-
1
-
-
85044987534
-
-
submitted
-
E. Achtert, G. Böhm, H.-P. Kriegel, P. Kröger, and A. Zimek. Robust, complete, and efficient correlation clustering, submitted.
-
Robust, Complete, and Efficient Correlation Clustering
-
-
Achtert, E.1
Böhm, G.2
Kriegel, H.-P.3
Kröger, P.4
Zimek, A.5
-
2
-
-
0347718066
-
Fast algorithms for projected clustering
-
G. G. Aggarwal, G. M. Procopiuc, J. L. Wolf, P. S. Yu, and J. S. Park. Fast algorithms for projected clustering. In Proceedings of the SIGMOD Conference, Philadelphia, PA, 1999.
-
(1999)
Proceedings of the SIGMOD Conference, Philadelphia, PA
-
-
Aggarwal, G.G.1
Procopiuc, G.M.2
Wolf, J.L.3
Yu, P.S.4
Park, J.S.5
-
4
-
-
0032090765
-
Automatic subspace clustering of high dimensional data for data mining applications
-
R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan. Automatic subspace clustering of high dimensional data for data mining applications. In Proceedings of the SIGMOD Conference, Seattle, WA, 1998.
-
(1998)
Proceedings of the SIGMOD Conference, Seattle, WA
-
-
Agrawal, R.1
Gehrke, J.2
Gunopulos, D.3
Raghavan, P.4
-
5
-
-
19544386608
-
Density connected clustering with local subspace preferences
-
C. Böhm, K. Kailing, H.-P. Kriegel, and P. Kröger. Density connected clustering with local subspace preferences. In Proceedings of the 4th International Conference on Data Mining (ICDM), Brighton, U.K., 2004.
-
(2004)
Proceedings of the 4th International Conference on Data Mining (ICDM), Brighton, U.K.
-
-
Böhm, C.1
Kailing, K.2
Kriegel, H.-P.3
Kröger, P.4
-
6
-
-
14544300820
-
Computing clusters of correlation connected objects
-
C. Böhm, K. Kailing, P. Kröger, and A. Zimek. Computing clusters of correlation connected objects. In Proceedings of the SIGMOD Conference, Paris, Prance, 2004.
-
(2004)
Proceedings of the SIGMOD Conference, Paris, Prance
-
-
Böhm, C.1
Kailing, K.2
Kröger, P.3
Zimek, A.4
-
8
-
-
0002629270
-
Maximum likelihood from incomplete data via the em algorithm
-
A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, Series B, 39(1):1-31, 1977.
-
(1977)
Journal of the Royal Statistical Society, Series B
, vol.39
, Issue.1
, pp. 1-31
-
-
Dempster, A.P.1
Laird, N.M.2
Rubin, D.B.3
-
9
-
-
0000550189
-
A density-based algorithm for discovering clusters in large spatial databases with noise
-
M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A density-based algorithm for discovering clusters in large spatial databases with noise. In Proceedings of the 2nd ACM International Conference on Knowledge Discovery and Data Mining (KDD), Portland, OR, 1996.
-
(1996)
Proceedings of the 2nd ACM International Conference on Knowledge Discovery and Data Mining (KDD), Portland, OR
-
-
Ester, M.1
Kriegel, H.-P.2
Sander, J.3
Xu, X.4
-
10
-
-
27544508838
-
Analyzing microarray data using quantitative association rules
-
E. Georgii, L. Richter, U. Rückert, and S. Kramer. Analyzing microarray data using quantitative association rules. Bioinformatics, 21(Suppl. 2):ii1-ii8, 2005.
-
(2005)
Bioinformatics
, vol.21
, Issue.2 SUPPL.
-
-
Georgii, E.1
Richter, L.2
Rückert, U.3
Kramer, S.4
-
13
-
-
0344464762
-
Sensitivity and specificity of inferring genetic regulatory interactions from microarray experiments with dynamic Bayesian networks
-
D. Husmeier. Sensitivity and specificity of inferring genetic regulatory interactions from microarray experiments with dynamic Bayesian networks. Bioinformatics, 19(17):2271-2282, 2003.
