-
1
-
-
0037069690
-
Rho GTPases in cell biology
-
Etienne-Manneville S., et al. Rho GTPases in cell biology. Nature 2002, 420:629-635.
-
(2002)
Nature
, vol.420
, pp. 629-635
-
-
Etienne-Manneville, S.1
-
3
-
-
33846662015
-
Cell type-specific functions of Rho GTPases revealed by gene targeting in mice
-
Wang L., Zheng Y. Cell type-specific functions of Rho GTPases revealed by gene targeting in mice. Trends Cell Biol. 2007, 17:58-64.
-
(2007)
Trends Cell Biol.
, vol.17
, pp. 58-64
-
-
Wang, L.1
Zheng, Y.2
-
4
-
-
50149083752
-
Mammalian Rho GTPases: new insights into their functions from in vivo studies
-
Heasman S.J., Ridley A.J. Mammalian Rho GTPases: new insights into their functions from in vivo studies. Nat. Rev. Mol. Cell Biol. 2008, 9:690-701.
-
(2008)
Nat. Rev. Mol. Cell Biol.
, vol.9
, pp. 690-701
-
-
Heasman, S.J.1
Ridley, A.J.2
-
6
-
-
20544447033
-
Rho GTPases, dendritic structure, and mental retardation
-
Newey S.E., et al. Rho GTPases, dendritic structure, and mental retardation. J. Neurobiol. 2005, 64:58-74.
-
(2005)
J. Neurobiol.
, vol.64
, pp. 58-74
-
-
Newey, S.E.1
-
7
-
-
0037139607
-
The role of Rho GTPases in disease development
-
Boettner B., Van Aelst L. The role of Rho GTPases in disease development. Gene 2002, 286:155-174.
-
(2002)
Gene
, vol.286
, pp. 155-174
-
-
Boettner, B.1
Van Aelst, L.2
-
8
-
-
77649215060
-
Rho GTPases in hematopoiesis and hemopathies
-
Mulloy J.C., et al. Rho GTPases in hematopoiesis and hemopathies. Blood 2010, 115:936-947.
-
(2010)
Blood
, vol.115
, pp. 936-947
-
-
Mulloy, J.C.1
-
9
-
-
4143118857
-
Inverted signaling hierarchy between RAS and RAC in T-lymphocytes
-
Zugaza J.L., et al. Inverted signaling hierarchy between RAS and RAC in T-lymphocytes. Oncogene 2004, 23:5823-5833.
-
(2004)
Oncogene
, vol.23
, pp. 5823-5833
-
-
Zugaza, J.L.1
-
10
-
-
33750935902
-
Regulators of Rho GTPases in neuronal development
-
Watabe-Uchida M., et al. Regulators of Rho GTPases in neuronal development. J. Neurosci. 2006, 26:10633-10655.
-
(2006)
J. Neurosci.
, vol.26
, pp. 10633-10655
-
-
Watabe-Uchida, M.1
-
11
-
-
34247175312
-
GTP-binding proteins of the Rho/Rac family: regulation, effectors and functions in vivo
-
Bustelo X.R., et al. GTP-binding proteins of the Rho/Rac family: regulation, effectors and functions in vivo. Bioessays 2007, 29:356-370.
-
(2007)
Bioessays
, vol.29
, pp. 356-370
-
-
Bustelo, X.R.1
-
12
-
-
0034213327
-
Rho GTPases and their effector proteins
-
Bishop A.L., Hall A. Rho GTPases and their effector proteins. Biochem. J. 2000, 348:241-255.
-
(2000)
Biochem. J.
, vol.348
, pp. 241-255
-
-
Bishop, A.L.1
Hall, A.2
-
13
-
-
21744432683
-
GDIs: central regulatory molecules in Rho GTPase activation
-
DerMardirossian C., et al. GDIs: central regulatory molecules in Rho GTPase activation. Trends Cell Biol. 2005, 15:356-363.
-
(2005)
Trends Cell Biol.
, vol.15
, pp. 356-363
-
-
DerMardirossian, C.1
-
14
-
-
0035668525
-
Dbl family guanine nucleotide exchange factors
-
Zheng Y. Dbl family guanine nucleotide exchange factors. Trends Biochem. Sci. 2001, 26:724-732.
-
(2001)
Trends Biochem. Sci.
, vol.26
, pp. 724-732
-
-
Zheng, Y.1
-
15
-
-
0037213689
-
Rho GTPase-activating proteins in cell regulation
-
Moon S.Y., Zheng Y. Rho GTPase-activating proteins in cell regulation. Trends Cell Biol. 2003, 13:13-22.
-
(2003)
Trends Cell Biol.
, vol.13
, pp. 13-22
-
-
Moon, S.Y.1
Zheng, Y.2
-
16
-
-
0036644975
-
Guanine nucleotide exchange factors for Rho GTPases: turning on the switch
-
Schmidt A., Hall A. Guanine nucleotide exchange factors for Rho GTPases: turning on the switch. Gene Dev. 2002, 16:1587-1609.
