메뉴 건너뛰기




Volumn 60, Issue 1, 2007, Pages 51-70

Clicks: An effective algorithm for mining subspace clusters in categorical datasets

Author keywords

Categorical data; Clustering; k Partite graph; Maximal cliques

Indexed keywords

ALGORITHMS; DATABASE SYSTEMS; KNOWLEDGE ACQUISITION; REAL TIME SYSTEMS;

EID: 33845981111     PISSN: 0169023X     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.datak.2006.01.005     Document Type: Article
Times cited : (59)

References (23)
  • 3
    • 33845991007 scopus 로고    scopus 로고
    • R. Agrawal, J. Gehrke, D. Gunopulos, P. Raghavan, Automatic subspace clustering of high dimensional data for data mining applications, in: SIGMOD Conf., 1997.
  • 4
    • 33846030648 scopus 로고    scopus 로고
    • H. Nagesh, S. Goil, A. Choudhary, Adaptive grids for clustering massive data sets, in: SIAM Data Mining Conf., 2002.
  • 5
    • 19544389465 scopus 로고    scopus 로고
    • K. Sequeira, M. Zaki, SCHISM: a new approach for interesting subspace mining, in: IEEE Int'l Conf. on Data Mining, 2004.
  • 6
    • 0036361164 scopus 로고    scopus 로고
    • C.M. Procopiuc, M. Jones, P.K. Aggarwal, T.M. Murali, A Monte Carlo algorithm for fast projective clustering, in: SIGMOD Conf., 2002.
  • 7
    • 0039253822 scopus 로고    scopus 로고
    • C.C. Aggarwal, P.S. Yu, Finding generalized projected clusters in high dimensional spaces, in: SIGMOD Conf., 2000.
  • 8
    • 33845981321 scopus 로고    scopus 로고
    • K. Kailing, H. Kriegel, P. Kroeger, S. Wanka, Ranking interesting subspaces for clustering high dimensional data, in: PKDD Conf., 2003.
  • 9
    • 33846006738 scopus 로고    scopus 로고
    • Y. Cheng, G. Chruch, Biclustering of expression data, in: ISMB Conf., 2000.
  • 10
    • 33846023882 scopus 로고    scopus 로고
    • M. Ester, H. Kriegel, J. Sander, X. Xu, A density-based algorithm for discovering clusters in large spatial databases with noise, in: SIGKDD Conf., 1996.
  • 11
    • 77952400167 scopus 로고    scopus 로고
    • C. Ordonez, Clustering binary data streams with k-means, in: SIGMOD DMKD Workshop, 2003.
  • 12
    • 0033279070 scopus 로고    scopus 로고
    • K. Wang, C. Xu, B. Liu, Clustering transactions using large items, in: CIKM Conf., 1999.
  • 13
    • 70350644882 scopus 로고    scopus 로고
    • M. Koyutürk, A. Grama, Proximus: a framework for analyzing very high-dimensional discrete attributed datasets, in: SIGKDD Conf., 2003.
  • 14
    • 33845989303 scopus 로고    scopus 로고
    • E. Han, G. Karypis, V. Kumar, B. Mobasher, Clustering based on association rule hypergraphs, in: SIGMOD DMKD Workshop, 1997.
  • 15
    • 33846019839 scopus 로고    scopus 로고
    • Z. Huang, A fast clustering algorithm to cluster very large categorical data sets in data mining, in: SIGMOD DMKD Workshop, 1997.
  • 16
    • 0038494682 scopus 로고    scopus 로고
    • D. Barbara, Y. Li, J. Couto, Coolcat: an entropy-based algorithm for categorical clustering, in: CIKM Conf., 2002.
  • 17
    • 33845978940 scopus 로고    scopus 로고
    • D. Cristofor, D. Simovici, An information-theoretical approach to clustering categorical databases using genetic algorithms, in: SIAM Workshop on clustering high dimensional data, 2002.
  • 18
    • 35048857464 scopus 로고    scopus 로고
    • P. Andritsos, P. Tsaparas, R.J. Miller, K.C. Sevcik, LIMBO: scalable clustering of categorical data, in: 9th Int'l Conf. on Extending DataBase Technology, 2004.
  • 19
    • 33845997270 scopus 로고    scopus 로고
    • D. Gibson, J. Kleinberg, P. Raghavan, Clustering categorical data: an approach based on dynamical systems, in: VLDB Conf., 1998.
  • 20
    • 33845974292 scopus 로고    scopus 로고
    • V. Ganti, J. Gehrke, R. Ramakrishnan, CACTUS: clustering categorical data using summaries, in: SIGKDD Conf., 1999.
  • 21
    • 85175742267 scopus 로고    scopus 로고
    • S. Guha, R. Rastogi, K. Shim, Rock: a robust clustering algorithm for categorical attributes, in: ICDE Conf., 1999.
  • 23
    • 78149351437 scopus 로고    scopus 로고
    • K. Gouda, M.J. Zaki, Efficiently mining maximal frequent itemsets, in: ICDM Conf., 2001.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.