메뉴 건너뛰기




Volumn 73, Issue 1, 2008, Pages 125-144

Selection of variables in cluster analysis: An empirical comparison of eight procedures

Author keywords

Cluster analysis; Variable selection

Indexed keywords


EID: 41449108683     PISSN: 00333123     EISSN: None     Source Type: Journal    
DOI: 10.1007/s11336-007-9019-y     Document Type: Article
Times cited : (97)

References (41)
  • 1
    • 0027453616 scopus 로고
    • Model-based Gaussian and non-Gaussian clustering
    • Banfield, J.D., & Raftery, A.E. (1993). Model-based Gaussian and non-Gaussian clustering. Biometrics, 49, 803-821.
    • (1993) Biometrics , vol.49 , pp. 803-821
    • Banfield, J.D.1    Raftery, A.E.2
  • 3
    • 0035534927 scopus 로고    scopus 로고
    • A variable-selection heuristic for K-means clustering
    • Brusco, M.J., & Cradit, J.D. (2001). A variable-selection heuristic for K-means clustering. Psychometrika, 66, 249-270.
    • (2001) Psychometrika , vol.66 , pp. 249-270
    • Brusco, M.J.1    Cradit, J.D.2
  • 4
    • 0033229533 scopus 로고    scopus 로고
    • HINoV: A new model to improve market segment definition by identifying noisy variables
    • Carmone, F.J., Kara, A., & Maxwell, S. (1999). HINoV: A new model to improve market segment definition by identifying noisy variables. Journal of Marketing Research, 36, 501-509.
    • (1999) Journal of Marketing Research , vol.36 , pp. 501-509
    • Carmone, F.J.1    Kara, A.2    Maxwell, S.3
  • 7
    • 0002414638 scopus 로고
    • Synthesized clustering: A method for amalgamating alternative clustering bases with differential weighting of variables
    • DeSarbo, W.S., Carroll, J.D., Clark, L.A., & Green, P.E. (1984). Synthesized clustering: A method for amalgamating alternative clustering bases with differential weighting of variables. Psychometrika, 49, 57-78.
    • (1984) Psychometrika , vol.49 , pp. 57-78
    • Desarbo, W.S.1    Carroll, J.D.2    Clark, L.A.3    Green, P.E.4
  • 8
    • 0001332591 scopus 로고
    • Optimal variable weighting for hierarchical clustering: An alternative least-squares algorithm
    • De Soete, G., DeSarbo, W.S., & Carroll, J.D. (1985). Optimal variable weighting for hierarchical clustering: An alternative least-squares algorithm. Journal of Classification, 2, 173-192.
    • (1985) Journal of Classification , vol.2 , pp. 173-192
    • De Soete, G.1    Desarbo, W.S.2    Carroll, J.D.3
  • 9
    • 21844523554 scopus 로고
    • Univariate screening measures for cluster analysis
    • Donoghue, J.R. (1990). Univariate screening measures for cluster analysis. Multivariate Behavioral Research, 30, 385-427.
    • (1990) Multivariate Behavioral Research , vol.30 , pp. 385-427
    • Donoghue, J.R.1
  • 15
    • 0016102310 scopus 로고
    • A projection pursuit algorithm for exploratory data analysis
    • Friedman, J.H., & Tukey, J.W. (1974). A projection pursuit algorithm for exploratory data analysis. IEEE Transactions on Computing, 23, 881-890.
    • (1974) IEEE Transactions on Computing , vol.23 , pp. 881-890
    • Friedman, J.H.1    Tukey, J.W.2
  • 17
    • 43949152886 scopus 로고
    • Global optimization of statistical functions with simulated annealing
    • Goffe, W.L., Ferrier, G.D., & Rogers, J. (1994). Global optimization of statistical functions with simulated annealing. Journal of Econometrics, 60, 65-99.
    • (1994) Journal of Econometrics , vol.60 , pp. 65-99
    • Goffe, W.L.1    Ferrier, G.D.2    Rogers, J.3
  • 18
    • 0000710590 scopus 로고
    • A preliminary study of optimal variable weighting in k-means clustering
    • Green, P.E., Carmone, F.J., & Kim, J. (1990). A preliminary study of optimal variable weighting in k-means clustering. Journal of Classification, 7, 271-285.
    • (1990) Journal of Classification , vol.7 , pp. 271-285
    • Green, P.E.1    Carmone, F.J.2    Kim, J.3
  • 20
    • 0002975747 scopus 로고
    • Toward a practical method which helps uncover the structure of a set of observations by finding the line transformation which optimizes a new index of condensation