-
(2002)
Gene Dev.
, vol.16
, pp. 1587-1609
-
-
Schmidt, A.1
Hall, A.2
-
17
-
-
13444252631
-
GEF means go: turning on RHO GTPases with guanine nucleotide-exchange factors
-
Rossman K.L., et al. GEF means go: turning on RHO GTPases with guanine nucleotide-exchange factors. Nat. Rev. Mol. Cell Biol. 2005, 6:167-180.
-
(2005)
Nat. Rev. Mol. Cell Biol.
, vol.6
, pp. 167-180
-
-
Rossman, K.L.1
-
18
-
-
77951974893
-
Regulation of Rho GTPase crosstalk, degradation and activity by RhoGDI1
-
Boulter E., et al. Regulation of Rho GTPase crosstalk, degradation and activity by RhoGDI1. Nat. Cell Biol. 2010, 12:477-483.
-
(2010)
Nat. Cell Biol.
, vol.12
, pp. 477-483
-
-
Boulter, E.1
-
19
-
-
38549150275
-
MiRBase: tools for microRNA genomics
-
Griffiths-Jones S., et al. miRBase: tools for microRNA genomics. Nucleic Acids Res. 2008, 36:D154-D158.
-
(2008)
Nucleic Acids Res.
, vol.36
-
-
Griffiths-Jones, S.1
-
20
-
-
67749132423
-
Argonaute HITS-CLIP decodes microRNA-mRNA interaction maps
-
Chi S.W., et al. Argonaute HITS-CLIP decodes microRNA-mRNA interaction maps. Nature 2009, 460:479-486.
-
(2009)
Nature
, vol.460
, pp. 479-486
-
-
Chi, S.W.1
-
21
-
-
0347444723
-
MicroRNAs: genomics, biogenesis, mechanism, and function
-
Bartel D.P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004, 116:281-297.
-
(2004)
Cell
, vol.116
, pp. 281-297
-
-
Bartel, D.P.1
-
22
-
-
0036544755
-
MicroRNAs are complementary to 3' UTR sequence motifs that mediate negative post-transcriptional regulation
-
Lai E.C. MicroRNAs are complementary to 3' UTR sequence motifs that mediate negative post-transcriptional regulation. Nat. Genet. 2002, 30:363-364.
-
(2002)
Nat. Genet.
, vol.30
, pp. 363-364
-
-
Lai, E.C.1
-
23
-
-
34249279050
-
MicroRNA-133 controls cardiac hypertrophy
-
Carè A., et al. MicroRNA-133 controls cardiac hypertrophy. Nat. Med. 2007, 13:613-618.
-
(2007)
Nat. Med.
, vol.13
, pp. 613-618
-
-
Carè, A.1
-
24
-
-
79960258642
-
Tinman/Nkx2-5 acts via miR-1 and upstream of Cdc42 to regulate heart function across species
-
Qian L., et al. Tinman/Nkx2-5 acts via miR-1 and upstream of Cdc42 to regulate heart function across species. J. Cell Biol. 2011, 193:1181-1196.
-
(2011)
J. Cell Biol.
, vol.193
, pp. 1181-1196
-
-
Qian, L.1
-
25
-
-
48849103603
-
MicroRNA miR-124 regulates neurite outgrowth during neuronal differentiation
-
Yu J.Y., et al. MicroRNA miR-124 regulates neurite outgrowth during neuronal differentiation. Exp. Cell Res. 2008, 314:2618-2633.
-
(2008)
Exp. Cell Res.
, vol.314
, pp. 2618-2633
-
-
Yu, J.Y.1
-
26
-
-
33750370444
-
MicroRNA signatures in human cancers
-
Calin G.A., Croce C.M. MicroRNA signatures in human cancers. Nat. Rev. Cancer 2006, 6:857-866.
-
(2006)
Nat. Rev. Cancer
, vol.6
, pp. 857-866
-
-
Calin, G.A.1
Croce, C.M.2
-
27
-
-
66449095667
-
A pleiotropically acting microRNA, miR-31, inhibits breast cancer metastasis
-
Valastyan S., et al. A pleiotropically acting microRNA, miR-31, inhibits breast cancer metastasis. Cell 2009, 137:1032-1046.
-
(2009)
Cell
, vol.137
, pp. 1032-1046
-
-
Valastyan, S.1
-
28
-
-
77953780136
-
Concurrent suppression of integrin alpha5, radixin, and RhoA phenocopies the effects of miR-31 on metastasis
-
Valastyan S., et al. Concurrent suppression of integrin alpha5, radixin, and RhoA phenocopies the effects of miR-31 on metastasis. Cancer Res. 2010, 70:5147-5154.
-
(2010)
Cancer Res.
, vol.70
, pp. 5147-5154
-
-
Valastyan, S.1
-
29
-
-
55849123946
-
MicroRNA-155 is regulated by the transforming growth factor beta/Smad pathway and contributes to epithelial cell plasticity by targeting RhoA
-
Kong W., et al. MicroRNA-155 is regulated by the transforming growth factor beta/Smad pathway and contributes to epithelial cell plasticity by targeting RhoA. Mol. Cell. Biol. 2008, 28:6773-6784.
