required for neural activity during aglycemia or intense stimulation in mouse white matter
    • DOI 10.1002/jnr.20335, Brain Energy Metabolism: Transporters, Mitochondria and Neurodegeneration
    • Brown AM, Sickmann HM, Fosgerau K, et al. Astrocyte glycogen metabolism is required for neural activity during aglycemia or intense stimulation in mouse white matter. J Neurosci Res 2005; 79(1-2): 74-80. (Pubitemid 40116420)
    • (2005) Journal of Neuroscience Research , vol.79 , Issue.1-2 , pp. 74-80
    • Brown, A.M.1    Sickmann, H.M.2    Fosgerau, K.3    Lund, T.M.4    Schousboe, A.5    Waagepetersen, H.S.6    Ransom, B.R.7
  • 7
    • 0141481875 scopus 로고    scopus 로고
    • Glycogen: The forgotten cerebral energy store
    • DOI 10.1002/jnr.10785
    • Gruetter R. Glycogen: the forgotten cerebral energy store. J Neurosci Res 2003; 74(2): 179-83. (Pubitemid 37193703)
    • (2003) Journal of Neuroscience Research , vol.74 , Issue.2 , pp. 179-183
    • Gruetter, R.1
  • 8
    • 61349085427 scopus 로고    scopus 로고
    • Metabolic and hemodynamic events after changes in neuronal activity: Current hypotheses, theoretical predictions and in vivo NMR experimental findings
    • Mangia S, Giove F, Tkac I, et al. Metabolic and hemodynamic events after changes in neuronal activity: current hypotheses, theoretical predictions and in vivo NMR experimental findings. J Cereb Blood Flow Metab 2009; 29(3): 441-63.
    • (2009) J Cereb Blood Flow Metab , vol.29 , Issue.3 , pp. 441-463
    • Mangia, S.1    Giove, F.2    Tkac, I.3
  • 9
    • 57349185900 scopus 로고    scopus 로고
    • Astroglial metabolic networks sustain hippocampal synaptic transmission
    • Rouach N, Koulakoff A, Abudara V, et al. Astroglial metabolic networks sustain hippocampal synaptic transmission. Science 2008; 322(5907): 1551-5.
    • (2008) Science , vol.322 , Issue.5907 , pp. 1551-1555
    • Rouach, N.1    Koulakoff, A.2    Abudara, V.3
  • 10
    • 0029927343 scopus 로고    scopus 로고
    • Metabolic coupling between glia and neurons
    • Tsacopoulos M, Magistretti PJ. Metabolic coupling between glia and neurons. J Neurosci 1996; 16(3): 877-85. (Pubitemid 26140843)
    • (1996) Journal of Neuroscience , vol.16 , Issue.3 , pp. 877-885
    • Tsacopoulos, M.1    Magistretti, P.J.2
  • 11
    • 79952036600 scopus 로고    scopus 로고
    • Neuronal-astrocyte metabolic interactions: Understanding the transition into abnormal astrocytoma metabolism
    • Turner DA, Adamson DC. Neuronal-astrocyte metabolic interactions: understanding the transition into abnormal astrocytoma metabolism. J Neuropathol Exp Neurol 2011; 70(3): 167-76.
    • (2011) J Neuropathol Exp Neurol , vol.70 , Issue.3 , pp. 167-176
    • Turner, D.A.1    Adamson, D.C.2
  • 12
    • 80051790113 scopus 로고    scopus 로고
    • Nanog-induced dedifferentiation of P53-deficient mouse astrocytes into brain cancer stem-like cells
    • Moon JH, Kwon S, Jun EK, et al. Nanog-induced dedifferentiation of p53-deficient mouse astrocytes into brain cancer stem-like cells. Biochem Biophys Res Commun 2011; 412(1): 175-81.
    • (2011) Biochem Biophys Res Commun , vol.412 , Issue.1 , pp. 175-181
    • Moon, J.H.1    Kwon, S.2    Jun, E.K.3
  • 13
    • 0035425048 scopus 로고    scopus 로고
    • PDGF autocrine stimulation dedifferentiates cultured astrocytes and induces oligodendrogliomas from and oligoastrocytomas neural progenitors and astrocytes in vivo
    • DOI 10.1101/gad.903001
    • Dai C, Celestino JC, Okada Y, et al. PDGF autocrine stimulation dedifferentiates cultured astrocytes and induces oligodendrogliomas and oligoastrocytomas from neural progenitors and astrocytes in vivo. Genes Dev 2001; 15(15): 1913-25. (Pubitemid 32738621)
    • (2001) Genes and Development , vol.15 , Issue.15 , pp. 1913-1925
    • Dai, C.1    Celestino, J.C.2    Okada, Y.3    Louis, D.N.4    Fuller, G.N.5    Holland, E.C.6
  • 14
    • 0036791177 scopus 로고    scopus 로고
    • Ink4a-Arf loss cooperates with KRas activation in astrocytes and neural progenitors to generate glioblastomas of various morphologies depending on activated Akt
    • Uhrbom L, Dai C, Celestino JC, et al. Ink4a-Arf loss cooperates with KRas activation in astrocytes and neural progenitors to generate glioblastomas of various morphologies depending on activated Akt. Cancer Res 2002; 62(19): 5551-8.
    • (2002) Cancer Res , vol.62 , Issue.19 , pp. 5551-5558
    • Uhrbom, L.1    Dai, C.2    Celestino, J.C.3
  • 15
    • 70350225829 scopus 로고    scopus 로고
    • The hypoxic microenvironment maintains glioblastoma stem cells and promotes reprogramming towards a cancer stem cell phenotype
    • Heddleston JM, Li Z, McLendon RE, et al. The hypoxic microenvironment maintains glioblastoma stem cells and promotes reprogramming towards a cancer stem cell phenotype. Cell Cycle 2009; 8(20): 3274-84.
