-
2
-
-
85012236181
-
A framework for clustering evolving data streams
-
Aggarwal, C.C., Han, J., Wang, J., Yu, P.S.: A framework for clustering evolving data streams. In: Proc. VLDB (2003)
-
(2003)
Proc. VLDB
-
-
Aggarwal, C.C.1
Han, J.2
Wang, J.3
Yu, P.S.4
-
3
-
-
85136074496
-
A framework for projected clustering of high dimensional data streams
-
Aggarwal, C.C., Han, J., Wang, J., Yu, P.S.: A framework for projected clustering of high dimensional data streams. In: Proc. VLDB (2004)
-
(2004)
Proc. VLDB
-
-
Aggarwal, C.C.1
Han, J.2
Wang, J.3
Yu, P.S.4
-
4
-
-
0032090765
-
Automatic subspace clustering of high dimensional data for data mining applications
-
Agrawal, R., Gehrke, J., Gunopulos, D., Raghavan, P.: Automatic subspace clustering of high dimensional data for data mining applications. In: Proc. SIGMOD (1998)
-
(1998)
Proc. SIGMOD
-
-
Agrawal, R.1
Gehrke, J.2
Gunopulos, D.3
Raghavan, P.4
-
5
-
-
0347172110
-
OPTICS: Ordering points to identify the clustering structure
-
Ankerst, M., Breunig, M.M., Kriegel, H.P., Sander, J.: OPTICS: Ordering points to identify the clustering structure. In: Proc. SIGMOD (1999)
-
(1999)
Proc. SIGMOD
-
-
Ankerst, M.1
Breunig, M.M.2
Kriegel, H.P.3
Sander, J.4
-
6
-
-
19544386608
-
Density connected clustering with local subspace preferences
-
B̈ohm, C., Kailing, K., Kriegel, H.P., Kr̈oger, P.: Density connected clustering with local subspace preferences. In: Proc. ICDM (2004)
-
(2004)
Proc. ICDM
-
-
B̈ohm, C.1
Kailing, K.2
Kriegel, H.P.3
Kr̈oger, P.4
-
7
-
-
34548620153
-
Density-based clustering over an evolving data stream with noise
-
Cao, F., Ester, M., Qian, W., Zhou, A.: Density-based clustering over an evolving data stream with noise. In: Proc. SDM (2006)
-
(2006)
Proc. SDM
-
-
Cao, F.1
Ester, M.2
Qian, W.3
Zhou, A.4
-
8
-
-
11144328291
-
Incremental clustering and dynamic information retrieval
-
DOI 10.1137/S0097539702418498
-
Charikar, M., Chekuri, C., Feder, T., Motwani, R.: Incremental clustering and dynamic information retrieval. SICOMP 33(6), 1417-1440 (2004) (Pubitemid 40026770)
-
(2004)
SIAM Journal on Computing
, vol.33
, Issue.6
, pp. 1417-1440
-
-
Charikar, M.1
Chekuri, C.2
Feder, T.3
Motwani, R.4
-
9
-
-
84945254772
-
An incremental hierarchical data clustering algorithm based on gravity theory
-
Chen, M.-S., Yu, P.S., Liu, B. (eds.) Springer, Heidelberg
-
Chen, C.Y., Hwang, S.C., Oyang, Y.J.: An incremental hierarchical data clustering algorithm based on gravity theory. In: Chen, M.-S., Yu, P.S., Liu, B. (eds.) PAKDD 2002. LNCS (LNAI), vol. 2336, p. 237. Springer, Heidelberg (2002)
-
(2002)
PAKDD 2002. LNCS (LNAI)
, vol.2336
, pp. 237
-
-
Chen, C.Y.1
Hwang, S.C.2
Oyang, Y.J.3
-
10
-
-
0001899154
-
Incremental clustering for mining in a data warehousing environment
-
Ester, M., Kriegel, H.P., Sander, J., Wimmer, M., Xu, X.: Incremental clustering for mining in a data warehousing environment. In: Proc. VLDB (1998)
-
(1998)
Proc. VLDB
-
-
Ester, M.1
Kriegel, H.P.2
Sander, J.3
Wimmer, M.4
Xu, X.5
-
11
-
-
0000550189
-
A density-based algorithm for discovering clusters in large spatial databases with noise
-
Ester, M., Kriegel, H.P., Sander, J., Xu, X.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: Proc. KDD (1996)
-
(1996)
Proc. KDD
-
-
Ester, M.1
Kriegel, H.P.2
Sander, J.3
Xu, X.4
-
12
-
-
0035053182
-
DEMON: Mining and monitoring evolving data
-
DOI 10.1109/69.908980
-
Ganti, V., Gehrke, J., Ramakrishnan, R.: DEMON: Mining and monitoring evolving data. IEEE TKDE 13(1), 50-63 (2001) (Pubitemid 32301043)
-
(2001)
IEEE Transactions on Knowledge and Data Engineering
, vol.13
, Issue.1
, pp. 50-63
-
-
Ganti, V.1
Gehrke, J.2
Ramakrishnan, R.3
-
13
-
-
26944494130
-
An incremental data stream clustering algorithm based on dense units detection