-
(2008)
Mol. Cell. Biol.
, vol.28
, pp. 6773-6784
-
-
Kong, W.1
-
30
-
-
35148886434
-
Tumour invasion and metastasis initiated by microRNA-10b in breast cancer
-
Ma L., et al. Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature 2007, 449:682-688.
-
(2007)
Nature
, vol.449
, pp. 682-688
-
-
Ma, L.1
-
31
-
-
70350731129
-
Epigenetic regulation of microRNA expression in colorectal cancer
-
Bandres E., et al. Epigenetic regulation of microRNA expression in colorectal cancer. Int. J. Cancer 2009, 125:2723-2743.
-
(2009)
Int. J. Cancer
, vol.125
, pp. 2723-2743
-
-
Bandres, E.1
-
32
-
-
79959743039
-
MiR-137 is frequently down-regulated in gastric cancer and is a negative regulator of Cdc42
-
Chen Q., et al. miR-137 is frequently down-regulated in gastric cancer and is a negative regulator of Cdc42. Dig. Dis. Sci. 2011, 56:2009-2016.
-
(2011)
Dig. Dis. Sci.
, vol.56
, pp. 2009-2016
-
-
Chen, Q.1
-
33
-
-
78650539977
-
MiR-137 targets Cdc42 expression, induces cell cycle G1 arrest and inhibits invasion in colorectal cancer cells
-
Liu M., et al. miR-137 targets Cdc42 expression, induces cell cycle G1 arrest and inhibits invasion in colorectal cancer cells. Int. J. Cancer 2011, 128:1269-1279.
-
(2011)
Int. J. Cancer
, vol.128
, pp. 1269-1279
-
-
Liu, M.1
-
34
-
-
78651465898
-
MiR-185 targets RhoA and Cdc42 expression and inhibits the proliferation potential of human colorectal cells
-
Liu M., et al. miR-185 targets RhoA and Cdc42 expression and inhibits the proliferation potential of human colorectal cells. Cancer Lett. 2011, 301:151-160.
-
(2011)
Cancer Lett.
, vol.301
, pp. 151-160
-
-
Liu, M.1
-
35
-
-
58149215802
-
MiR-29 miRNAs activate p53 by targeting p85 alpha and CDC42
-
Park S.Y., et al. miR-29 miRNAs activate p53 by targeting p85 alpha and CDC42. Nat. Struct. Mol. Biol. 2009, 16:23-29.
-
(2009)
Nat. Struct. Mol. Biol.
, vol.16
, pp. 23-29
-
-
Park, S.Y.1
-
36
-
-
41749113108
-
MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer
-
Asangani I.A., et al. MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer. Oncogene 2008, 27:2128-2136.
-
(2008)
Oncogene
, vol.27
, pp. 2128-2136
-
-
Asangani, I.A.1
-
37
-
-
22244467087
-
MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells
-
Chan J.A., et al. MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res. 2005, 65:6029-6033.
-
(2005)
Cancer Res.
, vol.65
, pp. 6029-6033
-
-
Chan, J.A.1
-
38
-
-
80053272794
-
MiR-21 targets the tumor suppressor RhoB and regulates proliferation, invasion and apoptosis in colorectal cancer cells
-
Liu M., et al. miR-21 targets the tumor suppressor RhoB and regulates proliferation, invasion and apoptosis in colorectal cancer cells. FEBS Lett. 2011, 585:2998-3005.
-
(2011)
FEBS Lett.
, vol.585
, pp. 2998-3005
-
-
Liu, M.1
-
39
-
-
77952948062
-
Overexpression of miR-21 promotes an in vitro metastatic phenotype by targeting the tumor suppressor RHOB
-
Connolly E.C., et al. Overexpression of miR-21 promotes an in vitro metastatic phenotype by targeting the tumor suppressor RHOB. Mol. Cancer Res. 2010, 8:691-700.
-
(2010)
Mol. Cancer Res.
, vol.8
, pp. 691-700
-
-
Connolly, E.C.1
-
40
-
-
78449298671
-
MicroRNA-200b regulates cyclin D1 expression and promotes S-phase entry by targeting RND3 in HeLa cells
-
Xia W., et al. MicroRNA-200b regulates cyclin D1 expression and promotes S-phase entry by targeting RND3 in HeLa cells. Mol. Cell. Biochem. 2010, 344:261-266.
-
(2010)
Mol. Cell. Biochem.
, vol.344
, pp. 261-266
-
-
Xia, W.1
-
41
-
-
54449089270
-
Rho Family GTPase modification and dependence on CAAX motif-signaled posttranslational modification
-
Roberts P.J., et al. Rho Family GTPase modification and dependence on CAAX motif-signaled posttranslational modification. J. Biol. Chem. 2008, 283:25150-25163.