    • (2009) Cell Cycle , vol.8 , Issue.20 , pp. 3274-3284
    • Heddleston, J.M.1    Li, Z.2    McLendon, R.E.3
  • 16
    • 77953215319 scopus 로고    scopus 로고
    • Invasive glioblastoma cells acquire stemness and increased akt activation
    • Molina JR, Hayashi Y, Stephens C, et al. Invasive glioblastoma cells acquire stemness and increased Akt activation. Neoplasia 2010; 12(6): 453-63.
    • (2010) Neoplasia , vol.12 , Issue.6 , pp. 453-463
    • Molina, J.R.1    Hayashi, Y.2    Stephens, C.3
  • 17
    • 77956503727 scopus 로고    scopus 로고
    • Hypoxia increases the expression of stem-cell markers and promotes clonogenicity in glioblastoma neurospheres
    • Bar EE, Lin A, Mahairaki V, et al. Hypoxia increases the expression of stem-cell markers and promotes clonogenicity in glioblastoma neurospheres. Am J Pathol 2010; 177(3): 1491-502.
    • (2010) Am J Pathol , vol.177 , Issue.3 , pp. 1491-1502
    • Bar, E.E.1    Lin, A.2    Mahairaki, V.3
  • 20
    • 33750447312 scopus 로고    scopus 로고
    • Glucose metabolism and proliferation in glia: Role of astrocytic gap junctions
    • DOI 10.1111/j.1471-4159.2006.04088.x
    • Tabernero A, Medina JM, Giaume C. Glucose metabolism and proliferation in glia: role of astrocytic gap junctions. J Neurochem 2006; 99(4): 1049-61. (Pubitemid 44655272)
    • (2006) Journal of Neurochemistry , vol.99 , Issue.4 , pp. 1049-1061
    • Tabernero, A.1    Medina, J.M.2    Giaume, C.3
  • 21
    • 79951833491 scopus 로고    scopus 로고
    • Large-scale calcium waves traveling through astrocytic networks in vivo
    • Kuga N, Sasaki T, Takahara Y, et al. Large-scale calcium waves traveling through astrocytic networks in vivo. J Neurosci 2011; 31(7): 2607-14.
    • (2011) J Neurosci , vol.31 , Issue.7 , pp. 2607-2614
    • Kuga, N.1    Sasaki, T.2    Takahara, Y.3
  • 22
    • 77953808868 scopus 로고    scopus 로고
    • Adult human brain cell culture for neuroscience research
    • Gibbons HM, Dragunow M. Adult human brain cell culture for neuroscience research. Int J Biochem Cell Biol 2010; 42(6): 844-56.
    • (2010) Int J Biochem Cell Biol , vol.42 , Issue.6 , pp. 844-856
    • Gibbons, H.M.1    Dragunow, M.2
  • 23
    • 0036522961 scopus 로고    scopus 로고
    • 13C nuclear magnetic resonance spectroscopy: Elucidation of the dominant pathway for neurotransmitter glutamate repletion and measurement of astrocytic oxidative metabolism
    • Lebon V, Petersen KF, Cline GW, et al. Astroglial contribution to brain energy metabolism in humans revealed by 13C nuclear magnetic resonance spectroscopy: elucidation of the dominant pathway for neurotransmitter glutamate repletion and measurement of astrocytic oxidative metabolism. J Neurosci 2002; 22(5): 1523-31. (Pubitemid 35386271)
    • (2002) Journal of Neuroscience , vol.22 , Issue.5 , pp. 1523-1531
    • Lebon, V.1    Petersen, K.F.2    Cline, G.W.3    Shen, J.4    Mason, G.F.5    Dufour, S.6    Behar, K.L.7    Shulman, G.I.8    Rothman, D.L.9
  • 24
    • 33947211245 scopus 로고    scopus 로고
    • Effect of fluorocitrate on cerebral oxidation of lactate and glucose in freely moving rats
    • DOI 10.1111/j.1471-4159.2006.04335.x
    • Zielke HR, Zielke CL, Baab PJ, et al. Effect of fluorocitrate on cerebral oxidation of lactate and glucose in freely moving rats. J Neurochem 2007; 101(1): 9-16. (Pubitemid 46426464)
    • (2007) Journal of Neurochemistry , vol.101 , Issue.1 , pp. 9-16
    • Ronald Zielke, H.1    Zielke, C.L.2    Baab, P.J.3    Tyson Tildon, J.4
  • 25
    • 0034257070 scopus 로고    scopus 로고
    • Neuronal-astrocytic and cytosolic-mitochondrial metabolite trafficking during brain activation, hyperammonemia and energy deprivation
    • DOI 10.1016/S0197-0186(00)00012-7, PII S0197018600000127
    • Hertz L, Yu AC, Kala G, et al. Neuronal-astrocytic and cytosolicmitochondrial metabolite trafficking during brain activation, hyperammonemia and energy deprivation. Neurochem Int 2000; 37(2-3): 83-102. (Pubitemid 30254141)
    • (2000) Neurochemistry International , vol.37 , Issue.2-3 , pp. 83-102
    • Hertz, L.1    Yu, A.C.H.2    Kala, G.3    Schousboe, A.4
  • 26
    • 0035577699 scopus 로고    scopus 로고
    • Glucose and lactate metabolism during brain activation
    • Dienel GA, Hertz L. Glucose and lactate metabolism during brain activation. J Neurosci Res 2001; 66(5): 824-38.
    • (2001) J Neurosci Res , vol.66 , Issue.5 , pp. 824-838
    • Dienel, G.A.1    Hertz, L.2
  • 27
    • 0034663601 scopus 로고    scopus 로고
    • The low-affinity monocarboxylate transporter MCT4 is adapted to the export of lactate in highly glycolytic cells
    • Dimmer KS, Friedrich B, Lang F, et al. The low-affinity monocarboxylate transporter MCT4 is adapted to the export of lactate in highly glycolytic cells. Biochem J 2000; 350 Pt 1: 219-27.