-
(2003)
Bioinformatics
, vol.19
, Issue.17
, pp. 2271-2282
-
-
Husmeier, D.1
-
14
-
-
2942588997
-
Density-connected subspace clustering for high-dimensional data
-
K. Kailing, H.-.P. Kriegel, and P. Kröger. Density-connected subspace clustering for high-dimensional data. In Proceedings of the 4th SIAM International Conference on Data Mining (SDM), Orlando, FL, 2004.
-
(2004)
Proceedings of the 4th SIAM International Conference on Data Mining (SDM), Orlando, FL
-
-
Kailing, K.1
Kriegel, H.-P.2
Kröger, P.3
-
16
-
-
5444223340
-
MaPle: A fast algorithm for maximal pattern-based clustering
-
J. Pei, X. Zhang, M. Cho, H. Wang, and P. S. Yu. MaPle: A fast algorithm for maximal pattern-based clustering. In Proceedings of the 3th International Conference on Data Mining (ICDM), Melbourne, FL, 2003.
-
(2003)
Proceedings of the 3th International Conference on Data Mining (ICDM), Melbourne, FL
-
-
Pei, J.1
Zhang, X.2
Cho, M.3
Wang, H.4
Yu, P.S.5
-
17
-
-
0036361164
-
A Monte Carlo algorithm for fast projective clustering
-
C. M. Procopiuc, M. Jones, P. K. Agarwal, and T. M. Murali. A Monte Carlo algorithm for fast projective clustering. In Proceedings of the SIGMOD Conference, Madison, WI, 2002.
-
(2002)
Proceedings of the SIGMOD Conference, Madison, WI
-
-
Procopiuc, C.M.1
Jones, M.2
Agarwal, P.K.3
Murali, T.M.4
-
18
-
-
19544381052
-
Quantitative association rules based on half-spaces: An optimization approach
-
U. Rückert, L. Richter, and S. Kramer. Quantitative association rules based on half-spaces: an optimization approach. In Proceedings of the 4th International Conference on Data Mining (ICDM), Brighton, U.K., pages 507-510, 2004.
-
(2004)
Proceedings of the 4th International Conference on Data Mining (ICDM), Brighton, U.K.
, pp. 507-510
-
-
Rückert, U.1
Richter, L.2
Kramer, S.3
-
20
-
-
29844449492
-
CURLER: Finding and visualizing nonlinear correlated clusters
-
A. K. H. Tung, X. Xu, and C. B. Ooi. CURLER: Finding and visualizing nonlinear correlated clusters. In Proceedings of the SIGMOD Conference, Baltimore, ML, 2005.
-
(2005)
Proceedings of the SIGMOD Conference, Baltimore, ML
-
-
Tung, A.K.H.1
Xu, X.2
Ooi, C.B.3
-
21
-
-
0036372484
-
Clustering by pattern similarity in large data sets
-
H. Wang, W. Wang, J. Yang, and P. S. Yu. Clustering by pattern similarity in large data sets. In Proceedings of the SIGMOD Conference, Madison, WI, 2002.
-
(2002)
Proceedings of the SIGMOD Conference, Madison, WI
-
-
Wang, H.1
Wang, W.2
Yang, J.3
Yu, P.S.4
-
24
-
-
0036211103
-
Delta-Clusters: Capturing subspace correlation in a large data set
-
J. Yang, W. Wang, H. Wang, and P. S. Yu. Delta-Clusters: Capturing subspace correlation in a large data set. In Proceedings of the 18th International Conference on Data Engineering (ICDE), San Jose, CA, 2002.
-
(2002)
Proceedings of the 18th International Conference on Data Engineering (ICDE), San Jose, CA
-
-
Yang, J.1
Wang, W.2
Wang, H.3
Yu, P.S.4
-
25
-
-
0039926622
-
The reduced row echelon form of a matrix is unique: A simple proof
-
T. Yuster. The reduced row echelon form of a matrix is unique: A simple proof. Mathematics Magazine, 57(2):93-94, 1984.
-
(1984)
Mathematics Magazine
, vol.57
, Issue.2
, pp. 93-94
-
-
Yuster, T.1
|