-
(2008)
J. Biol. Chem.
, vol.283
, pp. 25150-25163
-
-
Roberts, P.J.1
-
42
-
-
84855884600
-
Posttranslational lipid modification of Rho family small GTPases
-
Mitin N., et al. Posttranslational lipid modification of Rho family small GTPases. Methods Mol. Biol. 2012, 827:87-95.
-
(2012)
Methods Mol. Biol.
, vol.827
, pp. 87-95
-
-
Mitin, N.1
-
43
-
-
84862753776
-
A palmitoylation switch mechanism regulates Rac1 function and membrane organization
-
Navarro-Lérida I., et al. A palmitoylation switch mechanism regulates Rac1 function and membrane organization. EMBO J. 2011, 31:534-551.
-
(2011)
EMBO J.
, vol.31
, pp. 534-551
-
-
Navarro-Lérida, I.1
-
44
-
-
77949524142
-
The C-terminal sequence of RhoB directs protein degradation through an endo-lysosomal pathway
-
Pérez-Sala D., et al. The C-terminal sequence of RhoB directs protein degradation through an endo-lysosomal pathway. PLoS ONE 2009, 4:e8117.
-
(2009)
PLoS ONE
, vol.4
-
-
Pérez-Sala, D.1
-
45
-
-
25444481924
-
Transforming activity of the Rho family GTPase, Wrch-1, a Wnt-regulated Cdc42 homolog, is dependent on a novel carboxyl-terminal palmitoylation motif
-
Berzat A.C., et al. Transforming activity of the Rho family GTPase, Wrch-1, a Wnt-regulated Cdc42 homolog, is dependent on a novel carboxyl-terminal palmitoylation motif. J. Biol. Chem. 2005, 280:33055-33065.
-
(2005)
J. Biol. Chem.
, vol.280
, pp. 33055-33065
-
-
Berzat, A.C.1
-
46
-
-
17144379674
-
Critical and distinct roles of amino- and carboxyl-terminal sequences in regulation of the biological activity of the Chp atypical Rho GTPase
-
Chenette E.J., et al. Critical and distinct roles of amino- and carboxyl-terminal sequences in regulation of the biological activity of the Chp atypical Rho GTPase. J. Biol. Chem. 2005, 280:13784-13792.
-
(2005)
J. Biol. Chem.
, vol.280
, pp. 13784-13792
-
-
Chenette, E.J.1
-
47
-
-
80053586195
-
Coronin 1A promotes a cytoskeletal-based feedback loop that facilitates Rac1 translocation and activation
-
Castro-Castro A., et al. Coronin 1A promotes a cytoskeletal-based feedback loop that facilitates Rac1 translocation and activation. EMBO J. 2011, 30:3913-3927.
-
(2011)
EMBO J.
, vol.30
, pp. 3913-3927
-
-
Castro-Castro, A.1
-
48
-
-
0142027035
-
The polybasic region of Ras and Rho family small GTPases: a regulator of protein interactions and membrane association and a site of nuclear localization signal sequences
-
Williams C.L. The polybasic region of Ras and Rho family small GTPases: a regulator of protein interactions and membrane association and a site of nuclear localization signal sequences. Cell. Signal. 2003, 15:1071-1080.
-
(2003)
Cell. Signal.
, vol.15
, pp. 1071-1080
-
-
Williams, C.L.1
-
49
-
-
0038485593
-
Novel mechanism of the co-regulation of nuclear transport of SmgGDS and Rac1
-
Lanning C.C., et al. Novel mechanism of the co-regulation of nuclear transport of SmgGDS and Rac1. J. Biol. Chem. 2003, 278:12495-12506.
-
(2003)
J. Biol. Chem.
, vol.278
, pp. 12495-12506
-
-
Lanning, C.C.1
-
50
-
-
6344231828
-
The Rac1 C-terminal polybasic region regulates the nuclear localization and protein degradation of Rac1
-
Lanning C.C., et al. The Rac1 C-terminal polybasic region regulates the nuclear localization and protein degradation of Rac1. J. Biol. Chem. 2004, 279:44197-44210.
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 44197-44210
-
-
Lanning, C.C.1
-
51
-
-
73549115097
-
The nuclear import of the small GTPase Rac1 is mediated by the direct interaction with karyopherin alpha2
-
Sandrock K., et al. The nuclear import of the small GTPase Rac1 is mediated by the direct interaction with karyopherin alpha2. Traffic 2010, 11:198-209.
-
(2010)
Traffic
, vol.11
, pp. 198-209
-
-
Sandrock, K.1
-
52
-
-
62149105253
-
DLC1 interacts with 14-3-3 proteins to inhibit RhoGAP activity and block nucleocytoplasmic shuttling
-
Scholz R.P., et al. DLC1 interacts with 14-3-3 proteins to inhibit RhoGAP activity and block nucleocytoplasmic shuttling. J. Cell Sci. 2009, 122:92-102.
