메뉴 건너뛰기




Volumn , Issue , 2010, Pages 442-453

Mining actionable subspace clusters in sequential data

Author keywords

[No Author keywords available]

Indexed keywords

CLUSTERING ALGORITHMS; DECISION MAKING; OPTIMIZATION; PRINCIPAL COMPONENT ANALYSIS;

EID: 84872417263     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1137/1.9781611972801.39     Document Type: Conference Paper
Times cited : (8)

References (34)
  • 1
    • 0027621699 scopus 로고
    • Mining association rules between sets of items in large databases
    • R. Agrawal, T. Imielinski, and A. N. Swami. Mining association rules between sets of items in large databases. In SIGMOD, pp. 207-216, 1993.
    • (1993) SIGMOD , pp. 207-216
    • Agrawal, R.1    Imielinski, T.2    Swami, A.N.3
  • 2
    • 84980104458 scopus 로고
    • Financial ratios, discriminant analysis and the prediction of corporate bankruptcy
    • E. I. Altman. Financial ratios, discriminant analysis and the prediction of corporate bankruptcy. The Journal of Finance, 23(4):589-609, 1968.
    • (1968) The Journal of Finance , vol.23 , Issue.4 , pp. 589-609
    • Altman, E.I.1
  • 3
    • 12244300524 scopus 로고    scopus 로고
    • A probabilistic framework for semi-supervised clustering
    • S. Basu, M. Bilenko, and R. J. Mooney. A probabilistic framework for semi-supervised clustering. In KDD, pp. 59-68, 2004.
    • (2004) KDD , pp. 59-68
    • Basu, S.1    Bilenko, M.2    Mooney, R.J.3
  • 7
    • 84924933542 scopus 로고    scopus 로고
    • Valuation ratios and the long run stock market outlook: An update
    • Princeton University Press
    • J. Y. Campbell and R. J. Shiller. Valuation ratios and the long run stock market outlook: An update. In Advances in Behavioral Finance II. Princeton University Press, 2005.
    • (2005) Advances in Behavioral Finance II
    • Campbell, J.Y.1    Shiller, R.J.2
  • 8
    • 52649098497 scopus 로고    scopus 로고
    • Data peeler: Contraint-based closed pattern mining in n-ary relations
    • L. Cerf, J. Besson, C. Robardet, and J.-F. Boulicaut. Data peeler: Contraint-based closed pattern mining in n-ary relations. In SDM, pp. 37-48, 2008.
    • (2008) SDM , pp. 37-48
    • Cerf, L.1    Besson, J.2    Robardet, C.3    Boulicaut, J.-F.4
  • 9
    • 77952760641 scopus 로고    scopus 로고
    • Constrained locally weighted clustering
    • H. Cheng, K. A. Hua, and K. Vu. Constrained locally weighted clustering. PVLDB, 1(1):90-101, 2008.
    • (2008) PVLDB , vol.1 , Issue.1 , pp. 90-101
    • Cheng, H.1    Hua, K.A.2    Vu, K.3
  • 10
    • 0034566393 scopus 로고    scopus 로고
    • Biclustering of expression data
    • Y. Cheng and G. M. Church. Biclustering of expression data. In ISMB, pp. 93-103, 2000.
    • (2000) ISMB , pp. 93-103
    • Cheng, Y.1    Church, G.M.2
  • 11
    • 84880122180 scopus 로고    scopus 로고
    • [Last accessed 2009]
    • Compustat. http://www.compustat.com [Last accessed 2009].
  • 15
    • 65449186692 scopus 로고    scopus 로고
    • Quantitative evaluation of approximate frequent pattern mining algorithms
    • R. Gupta, G. Fang, B. Field, M. Steinbach, and V. Kumar. Quantitative evaluation of approximate frequent pattern mining algorithms. In KDD, pp. 301-309, 2008.
    • (2008) KDD , pp. 301-309
    • Gupta, R.1    Fang, G.2    Field, B.3    Steinbach, M.4    Kumar, V.5
  • 16
    • 84880104543 scopus 로고    scopus 로고
    • [Last accessed 2009]
    • Investopedia. http://www.investopedia.com/university/ratios/ [Last accessed 2009].
  • 17
    • 78149244925 scopus 로고    scopus 로고
    • Mining frequent closed cubes in 3D datasets
    • L. Ji, K.-L. Tan, and A. K. H. Tung. Mining frequent closed cubes in 3D datasets. In VLDB, pp. 811-822, 2006.
    • (2006) VLDB , pp. 811-822
    • Ji, L.1    Tan, K.-L.2    Tung, A.K.H.3
  • 20
    • 67149084291 scopus 로고    scopus 로고
    • Clustering high-dimensional data: A survey on subspace clustering, pattern-based clustering, and correlation clustering
    • H.-P. Kriegel, P. Kröger, and A. Zimek. Clustering high-dimensional data: A survey on subspace clustering, pattern-based clustering, and correlation clustering. ACM Transactions on Knowledge Discovery from Data, 3(1):1-58, 2009.