    • (2000) Biochem J , vol.350 , Issue.PART 1 , pp. 219-227
    • Dimmer, K.S.1    Friedrich, B.2    Lang, F.3
  • 28
    • 0030774069 scopus 로고    scopus 로고
    • Comparison of lactate transport in astroglial cells and monocarboxylate transporter 1 (MCT 1) expressing Xenopus laevis oocytes. Expression of two different monocarboxylate transporters in astroglial cells and neurons
    • DOI 10.1074/jbc.272.48.30096
    • Broer S, Rahman B, Pellegri G, et al. Comparison of lactate transport in astroglial cells and monocarboxylate transporter 1 (MCT 1) expressing Xenopus laevis oocytes. Expression of two different monocarboxylate transporters in astroglial cells and neurons. Journal of Biol Chem 1997; 272(48): 30096-102. (Pubitemid 27512206)
    • (1997) Journal of Biological Chemistry , vol.272 , Issue.48 , pp. 30096-30102
    • Broer, S.1    Rahman, B.2    Pellegri, G.3    Pellerin, L.4    Martin, J.-L.5    Verleysdonk, S.6    Hamprech, B.7    Magistretti, P.J.8
  • 29
    • 33751319121 scopus 로고    scopus 로고
    • Is brain lactate metabolized immediately after neuronal activity through the oxidative pathway?
    • DOI 10.1038/sj.jcbfm.9600321, PII 9600321
    • Korf J. Is brain lactate metabolized immediately after neuronal activity through the oxidative pathway? J Cereb Blood Flow Metab 2006; 26(12): 1584-6. (Pubitemid 44809087)
    • (2006) Journal of Cerebral Blood Flow and Metabolism , vol.26 , Issue.12 , pp. 1584-1586
    • Korf, J.1
  • 30
    • 29144469081 scopus 로고    scopus 로고
    • Lactate: The ultimate cerebral oxidative energy substrate?
    • Shurr A. Lactate: the ultimate cerebral oxidative energy substrate? . J Cereb Blood Flow & Metab 2006; 26: 142-52.
    • (2006) J Cereb Blood Flow & Metab , vol.26 , pp. 142-152
    • Shurr, A.1
  • 31
    • 31444438575 scopus 로고    scopus 로고
    • Oxidative metabolism in cultured rat astroglia: Effects of reducing the glucose concentration in the culture medium and of D-aspartate or potassium stimulation
    • DOI 10.1038/sj.jcbfm.9600175, PII 9600175
    • Abe T, Takahashi S, Suzuki N. Oxidative metabolism in cultured rat astroglia: effects of reducing the glucose concentration in the culture medium and of D-aspartate or potassium stimulation. J Cereb Blood Flow Metab 2006; 26(2): 153-60. (Pubitemid 43151572)
    • (2006) Journal of Cerebral Blood Flow and Metabolism , vol.26 , Issue.2 , pp. 153-160
    • Abe, T.1    Takahashi, S.2    Suzuki, N.3
  • 32
    • 0034965524 scopus 로고    scopus 로고
    • Carboxylation and anaplerosis in neurons and glia
    • Hassel B. Carboxylation and anaplerosis in neurons and glia. Mol Neurobiol 2000; 22(1-3): 21-40. (Pubitemid 32545340)
    • (2001) Molecular Neurobiology , vol.22 , Issue.1-3 , pp. 21-40
    • Hassel, B.1
  • 34
    • 57649118670 scopus 로고    scopus 로고
    • Brain metabolism dictates the polarity of astrocyte control over arterioles
    • Gordon GR, Choi HB, Rungta RL, et al. Brain metabolism dictates the polarity of astrocyte control over arterioles. Nature 2008; 456(7223): 745-9.
    • (2008) Nature , vol.456 , Issue.7223 , pp. 745-749
    • Gordon, G.R.1    Choi, H.B.2    Rungta, R.L.3
  • 35
    • 78149425848 scopus 로고    scopus 로고
    • Glial and neuronal control of brain blood flow
    • Attwell D, Buchan AM, Charpak S, et al. Glial and neuronal control of brain blood flow. Nature 2010; 468(7321): 232-43.
    • (2010) Nature , vol.468 , Issue.7321 , pp. 232-243
    • Attwell, D.1    Buchan, A.M.2    Charpak, S.3
  • 38
    • 0030763027 scopus 로고    scopus 로고
    • Gliomas are driven by glycolysis: Putative roles of hexokinase, oxidative phosphorylation and mitochondrial ultrastructure
    • Oudard S, Boitier E, Miccoli L, et al. Gliomas are driven by glycolysis: putative roles of hexokinase, oxidative phosphorylation and mitochondrial ultrastructure. Anticancer Res 1997; 17(3C): 1903-11. (Pubitemid 27320925)
    • (1997) Anticancer Research , vol.17 , Issue.3 , pp. 1903-1911
    • Oudard, S.1    Boitier, E.2    Miccoli, L.3    Rousset, S.4    Dutrillaux, B.5    Poupon, M.F.6
  • 39
    • 12444279265 scopus 로고
    • On the origin of cancer cells
    • Warburg O. On the origin of cancer cells. Science 1956; 123(3191): 309-14.
    • (1956) Science , vol.123 , Issue.3191 , pp. 309-314
    • Warburg, O.1
  • 40
    • 66249108601 scopus 로고    scopus 로고
    • Understanding the Warburg effect: The metabolic requirements of cell proliferation
    • Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 2009; 324(5930): 1029-33.