-
(2009)
J. Cell Sci.
, vol.122
, pp. 92-102
-
-
Scholz, R.P.1
-
53
-
-
33744961538
-
Nuclear Rho kinase, ROCK2, targets p300 acetyltransferase
-
Tanaka T., et al. Nuclear Rho kinase, ROCK2, targets p300 acetyltransferase. J. Biol. Chem. 2006, 281:15320-15329.
-
(2006)
J. Biol. Chem.
, vol.281
, pp. 15320-15329
-
-
Tanaka, T.1
-
54
-
-
0346101745
-
P57Kip2 regulates actin dynamics by binding and translocating LIM-kinase 1 to the nucleus
-
Yokoo T., et al. p57Kip2 regulates actin dynamics by binding and translocating LIM-kinase 1 to the nucleus. J. Biol. Chem. 2003, 278:52919-52923.
-
(2003)
J. Biol. Chem.
, vol.278
, pp. 52919-52923
-
-
Yokoo, T.1
-
55
-
-
79952084024
-
The small GTPase RhoA localizes to the nucleus and is activated by Net1 and DNA damage signals
-
Dubash A.D., et al. The small GTPase RhoA localizes to the nucleus and is activated by Net1 and DNA damage signals. PLoS ONE 2011, 6:e17380.
-
(2011)
PLoS ONE
, vol.6
-
-
Dubash, A.D.1
-
56
-
-
77954858290
-
Direct modifications of Rho proteins: deconstructing GTPase regulation
-
Visvikis O., et al. Direct modifications of Rho proteins: deconstructing GTPase regulation. Biol. Cell 2010, 102:377-389.
-
(2010)
Biol. Cell
, vol.102
, pp. 377-389
-
-
Visvikis, O.1
-
57
-
-
78149280470
-
SUMOylation of the GTPase Rac1 is required for optimal cell migration
-
Castillo-Lluva S., et al. SUMOylation of the GTPase Rac1 is required for optimal cell migration. Nat. Cell Biol. 2010, 12:1078-1085.
-
(2010)
Nat. Cell Biol.
, vol.12
, pp. 1078-1085
-
-
Castillo-Lluva, S.1
-
58
-
-
0030992838
-
Toxin-induced activation of the G protein p21 Rho by deamidation of glutamine
-
Flatau G., et al. Toxin-induced activation of the G protein p21 Rho by deamidation of glutamine. Nature 1997, 387:729-733.
-
(1997)
Nature
, vol.387
, pp. 729-733
-
-
Flatau, G.1
-
59
-
-
0030610785
-
Gln 63 of Rho is deamidated by Escherichia coli cytotoxic necrotizing factor-1
-
Schmidt G., et al. Gln 63 of Rho is deamidated by Escherichia coli cytotoxic necrotizing factor-1. Nature 1997, 387:725-729.
-
(1997)
Nature
, vol.387
, pp. 725-729
-
-
Schmidt, G.1
-
60
-
-
0035872859
-
Role of transglutaminase II in retinoic acid-induced activation of RhoA-associated kinase-2
-
Singh U.S., et al. Role of transglutaminase II in retinoic acid-induced activation of RhoA-associated kinase-2. EMBO J. 2001, 20:2413-2423.
-
(2001)
EMBO J.
, vol.20
, pp. 2413-2423
-
-
Singh, U.S.1
-
61
-
-
0037414822
-
Tissue transglutaminase mediates activation of RhoA and MAP kinase pathways during retinoic acid-induced neuronal differentiation of SH-SY5Y cells
-
Singh U.S., et al. Tissue transglutaminase mediates activation of RhoA and MAP kinase pathways during retinoic acid-induced neuronal differentiation of SH-SY5Y cells. J. Biol. Chem. 2003, 278:391-399.
-
(2003)
J. Biol. Chem.
, vol.278
, pp. 391-399
-
-
Singh, U.S.1
-
62
-
-
34047253930
-
Transglutaminase-dependent RhoA activation and depletion by serotonin in vascular smooth muscle cells
-
Guilluy C., et al. Transglutaminase-dependent RhoA activation and depletion by serotonin in vascular smooth muscle cells. J. Biol. Chem. 2007, 282:2918-2928.
-
(2007)
J. Biol. Chem.
, vol.282
, pp. 2918-2928
-
-
Guilluy, C.1
-
63
-
-
67449105737
-
RhoA and Rho kinase activation in human pulmonary hypertension: role of 5-HT signaling
-
Guilluy C., et al. RhoA and Rho kinase activation in human pulmonary hypertension: role of 5-HT signaling. Am. J. Respir. Crit. Care Med. 2009, 179:1151-1158.
-
(2009)
Am. J. Respir. Crit. Care Med.
, vol.179
, pp. 1151-1158
-
-
Guilluy, C.1
-
64
-
-
0030040750
-
Protein kinase A phosphorylation of RhoA mediates the morphological and functional effects of cyclic AMP in cytotoxic lymphocytes
-
Lang P., et al. Protein kinase A phosphorylation of RhoA mediates the morphological and functional effects of cyclic AMP in cytotoxic lymphocytes. EMBO J. 1996, 15:510-519.
-
(1996)
EMBO J.