    • (2009) ACM Transactions on Knowledge Discovery from Data , vol.3 , Issue.1 , pp. 1-58
    • Kriegel, H.-P.1    Kröger, P.2    Zimek, A.3
  • 21
    • 79951742996 scopus 로고    scopus 로고
    • Density-connected subspace clustering for high-dimensional data
    • P. Kröger, H.-P. Kriegel, and K. Kailing. Density-connected subspace clustering for high-dimensional data. In SDM, pp. 246-257, 2004.
    • (2004) SDM , pp. 246-257
    • Kröger, P.1    Kriegel, H.-P.2    Kailing, K.3
  • 22
    • 7444239079 scopus 로고    scopus 로고
    • Predicting returns with financial ratios
    • J. W. Lewellen. Predicting returns with financial ratios. Journal of Financial Economics, 74:209-235, 2004.
    • (2004) Journal of Financial Economics , vol.74 , pp. 209-235
    • Lewellen, J.W.1
  • 23
    • 34548723854 scopus 로고    scopus 로고
    • Distance based subspace clustering with flexible dimension partitioning
    • G. Liu, J. Li, K. Sim, and L. Wong. Distance based subspace clustering with flexible dimension partitioning. In ICDE, pp. 1250-1254, 2007.
    • (2007) ICDE , pp. 1250-1254
    • Liu, G.1    Li, J.2    Sim, K.3    Wong, L.4
  • 24
    • 65449163900 scopus 로고    scopus 로고
    • Finding non-redundant, statistically significant regions in high dimensional data: A novel approach to projected and subspace clustering
    • G. Moise and J. Sander. Finding non-redundant, statistically significant regions in high dimensional data: a novel approach to projected and subspace clustering. In KDD, pp. 533-541, 2008.
    • (2008) KDD , pp. 533-541
    • Moise, G.1    Sander, J.2
  • 25
    • 0000672424 scopus 로고
    • Fast learning in networks of locally-tuned processing units
    • J. Moody and C. J. Darken. Fast learning in networks of locally-tuned processing units. Neural Computation, 1(2):281-294, 1989.
    • (1989) Neural Computation , vol.1 , Issue.2 , pp. 281-294
    • Moody, J.1    Darken, C.J.2
  • 27
    • 79951764492 scopus 로고
    • A test of ben graham's stock selection criteria
    • H. R. Oppenheimer. A test of ben graham's stock selection criteria. Financial Analysts Journal, 40(5):68-74, 1984.
    • (1984) Financial Analysts Journal , vol.40 , Issue.5 , pp. 68-74
    • Oppenheimer, H.R.1
  • 28
    • 55049091309 scopus 로고    scopus 로고
    • LCM ver. 2: Efficient mining algorithms for frequent/closed/maximal itemsets
    • T. Uno, M. Kiyomi, and H. Arimura. LCM ver. 2: Efficient mining algorithms for frequent/closed/maximal itemsets. In FIMI, 2004.
    • (2004) FIMI
    • Uno, T.1    Kiyomi, M.2    Arimura, H.3
  • 29
    • 84880092484 scopus 로고    scopus 로고
    • U.S. Securities and Exchange Commission [Last accessed 2009]
    • U.S. Securities and Exchange Commission. Microcap stock: A guide for investors. http://www.sec.gov/investor/pubs/microcapstock.htm [Last accessed 2009].
    • Microcap Stock: A Guide for Investors
  • 30
    • 84883810104 scopus 로고    scopus 로고
    • Profit mining: From patterns to actions
    • K. Wang, S. Zhou, and J. Han. Profit mining: From patterns to actions. In EDBT, pp. 70-87, 2002.
    • (2002) EDBT , pp. 70-87
    • Wang, K.1    Zhou, S.2    Han, J.3
  • 31
  • 32
    • 67649659857 scopus 로고    scopus 로고
    • Finding time-lagged 3D clusters
    • X. Xu, Y. Lu, K.-L. Tan, and A. K. H. Tung. Finding time-lagged 3D clusters. In ICDE, pp. 445-456, 2009.
    • (2009) ICDE , pp. 445-456
    • Xu, X.1    Lu, Y.2    Tan, K.-L.3    Tung, A.K.H.4
  • 33
    • 28444491389 scopus 로고    scopus 로고
    • On discovery of extremely low-dimensional clusters using semi-supervised projected clustering
    • K. Y. Yip, D. W. Cheung, and M. K. Ng. On discovery of extremely low-dimensional clusters using semi-supervised projected clustering. In ICDE, pp. 329-340, 2005.
    • (2005) ICDE , pp. 329-340
    • Yip, K.Y.1    Cheung, D.W.2    Ng, M.K.3
  • 34
    • 29844442223 scopus 로고    scopus 로고
    • TRICLUSTER: An effective algorithm for mining coherent clusters in 3D microarray data
    • L. Zhao and M. J. Zaki. TRICLUSTER: an effective algorithm for mining coherent clusters in 3D microarray data. In SIGMOD, pp. 694-705, 2005.
    • (2005) SIGMOD , pp. 694-705
    • Zhao, L.1    Zaki, M.J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.