    • (2009) Science , vol.324 , Issue.5930 , pp. 1029-1033
    • Vander Heiden, M.G.1    Cantley, L.C.2    Thompson, C.B.3
  • 42
    • 4644259153 scopus 로고    scopus 로고
    • Cellular oxygen sensing need in CNS function: Physiological and pathological implications
    • DOI 10.1242/jeb.01075
    • Acker T, Acker H. Cellular oxygen sensing need in CNS function: physiological and pathological implications. J Exp Biol 2004; 207(Pt 18): 3171-88. (Pubitemid 39275292)
    • (2004) Journal of Experimental Biology , vol.207 , Issue.18 , pp. 3171-3188
    • Acker, T.1    Acker, H.2
  • 43
    • 0038037735 scopus 로고    scopus 로고
    • Regulation of angiogenesis by hypoxia: Role of the HIF system
    • DOI 10.1038/nm0603-677
    • Pugh CW, Ratcliffe PJ. Regulation of angiogenesis by hypoxia: role of the HIF system. Nat Med 2003; 9(6): 677-84. (Pubitemid 36749216)
    • (2003) Nature Medicine , vol.9 , Issue.6 , pp. 677-684
    • Pugh, C.W.1    Ratcliffe, P.J.2
  • 44
  • 45
    • 70449624093 scopus 로고    scopus 로고
    • Reactivating HIF prolyl hydroxylases under hypoxia results in metabolic catastrophe and cell death
    • Tennant DA, Frezza C, MacKenzie ED, et al. Reactivating HIF prolyl hydroxylases under hypoxia results in metabolic catastrophe and cell death. Oncogene 2009; 28(45): 4009-21.
    • (2009) Oncogene , vol.28 , Issue.45 , pp. 4009-4021
    • Tennant, D.A.1    Frezza, C.2    MacKenzie, E.D.3
  • 46
    • 0033763820 scopus 로고    scopus 로고
    • Expression of hypoxiainducible factor-1alpha in the brain of rats during chronic hypoxia
    • Chavez JC, Agani F, Pichiule P, et al. Expression of hypoxiainducible factor-1alpha in the brain of rats during chronic hypoxia. J Appl Physiol 2000; 89(5): 1937-42.
    • (2000) J Appl Physiol , vol.89 , Issue.5 , pp. 1937-1942
    • Chavez, J.C.1    Agani, F.2    Pichiule, P.3
  • 47
    • 0034901463 scopus 로고    scopus 로고
    • Hypoxia-inducible factor 1: Oxygen homeostasis and disease pathophysiology
    • DOI 10.1016/S1471-4914(01)02090-1
    • Semenza GL. Hypoxia-inducible factor 1: oxygen homeostasis and disease pathophysiology. Trends Mol Med 2001; 7(8): 345-50. (Pubitemid 32735019)
    • (2001) Trends in Molecular Medicine , vol.7 , Issue.8 , pp. 345-350
    • Semenza, G.L.1
  • 48
    • 75149121182 scopus 로고    scopus 로고
    • Intermittent hypoxia during sleep induces reactive gliosis and limited neuronal death in rats: Implications for sleep apnea
    • Aviles-Reyes RX, Angelo MF, Villarreal A, et al. Intermittent hypoxia during sleep induces reactive gliosis and limited neuronal death in rats: implications for sleep apnea. J Neurochem 2010; 112(4): 854-69.
    • (2010) J Neurochem , vol.112 , Issue.4 , pp. 854-869
    • Aviles-Reyes, R.X.1    Angelo, M.F.2    Villarreal, A.3
  • 51
    • 71949097180 scopus 로고    scopus 로고
    • Hypoxia-inducible factor-1alpha blocks differentiation of malignant gliomas
    • Lu H, Li Y, Shu M, et al. Hypoxia-inducible factor-1alpha blocks differentiation of malignant gliomas. FEBS J 2009; 276(24): 7291-304.
    • (2009) FEBS J , vol.276 , Issue.24 , pp. 7291-7304
    • Lu, H.1    Li, Y.2    Shu, M.3
  • 52
    • 52049107208 scopus 로고    scopus 로고
    • Hypoxia-regulated protein expression, patient characteristics, and preoperative imaging as predictors of survival in adults with glioblastoma multiforme
    • Flynn JR, Wang L, Gillespie DL, et al. Hypoxia-regulated protein expression, patient characteristics, and preoperative imaging as predictors of survival in adults with glioblastoma multiforme. Cancer 2008; 113(5): 1032-42.
    • (2008) Cancer , vol.113 , Issue.5 , pp. 1032-1042
    • Flynn, J.R.1    Wang, L.2    Gillespie, D.L.3
  • 53
    • 3142672781 scopus 로고    scopus 로고
    • Protocol of radiotherapy for glioblastoma according to the expression of HIF-1
    • DOI 10.1007/BF02482169
    • Irie N, Matsuo T, Nagata I. Protocol of radiotherapy for glioblastoma according to the expression of HIF-1. Brain Tumor Pathol 2004; 21(1): 1-6. (Pubitemid 38915175)
    • (2004) Brain Tumor Pathology , vol.21 , Issue.1 , pp. 1-6
    • Irie, N.1    Matsuo, T.2    Nagata, I.3
  • 54
    • 67749142355 scopus 로고    scopus 로고
    • Molecular mechanisms of HIF-1alpha modulation induced by oxygen tension and BMP2 in glioblastoma derived cells
    • Pistollato F, Rampazzo E, Abbadi S, et al. Molecular mechanisms of HIF-1alpha modulation induced by oxygen tension and BMP2 in glioblastoma derived cells. PLoS One 2009; 4(7): e6206.
    • (2009) PLoS One , vol.4 , Issue.7
    • Pistollato, F.1    Rampazzo, E.2    Abbadi, S.3
  • 56
    • 59849096400 scopus 로고    scopus 로고
    • Hypoxia and HIF1alpha repress the differentiative effects of BMPs in high-grade glioma
    • Pistollato F, Chen HL, Rood BR, et al. Hypoxia and HIF1alpha repress the differentiative effects of BMPs in high-grade glioma. Stem Cells 2009; 27(1): 7-17.