, vol.15
, pp. 510-519
-
-
Lang, P.1
-
65
-
-
0034647534
-
Cyclic GMP-dependent protein kinase signaling pathway inhibits RhoA-induced Ca2+ sensitization of contraction in vascular smooth muscle
-
Sauzeau V., et al. Cyclic GMP-dependent protein kinase signaling pathway inhibits RhoA-induced Ca2+ sensitization of contraction in vascular smooth muscle. J. Biol. Chem. 2000, 275:21722-21729.
-
(2000)
J. Biol. Chem.
, vol.275
, pp. 21722-21729
-
-
Sauzeau, V.1
-
66
-
-
1442290184
-
Epidermal growth factor-dependent regulation of Cdc42 is mediated by the Src tyrosine kinase
-
Tu S., et al. Epidermal growth factor-dependent regulation of Cdc42 is mediated by the Src tyrosine kinase. J. Biol. Chem. 2003, 278:49293-49300.
-
(2003)
J. Biol. Chem.
, vol.278
, pp. 49293-49300
-
-
Tu, S.1
-
67
-
-
0034614606
-
Akt protein kinase inhibits Rac1-GTP binding through phosphorylation at serine 71 of Rac1
-
Kwon T., et al. Akt protein kinase inhibits Rac1-GTP binding through phosphorylation at serine 71 of Rac1. J. Biol. Chem. 2000, 275:423-428.
-
(2000)
J. Biol. Chem.
, vol.275
, pp. 423-428
-
-
Kwon, T.1
-
68
-
-
0037805583
-
Serine phosphorylation negatively regulates RhoA in vivo
-
Ellerbroek S.M., et al. Serine phosphorylation negatively regulates RhoA in vivo. J. Biol. Chem. 2003, 278:19023-19031.
-
(2003)
J. Biol. Chem.
, vol.278
, pp. 19023-19031
-
-
Ellerbroek, S.M.1
-
69
-
-
30944448805
-
Serine phosphorylation differentially affects RhoA binding to effectors: implications to NGF-induced neurite outgrowth
-
Nusser N., et al. Serine phosphorylation differentially affects RhoA binding to effectors: implications to NGF-induced neurite outgrowth. Cell. Signal. 2006, 18:704-714.
-
(2006)
Cell. Signal.
, vol.18
, pp. 704-714
-
-
Nusser, N.1
-
70
-
-
18344374044
-
Negative regulation of RhoA/Rho kinase by angiotensin II type 2 receptor in vascular smooth muscle cells: role in angiotensin II-induced vasodilation in stroke-prone spontaneously hypertensive rats
-
Savoia C., et al. Negative regulation of RhoA/Rho kinase by angiotensin II type 2 receptor in vascular smooth muscle cells: role in angiotensin II-induced vasodilation in stroke-prone spontaneously hypertensive rats. J. Hypertens. 2005, 23:1037-1045.
-
(2005)
J. Hypertens.
, vol.23
, pp. 1037-1045
-
-
Savoia, C.1
-
71
-
-
20444480169
-
Phosphorylation of serine 188 protects RhoA from ubiquitin/proteasome-mediated degradation in vascular smooth muscle cells
-
Rolli-Derkinderen M., et al. Phosphorylation of serine 188 protects RhoA from ubiquitin/proteasome-mediated degradation in vascular smooth muscle cells. Circ. Res. 2005, 96:1152-1160.
-
(2005)
Circ. Res.
, vol.96
, pp. 1152-1160
-
-
Rolli-Derkinderen, M.1
-
72
-
-
74949139625
-
The Rho/Rac exchange factor Vav2 controls nitric oxide-dependent responses in mouse vascular smooth muscle cells
-
Sauzeau V., et al. The Rho/Rac exchange factor Vav2 controls nitric oxide-dependent responses in mouse vascular smooth muscle cells. J. Clin. Invest. 2010, 120:315-330.
-
(2010)
J. Clin. Invest.
, vol.120
, pp. 315-330
-
-
Sauzeau, V.1
-
73
-
-
17144377069
-
RhoE function is regulated by ROCK I-mediated phosphorylation
-
Riento K., et al. RhoE function is regulated by ROCK I-mediated phosphorylation. EMBO J. 2005, 24:1170-1180.
-
(2005)
EMBO J.
, vol.24
, pp. 1170-1180
-
-
Riento, K.1
-
74
-
-
50249150751
-
Phosphorylation of RhoB by CK1 impedes actin stress fiber organization and epidermal growth factor receptor stabilization
-
Tillement V., et al. Phosphorylation of RhoB by CK1 impedes actin stress fiber organization and epidermal growth factor receptor stabilization. Exp. Cell Res. 2008, 314:2811-2821.
-
(2008)
Exp. Cell Res.
, vol.314
, pp. 2811-2821
-
-
Tillement, V.1
-
75
-
-
33750121336
-
RhoH GTPase recruits and activates Zap70 required for T cell receptor signaling and thymocyte development
-
Gu Y., et al. RhoH GTPase recruits and activates Zap70 required for T cell receptor signaling and thymocyte development. Nat. Immunol. 2006, 7:1182-1190.
