메뉴 건너뛰기




Volumn 14, Issue 1, 2007, Pages 63-97

Locally adaptive metrics for clustering high dimensional data

Author keywords

Clustering ensembles; Dimensionality reduction; Gene expression data; Local feature relevance; Subspace clustering; Text data

Indexed keywords

ADAPTIVE ALGORITHMS; DATA ACQUISITION; DATA REDUCTION; GENETIC ALGORITHMS; INFORMATION ANALYSIS; LINEAR ALGEBRA;

EID: 33847338032     PISSN: 13845810     EISSN: None     Source Type: Journal    
DOI: 10.1007/s10618-006-0060-8     Document Type: Article
Times cited : (203)

References (38)
  • 4
    • 0034598746 scopus 로고    scopus 로고
    • Distinct types of diffuse large b-cell lymphoma identified by gene expression profiling
    • Alizadeh A et al (2000) Distinct types of diffuse large b-cell lymphoma identified by gene expression profiling. Nature 403(6769):503-511
    • (2000) Nature , vol.403 , Issue.6769 , pp. 503-511
    • Alizadeh, A.1
  • 7
    • 0000876414 scopus 로고
    • Local learning algorithms
    • Bottou L, Vapnik V (1992) Local learning algorithms. Neural Comput 4(6):888-900
    • (1992) Neural Comput , vol.4 , Issue.6 , pp. 888-900
    • Bottou, L.1    Vapnik, V.2
  • 8
    • 0005287692 scopus 로고    scopus 로고
    • Local dimensionality reduction: A new approach to indexing high dimensional spaces
    • Chakrabarti K, Mehrotra S (2000) Local dimensionality reduction: a new approach to indexing high dimensional spaces. In: Proceedings of VLDB, pp 89-100
    • (2000) Proceedings of VLDB , pp. 89-100
    • Chakrabarti, K.1    Mehrotra, S.2
  • 10
    • 0002607026 scopus 로고    scopus 로고
    • Bayesian classification (autoclass): Theory and results
    • Chap. 6. AAAI/MIT Press, pp
    • Cheeseman P, Stutz J (1996) Bayesian classification (autoclass): theory and results. In: Advances in knowledge discovery and data mining, Chap. 6. AAAI/MIT Press, pp 153-180
    • (1996) Advances in knowledge discovery and data mining , pp. 153-180
    • Cheeseman, P.1    Stutz, J.2
  • 11
    • 33847337786 scopus 로고    scopus 로고
    • Dempster AP, Laird NM, Rubin DB (1997) Maximum likelihood from incomplete data via the EM algorithm. J R Stat Soc 39(1):l-38
    • Dempster AP, Laird NM, Rubin DB (1997) Maximum likelihood from incomplete data via the EM algorithm. J R Stat Soc 39(1):l-38
  • 19
    • 20444474507 scopus 로고    scopus 로고
    • Clustering objects on subsets of attributes
    • Technical report, Stanford University
    • Friedman J, Meulman J (2002) Clustering objects on subsets of attributes. Technical report, Stanford University
    • (2002)
    • Friedman, J.1    Meulman, J.2
  • 21
    • 0003744820 scopus 로고    scopus 로고
    • The EM algorithm for mixtures of factor analyzers
    • Technical report CRG-TR-96-1, Department of Computer Science, University of Toronto
    • Ghahramani Z, Hinton GE (1996) The EM algorithm for mixtures of factor analyzers. Technical report CRG-TR-96-1, Department of Computer Science, University of Toronto
    • (1996)
    • Ghahramani, Z.1    Hinton, G.E.2
  • 22
    • 84927511887 scopus 로고
    • Direct clustering of a data matrix
    • Hartigan JA (1972) Direct clustering of a data matrix. J Am Stat Assoc 67(337): 123-129
    • (1972) J Am Stat Assoc , vol.67 , Issue.337 , pp. 123-129
    • Hartigan, J.A.1
  • 25
    • 33847372729 scopus 로고    scopus 로고
    • Kharypis G, Kumar V (1995) Multilevel k-way partitioning scheme for irregular graphs. Technical report, Department of Computer Science, University of Minnesota and Army HPC Research Center