    • (2009) Stem Cells , vol.27 , Issue.1 , pp. 7-17
    • Pistollato, F.1    Chen, H.L.2    Rood, B.R.3
  • 57
    • 65749106405 scopus 로고    scopus 로고
    • Hypoxia-inducible factors regulate tumorigenic capacity of glioma stem cells
    • Li Z, Bao S, Wu Q, et al. Hypoxia-Inducible Factors Regulate Tumorigenic Capacity of Glioma Stem Cells. Cancer Cell 2009; 15(6): 501-13.
    • (2009) Cancer Cell , vol.15 , Issue.6 , pp. 501-513
    • Li, Z.1    Bao, S.2    Wu, Q.3
  • 58
    • 33746930794 scopus 로고    scopus 로고
    • Succinate dehydrogenase and fumarate hydratase: Linking mitochondrial dysfunction and cancer
    • DOI 10.1038/sj.onc.1209594, PII 1209594
    • King A, Selak MA, Gottlieb E. Succinate dehydrogenase and fumarate hydratase: linking mitochondrial dysfunction and cancer. Oncogene 2006; 25(34): 4675-82. (Pubitemid 44187617)
    • (2006) Oncogene , vol.25 , Issue.34 , pp. 4675-4682
    • King, A.1    Selak, M.A.2    Gottlieb, E.3
  • 59
    • 67649446851 scopus 로고    scopus 로고
    • SNS-032 prevents hypoxiamediated glioblastoma cell invasion by inhibiting hypoxia inducible factor-1alpha expression
    • Ali MA, Reis A, Ding LH, et al. SNS-032 prevents hypoxiamediated glioblastoma cell invasion by inhibiting hypoxia inducible factor-1alpha expression. Int J Oncol 2009; 34(4): 1051-60.
    • (2009) Int J Oncol , vol.34 , Issue.4 , pp. 1051-1060
    • Ali, M.A.1    Reis, A.2    Ding, L.H.3
  • 60
    • 13444283313 scopus 로고    scopus 로고
    • Ras inhibition in glioblastoma down-regulates hypoxia-inducible factor-1, causing glycolysis shutdown and cell death
    • Blum R, Jacob-Hirsch J, Amariglio N, et al. Ras inhibition in glioblastoma down-regulates hypoxia-inducible factor-1alpha, causing glycolysis shutdown and cell death. Cancer Res 2005; 65(3): 999-1006. (Pubitemid 40216462)
    • (2005) Cancer Research , vol.65 , Issue.3 , pp. 999-1006
    • Blum, R.1    Jacob-Hirsch, J.2    Amariglio, N.3    Rechavi, G.4    Kloog, Y.5
  • 61
    • 0039351371 scopus 로고    scopus 로고
    • Characterization of the high-affinity monocarboxylate transporter MCT2 in Xenopus laevis oocytes
    • DOI 10.1042/0264-6021:3410529
    • Broer S, Broer A, Schneider HP, et al. Characterization of the highaffinity monocarboxylate transporter MCT2 in Xenopus laevis oocytes. Biochemical Journal 1999; 341(Pt 3): 529-35. (Pubitemid 29389181)
    • (1999) Biochemical Journal , vol.341 , Issue.3 , pp. 529-535
    • Broer, S.1    Broer, A.2    Schneider, H.-P.3    Stegen, C.4    Halestrap, A.P.5    Deitmer, J.W.6
  • 62
    • 21344444566 scopus 로고    scopus 로고
    • Monocarboxylate transporters in the central nervous system: Distribution, regulation and function
    • DOI 10.1111/j.1471-4159.2005.03168.x
    • Pierre K, Pellerin L. Monocarboxylate transporters in the central nervous system: distribution, regulation and function. J Neurochem 2005; 94(1): 1-14. (Pubitemid 40911387)
    • (2005) Journal of Neurochemistry , vol.94 , Issue.1 , pp. 1-14
    • Pierre, K.1    Pellerin, L.2
  • 63
    • 70349337150 scopus 로고    scopus 로고
    • Astrocytes are poised for lactate trafficking and release from activated brain and for supply of glucose to neurons
    • Gandhi GK, Cruz NF, Ball KK, et al. Astrocytes are poised for lactate trafficking and release from activated brain and for supply of glucose to neurons. J Neurochem 2009; 111(2): 522-36.
    • (2009) J Neurochem , vol.111 , Issue.2 , pp. 522-536
    • Gandhi, G.K.1    Cruz, N.F.2    Ball, K.K.3
  • 64
    • 0037240512 scopus 로고    scopus 로고
    • Ischemia-induced changes in monocarboxylate transporter 1 reactive cells in rat hippocampus
    • DOI 10.1179/016164103101200978
    • Tseng MT, Chan SA, Schurr A. Ischemia-induced changes in monocarboxylate transporter 1 reactive cells in rat hippocampus. Neurol Res 2003; 25(1): 83-6. (Pubitemid 36106055)
    • (2003) Neurological Research , vol.25 , Issue.1 , pp. 83-86
    • Tseng, M.T.1    Chan, S.-A.2    Schurr, A.3
  • 65
    • 12244304874 scopus 로고    scopus 로고
    • Monocarboxylate transporter expression in the spontaneous hypertensive rat: Effect of stroke
    • DOI 10.1002/jnr.20312, Brain Energy Metabolism: Transporters, Mitochondria and Neurodegeneration
    • Zhang F, Vannucci SJ, Philp NJ, et al. Monocarboxylate transporter expression in the spontaneous hypertensive rat: effect of stroke. J Neurosci Res 2005; 79(1-2): 139-45. (Pubitemid 40116428)
    • (2005) Journal of Neuroscience Research , vol.79 , Issue.1-2 , pp. 139-145
    • Zhang, F.1    Vannucci, S.J.2    Philp, N.J.3    Simpson, I.A.4
  • 66
    • 0043212093 scopus 로고    scopus 로고
    • Molecular features, regulation, and function of monocarboxylate transporters: Implications for drug delivery