-
(2006)
Nat. Immunol.
, vol.7
, pp. 1182-1190
-
-
Gu, Y.1
-
76
-
-
33745684577
-
Regulation of Rho proteins by phosphorylation in the cardiovascular system
-
Loirand G., et al. Regulation of Rho proteins by phosphorylation in the cardiovascular system. Trends Cardiovasc. Med. 2006, 16:199-204.
-
(2006)
Trends Cardiovasc. Med.
, vol.16
, pp. 199-204
-
-
Loirand, G.1
-
77
-
-
0037205231
-
A Yersinia effector and a Pseudomonas avirulence protein define a family of cysteine proteases functioning in bacterial pathogenesis
-
Shao F., et al. A Yersinia effector and a Pseudomonas avirulence protein define a family of cysteine proteases functioning in bacterial pathogenesis. Cell 2002, 109:575-588.
-
(2002)
Cell
, vol.109
, pp. 575-588
-
-
Shao, F.1
-
78
-
-
58149400542
-
AMPylation of Rho GTPases by Vibrio VopS disrupts effector binding and downstream signaling
-
Yarbrough M.L., et al. AMPylation of Rho GTPases by Vibrio VopS disrupts effector binding and downstream signaling. Science 2009, 323:269-272.
-
(2009)
Science
, vol.323
, pp. 269-272
-
-
Yarbrough, M.L.1
-
79
-
-
63649139064
-
The fic domain: regulation of cell signaling by adenylylation
-
Worby C.A., et al. The fic domain: regulation of cell signaling by adenylylation. Mol. Cell 2009, 34:93-103.
-
(2009)
Mol. Cell
, vol.34
, pp. 93-103
-
-
Worby, C.A.1
-
80
-
-
67149136177
-
Fido, a novel AMPylation domain common to fic, doc, and AvrB
-
Kinch L.N., et al. Fido, a novel AMPylation domain common to fic, doc, and AvrB. PLoS ONE 2009, 4:e5818.
-
(2009)
PLoS ONE
, vol.4
-
-
Kinch, L.N.1
-
81
-
-
79959213985
-
Bacterial protein toxins that modify host regulatory GTPases
-
Aktories K. Bacterial protein toxins that modify host regulatory GTPases. Nat. Rev. Microbiol. 2011, 9:487-498.
-
(2011)
Nat. Rev. Microbiol.
, vol.9
, pp. 487-498
-
-
Aktories, K.1
-
82
-
-
33749346301
-
Modification of proteins by ubiquitin and ubiquitin-like proteins
-
Kerscher O., et al. Modification of proteins by ubiquitin and ubiquitin-like proteins. Annu. Rev. Cell Dev. Biol. 2006, 22:159-180.
-
(2006)
Annu. Rev. Cell Dev. Biol.
, vol.22
, pp. 159-180
-
-
Kerscher, O.1
-
83
-
-
18744379729
-
CNF1 exploits the ubiquitin-proteasome machinery to restrict Rho GTPase activation for bacterial host cell invasion
-
Doye A., et al. CNF1 exploits the ubiquitin-proteasome machinery to restrict Rho GTPase activation for bacterial host cell invasion. Cell 2002, 111:553-564.
-
(2002)
Cell
, vol.111
, pp. 553-564
-
-
Doye, A.1
-
84
-
-
0035824573
-
Redox regulation of human Rac1 stability by the proteasome in human aortic endothelial cells
-
Kovacic H.N., et al. Redox regulation of human Rac1 stability by the proteasome in human aortic endothelial cells. J. Biol. Chem. 2001, 276:45856-45861.
-
(2001)
J. Biol. Chem.
, vol.276
, pp. 45856-45861
-
-
Kovacic, H.N.1
-
85
-
-
33745753386
-
Proteasome-mediated degradation of Rac1-GTP during epithelial cell scattering
-
Lynch E.A., et al. Proteasome-mediated degradation of Rac1-GTP during epithelial cell scattering. Mol. Biol. Cell 2006, 17:2236-2242.
-
(2006)
Mol. Biol. Cell
, vol.17
, pp. 2236-2242
-
-
Lynch, E.A.1
-
86
-
-
77953162073
-
Focal-adhesion targeting links caveolin-1 to a Rac1-degradation pathway
-
Nethe M., et al. Focal-adhesion targeting links caveolin-1 to a Rac1-degradation pathway. J. Cell Sci. 2010, 123:1948-1958.
-
(2010)
J. Cell Sci.
, vol.123
, pp. 1948-1958
-
-
Nethe, M.1
-
87
-
-
78649729521
-
The role of ubiquitylation and degradation in RhoGTPase signalling
-
Nethe M., Hordijk P.L. The role of ubiquitylation and degradation in RhoGTPase signalling. J. Cell Sci. 2010, 123:4011-4018.