-
Ho, T.-B., Cheung, D., Liu, H. (eds.) Springer, Heidelberg
-
Gao, J., Li, J., Zhang, Z., Tan, P.N.: An incremental data stream clustering algorithm based on dense units detection. In: Ho, T.-B., Cheung, D., Liu, H. (eds.) PAKDD 2005. LNCS (LNAI), vol. 3518, pp. 420-425. Springer, Heidelberg (2005)
-
(2005)
PAKDD 2005. LNCS (LNAI)
, vol.3518
, pp. 420-425
-
-
Gao, J.1
Li, J.2
Zhang, Z.3
Tan, P.N.4
-
14
-
-
0036367429
-
Querying and mining data streams: You only get one look. A tutorial
-
Garofalakis, M., Gehrke, J., Rastogi, R.: Querying and mining data streams: you only get one look. A tutorial. In: Proc. SIGMOD (2002)
-
(2002)
Proc. SIGMOD
-
-
Garofalakis, M.1
Gehrke, J.2
Rastogi, R.3
-
15
-
-
0038633423
-
Clustering data streams: Theory and practice
-
Guha, S., Meyerson, A., Mishra, N., Motwani, R., O'Callaghan, L.: Clustering data streams: Theory and practice. IEEE TKDE 15(3), 515-528 (2003)
-
(2003)
IEEE TKDE
, vol.15
, Issue.3
, pp. 515-528
-
-
Guha, S.1
Meyerson, A.2
Mishra, N.3
Motwani, R.4
O'Callaghan, L.5
-
16
-
-
84893405732
-
Data clustering: A review
-
Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: A review. ACM CSUR 31(3), 264-323 (1999)
-
(1999)
ACM CSUR
, vol.31
, Issue.3
, pp. 264-323
-
-
Jain, A.K.1
Murty, M.N.2
Flynn, P.J.3
-
17
-
-
26444485130
-
Incremental OPTICS: Efficient computation of updates in a hierarchical cluster ordering
-
Kriegel, H.P., Kr̈oger, P., Gotlibovich, I.: Incremental OPTICS: efficient computation of updates in a hierarchical cluster ordering. In: Proc. DaWaK (2003)
-
(2003)
Proc. DaWaK
-
-
Kriegel, H.P.1
Kr̈oger, P.2
Gotlibovich, I.3
-
18
-
-
77956233065
-
Towards subspace clustering on dynamic data: An incremental version of PreDeCon
-
Kriegel, H.P., Kr̈oger, P., Ntoutsi, I., Zimek, A.: Towards subspace clustering on dynamic data: an incremental version of PreDeCon. In: Stream KDD 2010 (2010)
-
Stream KDD
, vol.2010
, Issue.2010
-
-
Kriegel, H.P.1
Kr̈oger, P.2
Ntoutsi, I.3
Zimek, A.4
-
19
-
-
67149084291
-
Clustering high dimensional data: A survey on subspace clustering, pattern-based clustering, and correlation clustering
-
Kriegel, H.P., Kr̈oger, P., Zimek, A.: Clustering high dimensional data: A survey on subspace clustering, pattern-based clustering, and correlation clustering. IEEE TKDD 3(1), 1-58 (2009)
-
(2009)
IEEE TKDD
, vol.3
, Issue.1
, pp. 1-58
-
-
Kriegel, H.P.1
Kr̈oger, P.2
Zimek, A.3
-
20
-
-
0036351150
-
Very high compliance in an expanded MS-MS-based newborn screening program despite written parental consent
-
DOI 10.1006/pmed.2001.0952
-
Liebl, B., Nennstiel-Ratzel, U., von Kries, R., Fingerhut, R., Olgem̈oller, B., Zapf, A., Roscher, A.A.: Very high compliance in an expanded MS-MS-based newborn screening program despite written parental consent. Preventive Medicine 34(2), 127-131 (2002) (Pubitemid 34971693)
-
(2002)
Preventive Medicine
, vol.34
, Issue.2
, pp. 127-131
-
-
Liebl, B.1
Nennstiel-Ratzel, U.2
Von Kries, R.3
Fingerhut, R.4
Olgemoller, B.5
Zapf, A.6
Roscher, A.A.7
-
21
-
-
33749564726
-
MONIC: Modeling and monitoring cluster transitions
-
Spiliopoulou, M., Ntoutsi, I., Theodoridis, Y., Schult, R.: MONIC: modeling and monitoring cluster transitions. In: Proc. KDD (2006)
-
(2006)
Proc. KDD
-
-
Spiliopoulou, M.1
Ntoutsi, I.2
Theodoridis, Y.3
Schult, R.4
-
22
-
-
0030157145
-
BIRCH: An efficient data clustering method for very large databases
-
Zhang, T., Ramakrishnan, R., Livny, M.: BIRCH: An efficient data clustering method for very large databases. In: Proc. SIGMOD, pp. 103-114 (1996) (Pubitemid 126440760)
-
(1996)
SIGMOD Record (ACM Special Interest Group on Management of Data)
, vol.25
, Issue.2
, pp. 103-114
-
-
Zhang, T.1
Ramakrishnan, R.2
Livny, M.3
|