    • DOI 10.1002/jps.10389
    • Enerson BE, Drewes LR. Molecular features, regulation, and function of monocarboxylate transporters: implications for drug delivery. J Pharm Sci 2003; 92(8): 1531-44. (Pubitemid 36929674)
    • (2003) Journal of Pharmaceutical Sciences , vol.92 , Issue.8 , pp. 1531-1544
    • Enerson, B.E.1    Drewes, L.R.2
  • 67
    • 33646917296 scopus 로고    scopus 로고
    • The plasma membrane lactate transporter MCT4, but not MCT1, is up-regulated by hypoxia through a HIF-1-dependent mechanism
    • DOI 10.1074/jbc.M511397200
    • Ullah MS, Davies AJ, Halestrap AP. The plasma membrane lactate transporter MCT4, but not MCT1, is up-regulated by hypoxia through a HIF-1alpha-dependent mechanism. Journal of Biol Chem 2006; 281(14): 9030-7. (Pubitemid 43864615)
    • (2006) Journal of Biological Chemistry , vol.281 , Issue.14 , pp. 9030-9037
    • Ullah, M.S.1    Davies, A.J.2    Halestrap, A.P.3
  • 69
    • 10044278250 scopus 로고    scopus 로고
    • Silencing of monocarboxylate transporters via small interfering ribonucleic acid inhibits glycolysis and induces cell death in malignant glioma: An in vitro study
    • DOI 10.1227/01.NEU.0000143034.62913.59
    • Mathupala SP, Parajuli P, Sloan AE. Silencing of monocarboxylate transporters via small interfering ribonucleic acid inhibits glycolysis and induces cell death in malignant glioma: an in vitro study. Neurosurgery 2004; 55(6): 1410-9; discussion 9. (Pubitemid 39612893)
    • (2004) Neurosurgery , vol.55 , Issue.6 , pp. 1410-1419
    • Mathupala, S.P.1    Parajuli, P.2    Sloan, A.E.3
  • 70
    • 68949092126 scopus 로고    scopus 로고
    • Lactate promotes glioma migration by TGF-beta2-dependent regulation of matrix metalloproteinase-2
    • Baumann F, Leukel P, Doerfelt A, et al. Lactate promotes glioma migration by TGF-beta2-dependent regulation of matrix metalloproteinase-2. Neuro Oncol 2009; 11(4): 368-80.
    • (2009) Neuro Oncol , vol.11 , Issue.4 , pp. 368-380
    • Baumann, F.1    Leukel, P.2    Doerfelt, A.3
  • 71
    • 79952084540 scopus 로고    scopus 로고
    • The spatial organization of proton and lactate transport in a rat brain tumor
    • Grillon E, Farion R, Fablet K, et al. The spatial organization of proton and lactate transport in a rat brain tumor. PLoS One 2011; 6(2): e17416.
    • (2011) PLoS One , vol.6 , Issue.2
    • Grillon, E.1    Farion, R.2    Fablet, K.3
  • 73
    • 33845641599 scopus 로고    scopus 로고
    • Metabolic remodeling of malignant gliomas for enhanced sensitization during radiotherapy: An in vitro study
    • DOI 10.1227/01.NEU.0000249218.65332.BF, PII 0000612320061200000019
    • Colen CB, Seraji-Bozorgzad N, Marples B, et al. Metabolic remodeling of malignant gliomas for enhanced sensitization during radiotherapy: an in vitro study. Neurosurgery 2006; 59(6): 1313-23; discussion 23-4. (Pubitemid 44949778)
    • (2006) Neurosurgery , vol.59 , Issue.6 , pp. 1313-1323
    • Colen, C.B.1    Seraji-Bozorgzad, N.2    Marples, B.3    Galloway, M.P.4    Sloan, A.E.5    Mathupala, S.P.6
  • 74
    • 33947608441 scopus 로고    scopus 로고
    • Kinetic parameters and lactate dehydrogenase isozyme activities support possible lactate utilization by neurons
    • DOI 10.1007/s11064-006-9132-9
    • O'Brien J, Kla KM, Hopkins IB, et al. Kinetic parameters and lactate dehydrogenase isozyme activities support possible lactate utilization by neurons. Neurochem Res 2007; 32(4-5): 597-607. (Pubitemid 46481292)
    • (2007) Neurochemical Research , vol.32 , Issue.4-5 , pp. 597-607
    • O'Brien, J.1    Kla, K.M.2    Hopkins, I.B.3    Malecki, E.A.4    McKenna, M.C.5
  • 75
    • 0022753696 scopus 로고
    • Enzymes related to energy metabolism in human gliomas
    • Marzatico F, Curti D, Dagani F, et al. Enzymes related to energy metabolism in human gliomas. J Neurosurg Sci 1986; 30(3): 129-32.
    • (1986) J Neurosurg Sci , vol.30 , Issue.3 , pp. 129-132
    • Marzatico, F.1    Curti, D.2    Dagani, F.3
  • 76
    • 45249095191 scopus 로고    scopus 로고
    • Mitochondrial lactate dehydrogenase is involved in oxidative-energy metabolism in human astrocytoma cells (CCF-STTG1)
    • Lemire J, Mailloux RJ, Appanna VD. Mitochondrial lactate dehydrogenase is involved in oxidative-energy metabolism in human astrocytoma cells (CCF-STTG1). PLoS One 2008; 3(2): e1550.
    • (2008) PLoS One , vol.3 , Issue.2
    • Lemire, J.1    Mailloux, R.J.2    Appanna, V.D.3
  • 77
    • 0015715418 scopus 로고
    • Effects of membrane depolarization on nicotinamide nucleotide fluorescence in brain slices
    • Lipton P. Effects of membrane depolarization on nicotinamide nucleotide fluorescence in brain slices. Biochem J 1973; 136(4): 999-1009.