    • Kharypis G, Kumar V (1995) Multilevel k-way partitioning scheme for irregular graphs. Technical report, Department of Computer Science, University of Minnesota and Army HPC Research Center
  • 26
    • 0003046842 scopus 로고
    • Learning from observation: Conceptual clustering
    • Michalski RS, Carbonell JG, Mitchell TM eds, Palo Alto TIOGA Publishing Co, pp
    • Michalski RS, Stepp RE (1983) Learning from observation: conceptual clustering. In: Michalski RS, Carbonell JG, Mitchell TM (eds) Machine learning: an artificial intelligence approach, vol 2. Palo Alto TIOGA Publishing Co., pp 331-363
    • (1983) Machine learning: An artificial intelligence approach , vol.2 , pp. 331-363
    • Michalski, R.S.1    Stepp, R.E.2
  • 28
    • 0042312608 scopus 로고    scopus 로고
    • Feature weighting in K-means clustering
    • Modha D, Spangler S (2003) Feature weighting in K-means clustering. Mach Learn 52(3):217-237
    • (2003) Mach Learn , vol.52 , Issue.3 , pp. 217-237
    • Modha, D.1    Spangler, S.2
  • 29
    • 0003136237 scopus 로고
    • Efficient and effective clustering methods for spatial data mining
    • Ng RT, Han J (1994) Efficient and effective clustering methods for spatial data mining. In: Proceedings of the VLDB conference, pp 144-155
    • (1994) Proceedings of the VLDB conference , pp. 144-155
    • RT, N.1    Han, J.2
  • 30
    • 17044376078 scopus 로고    scopus 로고
    • Subspace clustering for high dimensional data: A review
    • Parsons L, Haque E, Liu H (2004) Subspace clustering for high dimensional data: a review. ACM SIGKDD Explor Newsl 6(1):90-105
    • (2004) ACM SIGKDD Explor Newsl , vol.6 , Issue.1 , pp. 90-105
    • Parsons, L.1    Haque, E.2    Liu, H.3
  • 32
    • 0041965980 scopus 로고    scopus 로고
    • Cluster ensemble - a knowledge reuse framework for combining multiple partitions
    • Strehl A, Ghosh J (2003) Cluster ensemble - a knowledge reuse framework for combining multiple partitions. J Mach Learn Res 3:583-617
    • (2003) J Mach Learn Res , vol.3 , pp. 583-617
    • Strehl, A.1    Ghosh, J.2
  • 33
    • 0033556788 scopus 로고    scopus 로고
    • Mixtures of principal component analyzers
    • Tipping ME, Bishop CM (1999) Mixtures of principal component analyzers. Neural Comput 1(2):443-482
    • (1999) Neural Comput , vol.1 , Issue.2 , pp. 443-482
    • Tipping, M.E.1    Bishop, C.M.2
  • 34
    • 0742328140 scopus 로고    scopus 로고
    • Clustering and singular value decomposition for approximate indexing in high dimensional spaces
    • Thomasian A, Castelli V, Li CS (1998) Clustering and singular value decomposition for approximate indexing in high dimensional spaces. In: Proceedings of CIKM, pp 201-207
    • (1998) Proceedings of CIKM , pp. 201-207
    • Thomasian, A.1    Castelli, V.2    Li, C.S.3
  • 36
    • 0002210265 scopus 로고
    • On the convergence properties of the EM algorithm
    • Wu CFJ (1983) On the convergence properties of the EM algorithm. Ann Stat 11(1):95-103
    • (1983) Ann Stat , vol.11 , Issue.1 , pp. 95-103
    • Wu, C.F.J.1
  • 37
    • 0036211103 scopus 로고    scopus 로고
    • Yang J, Wang W, Wang H, Yu P (2002) δ-Clusters: capturing subspace correlation in a large data set. In: Proceedings of the international conference on data engineering, pp 517-528
    • Yang J, Wang W, Wang H, Yu P (2002) δ-Clusters: capturing subspace correlation in a large data set. In: Proceedings of the international conference on data engineering, pp 517-528


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.