    • Academic Press New York
    • Kruskal, J.B. (1969). Toward a practical method which helps uncover the structure of a set of observations by finding the line transformation which optimizes a new index of condensation. In R.C. Milton, & J.A. Nelder (Eds.), Statistical Computation (pp. 427-440). New York: Academic Press.
    • (1969) Statistical Computation , pp. 427-440
    • Kruskal, J.B.1    Milton, R.C.2    Nelder, J.A.3
  • 27
    • 33847457966 scopus 로고
    • An examination of the effect of six types of error perturbation on fifteen clustering algorithms
    • Milligan, G.W. (1980). An examination of the effect of six types of error perturbation on fifteen clustering algorithms. Psychometrika, 45, 325-342.
    • (1980) Psychometrika , vol.45 , pp. 325-342
    • Milligan, G.W.1
  • 28
    • 0000272920 scopus 로고
    • An algorithm for generating artificial test clusters
    • Milligan, G.W. (1985). An algorithm for generating artificial test clusters. Psychometrika, 50, 23-127.
    • (1985) Psychometrika , vol.50 , pp. 23-127
    • Milligan, G.W.1
  • 29
    • 0002048998 scopus 로고
    • A validation study of a variable weighting algorithm for cluster analysis
    • Milligan, G.W. (1989). A validation study of a variable weighting algorithm for cluster analysis. Journal of Classification, 6, 53-71.
    • (1989) Journal of Classification , vol.6 , pp. 53-71
    • Milligan, G.W.1
  • 32
    • 0142136684 scopus 로고    scopus 로고
    • Local optima in K-means clustering: What you don't know may hurt you
    • Steinley, D. (2003). Local optima in K-means clustering: What you don't know may hurt you. Psychological Methods, 8, 294-304.
    • (2003) Psychological Methods , vol.8 , pp. 294-304
    • Steinley, D.1
  • 34
    • 4344611435 scopus 로고    scopus 로고
    • Properties of the Hubert-Arabie adjusted Rand index
    • Steinley, D. (2004b). Properties of the Hubert-Arabie adjusted Rand index. Psychological Methods, 9, 386-396.
    • (2004) Psychological Methods , vol.9 , pp. 386-396
    • Steinley, D.1
  • 36
    • 33745700805 scopus 로고    scopus 로고
    • Profiling local optima in K-means clustering: Developing a diagnostic technique
    • Steinley, D. (2006b). Profiling local optima in K-means clustering: Developing a diagnostic technique. Psychological Methods, 11, 178-192.
    • (2006) Psychological Methods , vol.11 , pp. 178-192
    • Steinley, D.1
  • 37
    • 41449089333 scopus 로고    scopus 로고
    • A new variable weighting and selection procedure for K-means cluster analysis
    • in press
    • Steinley, D., & Brusco, M.J. (2007, in press). A new variable weighting and selection procedure for K-means cluster analysis. Psychometrika.
    • (2007) Psychometrika
    • Steinley, D.1    Brusco, M.J.2
  • 38
    • 33744720321 scopus 로고    scopus 로고
    • OCLUS: An analytic method for generating clusters with known overlap
    • Steinley, D., & Henson, R. (2005). OCLUS: An analytic method for generating clusters with known overlap. Journal of Classification, 22, 221-250.
    • (2005) Journal of Classification , vol.22 , pp. 221-250
    • Steinley, D.1    Henson, R.2
  • 39
    • 34547412862 scopus 로고    scopus 로고
    • Examining factor score distributions to determine the nature of latent spaces
    • Steinley, D., & McDonald, R.P. (2007). Examining factor score distributions to determine the nature of latent spaces. Multivariate Behavioral Research, 42, 133-156.
    • (2007) Multivariate Behavioral Research , vol.42 , pp. 133-156
    • Steinley, D.1
  • 41
    • 0001543785 scopus 로고
    • Clustering N objects into K groups under an optimal scaling of variables
    • van Buuren, S.V., & Heiser, W.J. (1989). Clustering N objects into K groups under an optimal scaling of variables. Psychometrika, 54, 699-706.
    • (1989) Psychometrika , vol.54 , pp. 699-706
    • Van Buuren, S.V.1    Heiser, W.J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.