    • (1973) Biochem J , vol.136 , Issue.4 , pp. 999-1009
    • Lipton, P.1
  • 78
    • 36448955388 scopus 로고    scopus 로고
    • Lactate uptake contributes to the NAD(P)H biphasic response and tissue oxygen response during synaptic stimulation in area CA1 of rat hippocampal slices
    • DOI 10.1111/j.1471-4159.2007.04939.x
    • Galeffi F, Foster KA, Sadgrove MP, et al. Lactate uptake contributes to the NAD(P)H biphasic response and tissue oxygen response during synaptic stimulation in area CA1 of rat hippocampal slices. J Neurochem 2007; 103(6): 2449-61. (Pubitemid 350173574)
    • (2007) Journal of Neurochemistry , vol.103 , Issue.6 , pp. 2449-2461
    • Galeffi, F.1    Foster, K.A.2    Sadgrove, M.P.3    Beaver, C.J.4    Turner, D.A.5
  • 79
    • 0032527892 scopus 로고    scopus 로고
    • Preferential utilization of acetate by astrocytes is attributable to transport
    • Waniewski RA, Martin DL. Preferential utilization of acetate by astrocytes is attributable to transport. J Neurosci 1998; 18(14): 5225-33. (Pubitemid 28311939)
    • (1998) Journal of Neuroscience , vol.18 , Issue.14 , pp. 5225-5233
    • Waniewski, R.A.1    Martin, D.L.2
  • 80
    • 0031239164 scopus 로고    scopus 로고
    • Use of fluorocitrate and fluoroacetate in the study of brain metabolism
    • DOI 10.1002/(SICI)1098-1136(199709)21:1<106::AID-GLIA12>3.0.CO;2-W
    • Fonnum F, Johnsen A, Hassel B. Use of fluorocitrate and fluoroacetate in the study of brain metabolism. Glia 1997; 21(1): 106-13. (Pubitemid 27389646)
    • (1997) GLIA , vol.21 , Issue.1 , pp. 106-113
    • Fonnum, F.1    Johnsen, A.2    Hassel, B.3
  • 82
    • 77953931098 scopus 로고    scopus 로고
    • 1-11C-acetate versus 18F-FDG PET in detection of meningioma and monitoring the effect of gamma-knife radiosurgery
    • Liu RS, Chang CP, Guo WY, et al. 1-11C-acetate versus 18F-FDG PET in detection of meningioma and monitoring the effect of gamma-knife radiosurgery. J Nucl Med 2010; 51(6): 883-91.
    • (2010) J Nucl Med , vol.51 , Issue.6 , pp. 883-891
    • Liu, R.S.1    Chang, C.P.2    Guo, W.Y.3
  • 84
    • 53049103850 scopus 로고    scopus 로고
    • Dichloroacetate (DCA) as a potential metabolic-targeting therapy for cancer
    • Michelakis ED, Webster L, Mackey JR. Dichloroacetate (DCA) as a potential metabolic-targeting therapy for cancer. Br J Cancer 2008; 99(7): 989-94.
    • (2008) Br J Cancer , vol.99 , Issue.7 , pp. 989-994
    • Michelakis, E.D.1    Webster, L.2    MacKey, J.R.3
  • 85
    • 77952995998 scopus 로고    scopus 로고
    • Metabolic modulation of glioblastoma with dichloroacetate
    • Michelakis ED, Sutendra G, Dromparis P, et al. Metabolic modulation of glioblastoma with dichloroacetate. Sci Transl Med 2010; 2(31): 31ra4.
    • (2010) Sci Transl Med , vol.2 , Issue.31
    • Michelakis, E.D.1    Sutendra, G.2    Dromparis, P.3
  • 86
    • 77949967131 scopus 로고    scopus 로고
    • Targeting metabolic transformation for cancer therapy
    • Tennant DA, Duran RV, Gottlieb E. Targeting metabolic transformation for cancer therapy. Nat Rev Cancer 2010; 10(4): 267-77.
    • (2010) Nat Rev Cancer , vol.10 , Issue.4 , pp. 267-277
    • Tennant, D.A.1    Duran, R.V.2    Gottlieb, E.3
  • 87
    • 70349472696 scopus 로고    scopus 로고
    • The Warburg effect is genetically determined in inherited pheochromocytomas
    • Favier J, Briere JJ, Burnichon N, et al. The Warburg effect is genetically determined in inherited pheochromocytomas. PLoS One 2009; 4(9): e7094.
    • (2009) PLoS One , vol.4 , Issue.9
    • Favier, J.1    Briere, J.J.2    Burnichon, N.3
  • 88
    • 73649088347 scopus 로고    scopus 로고
    • Mutant metabolic enzymes are at the origin of gliomas
    • Yan H, Bigner DD, Velculescu V, et al. Mutant metabolic enzymes are at the origin of gliomas. Cancer Res 2009; 69(24): 9157-9.
    • (2009) Cancer Res , vol.69 , Issue.24 , pp. 9157-9159
    • Yan, H.1    Bigner, D.D.2    Velculescu, V.3
  • 89
    • 64849098267 scopus 로고    scopus 로고
    • Glioma-derived mutations in IDH1 dominantly inhibit IDH1 catalytic activity and induce HIF-1alpha
    • Zhao S, Lin Y, Xu W, et al. Glioma-derived mutations in IDH1 dominantly inhibit IDH1 catalytic activity and induce HIF-1alpha. Science 2009; 324(5924): 261-5.
    • (2009) Science , vol.324 , Issue.5924 , pp. 261-265
    • Zhao, S.1    Lin, Y.2    Xu, W.3
  • 90
    • 77953019788 scopus 로고    scopus 로고
    • The prognostic IDH1 (R132) mutation is associated with reduced NADP+-dependent IDH activity in glioblastoma
    • Bleeker FE, Atai NA, Lamba S, et al. The prognostic IDH1 (R132) mutation is associated with reduced NADP+-dependent IDH activity in glioblastoma. Acta Neuropathol 2010; 119(4): 487-94.
    • (2010) Acta Neuropathol , vol.119 , Issue.4 , pp. 487-494
    • Bleeker, F.E.1    Atai, N.A.2    Lamba, S.3
  • 91
    • 79952741730 scopus 로고    scopus 로고
    • Profiling the effects of isocitrate dehydrogenase 1 and 2 mutations on the cellular metabolome
    • Reitman ZJ, Jin G, Karoly ED, et al. Profiling the effects of isocitrate dehydrogenase 1 and 2 mutations on the cellular metabolome. Proc Natl Acad Sci USA 2011; 108(8): 3270-5.
    • (2011) Proc Natl Acad Sci USA , vol.108 , Issue.8 , pp. 3270-3275
    • Reitman, Z.J.1    Jin, G.2    Karoly, E.D.3
  • 92
    • 0041803001 scopus 로고    scopus 로고
    • +-dependent isocitrate dehydrogenases are expressed in cultured rat neurons, astrocytes, oligodendrocytes and microglial cells
    • DOI 10.1046/j.1471-4159.2003.01871.x
    • Minich T, Yokota S, Dringen R. Cytosolic and mitochondrial isoforms of NADP+-dependent isocitrate dehydrogenases are expressed in cultured rat neurons, astrocytes, oligodendrocytes and microglial cells. J Neurochem 2003; 86(3): 605-14. (Pubitemid 36897441)
    • (2003) Journal of Neurochemistry , vol.86 , Issue.3 , pp. 605-614
    • Minich, T.1    Yokota, S.2    Dringen, R.3
  • 93
    • 0036614971 scopus 로고    scopus 로고
    • +-dependent isocitrate dehydrogenase status modulates oxidative damage to cells
    • DOI 10.1016/S0891-5849(02)00815-8, PII S0891584902008158
    • Lee SM, Koh HJ, Park DC, et al. Cytosolic NADP(+)-dependent isocitrate dehydrogenase status modulates oxidative damage to cells. Free Radic Biol Med 2002; 32(11): 1185-96. (Pubitemid 34603355)
    • (2002) Free Radical Biology and Medicine , vol.32 , Issue.11 , pp. 1185-1196
    • Lee, S.M.1    Koh, H.-J.2    Park, D.-C.3    Song, B.J.4    Huh, T.-L.5    Park, J.-W.6
  • 94
    • 37449034854 scopus 로고    scopus 로고
    • Beyond aerobic glycolysis: Transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis
    • DeBerardinis RJ, Mancuso A, Daikhin E, et al. Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc Natl Acad Sci USA 2007; 104(49): 19345-50.
    • (2007) Proc Natl Acad Sci USA , vol.104 , Issue.49 , pp. 19345-19350
    • Deberardinis, R.J.1    Mancuso, A.2    Daikhin, E.3
  • 95
    • 0030683603 scopus 로고    scopus 로고
    • The role of phosphometabolites in cell proliferation, energy metabolism, and tumor therapy
    • DOI 10.1023/A:1022490512705
    • Mazurek S, Boschek CB, Eigenbrodt E. The role of phosphometabolites in cell proliferation, energy metabolism, and tumor therapy. J Bioenerg Biomembr 1997; 29(4): 315-30. (Pubitemid 27498411)
    • (1997) Journal of Bioenergetics and Biomembranes , vol.29 , Issue.4 , pp. 315-330
    • Mazurek, S.1    Boschek, C.B.2    Eigenbrodt, E.3
  • 96
    • 79954458754 scopus 로고    scopus 로고
    • NAD+ treatment decreases tumor cell survival by inducing oxidative stress
    • Zhao C, Hong Y, Han J, et al. NAD+ treatment decreases tumor cell survival by inducing oxidative stress. Front Biosci 2011; 3: 434-41.
    • (2011) Front Biosci , vol.3 , pp. 434-441
    • Zhao, C.1    Hong, Y.2    Han, J.3
  • 97
    • 34248151365 scopus 로고    scopus 로고
    • The molecular biology of mammalian SIRT proteins: SIRT2 in cell cycle regulation
    • Inoue T, Hiratsuka M, Osaki M, et al. The molecular biology of mammalian SIRT proteins: SIRT2 in cell cycle regulation. Cell Cycle 2007; 6(9): 1011-8. (Pubitemid 46708571)
    • (2007) Cell Cycle , vol.6 , Issue.9 , pp. 1011-1018
    • Inoue, T.1    Hiratsuka, M.2    Osaki, M.3    Oshimura, M.4
  • 98
    • 30444437034 scopus 로고    scopus 로고
    • Neuronal and astrocytic shuttle mechanisms for cytosolic-mitochondrial transfer of reducing equivalents: Current evidence and pharmacological tools
    • DOI 10.1016/j.bcp.2005.10.011, PII S0006295205006623
    • McKenna MC, Waagepetersen HS, Schousboe A, et al. Neuronal and astrocytic shuttle mechanisms for cytosolic-mitochondrial transfer of reducing equivalents: current evidence and pharmacological tools. Biochem Pharmacol 2006; 71(4): 399-407. (Pubitemid 43077074)
    • (2006) Biochemical Pharmacology , vol.71 , Issue.4 , pp. 399-407
    • McKenna, M.C.1    Waagepetersen, H.S.2    Schousboe, A.3    Sonnewald, U.4
  • 99
    • 0344642991 scopus 로고    scopus 로고
    • Baseline levels of glucose metabolites, glutamate and glycerol in malignant glioma assessed by stereotactic microdialysis
    • DOI 10.1023/A:1022106910017
    • Roslin M, Henriksson R, Bergstrom P, et al. Baseline levels of glucose metabolites, glutamate and glycerol in malignant glioma assessed by stereotactic microdialysis. J Neurooncol 2003; 61(2): 151-60. (Pubitemid 36253661)
    • (2003) Journal of Neuro-Oncology , vol.61 , Issue.2 , pp. 151-160
    • Roslin, M.1    Henriksson, R.2    Bergstrom, P.3    Ungerstedt, U.4    Bergenheim, A.T.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.