-
(2010)
J. Cell Sci.
, vol.123
, pp. 4011-4018
-
-
Nethe, M.1
Hordijk, P.L.2
-
88
-
-
37849050182
-
Activated Rac1, but not the tumorigenic variant Rac1b, is ubiquitinated on Lys 147 through a JNK-regulated process
-
Visvikis O., et al. Activated Rac1, but not the tumorigenic variant Rac1b, is ubiquitinated on Lys 147 through a JNK-regulated process. FEBS J. 2008, 275:386-396.
-
(2008)
FEBS J.
, vol.275
, pp. 386-396
-
-
Visvikis, O.1
-
89
-
-
80755189006
-
The E3 ubiquitin-ligase HACE1 catalyzes the ubiquitylation of active Rac1
-
Torrino S., et al. The E3 ubiquitin-ligase HACE1 catalyzes the ubiquitylation of active Rac1. Dev. Cell 2011, 21:959-965.
-
(2011)
Dev. Cell
, vol.21
, pp. 959-965
-
-
Torrino, S.1
-
90
-
-
4644371621
-
Smurf1: a link between cell polarity and ubiquitination
-
Zhang Y., et al. Smurf1: a link between cell polarity and ubiquitination. Cell Cycle 2004, 3:391-392.
-
(2004)
Cell Cycle
, vol.3
, pp. 391-392
-
-
Zhang, Y.1
-
91
-
-
14844364701
-
Regulation of the polarity protein Par6 by TGFbeta receptors controls epithelial cell plasticity
-
Ozdamar B., et al. Regulation of the polarity protein Par6 by TGFbeta receptors controls epithelial cell plasticity. Science 2005, 307:1603-1609.
-
(2005)
Science
, vol.307
, pp. 1603-1609
-
-
Ozdamar, B.1
-
92
-
-
0344758986
-
Regulation of cell polarity and protrusion formation by targeting RhoA for degradation
-
Wang H.R., et al. Regulation of cell polarity and protrusion formation by targeting RhoA for degradation. Science 2003, 302:1775-1779.
-
(2003)
Science
, vol.302
, pp. 1775-1779
-
-
Wang, H.R.1
-
93
-
-
32144456975
-
Degradation of RhoA by Smurf1 ubiquitin ligase
-
Wang H.R., et al. Degradation of RhoA by Smurf1 ubiquitin ligase. Methods Enzymol. 2006, 406:437-447.
-
(2006)
Methods Enzymol.
, vol.406
, pp. 437-447
-
-
Wang, H.R.1
-
94
-
-
79960359069
-
Binding of RhoA by the C2 domain of E3 ligase Smurf1 is essential for Smurf1-regulated RhoA ubiquitination and cell protrusive activity
-
Tian M., et al. Binding of RhoA by the C2 domain of E3 ligase Smurf1 is essential for Smurf1-regulated RhoA ubiquitination and cell protrusive activity. FEBS Lett. 2011, 585:2199-2204.
-
(2011)
FEBS Lett.
, vol.585
, pp. 2199-2204
-
-
Tian, M.1
-
95
-
-
13844257637
-
Ubiquitination of RhoA by Smurf1 promotes neurite outgrowth
-
Bryan B., et al. Ubiquitination of RhoA by Smurf1 promotes neurite outgrowth. FEBS Lett. 2005, 579:1015-1019.
-
(2005)
FEBS Lett.
, vol.579
, pp. 1015-1019
-
-
Bryan, B.1
-
96
-
-
33846014269
-
Smurf1 regulates tumor cell plasticity and motility through degradation of RhoA leading to localized inhibition of contractility
-
Sahai E., et al. Smurf1 regulates tumor cell plasticity and motility through degradation of RhoA leading to localized inhibition of contractility. J. Cell Biol. 2007, 176:35-42.
-
(2007)
J. Cell Biol.
, vol.176
, pp. 35-42
-
-
Sahai, E.1
-
97
-
-
70349168448
-
Cullin mediates degradation of RhoA through evolutionarily conserved BTB adaptors to control actin cytoskeleton structure and cell movement
-
Chen Y., et al. Cullin mediates degradation of RhoA through evolutionarily conserved BTB adaptors to control actin cytoskeleton structure and cell movement. Mol. Cell 2009, 35:841-855.
-
(2009)
Mol. Cell
, vol.35
, pp. 841-855
-
-
Chen, Y.1
-
98
-
-
79953235713
-
The deubiquitinating enzyme USP17 is essential for GTPase subcellular localization and cell motility
-
de la Vega M., et al. The deubiquitinating enzyme USP17 is essential for GTPase subcellular localization and cell motility. Nat. Commun. 2011, 2:259.
-
(2011)
Nat. Commun.
, vol.2
, pp. 259
-
-
de la Vega, M.1
-
99
-
-
34548182080
-
RhoB is epigenetically regulated in an age- and tissue-specific manner
-
Yoon Y.S., et al. RhoB is epigenetically regulated in an age- and tissue-specific manner. Biochem. Biophys. Res. Commun. 2007, 362:164-169.
-
(2007)
Biochem. Biophys. Res. Commun.
, vol.362
, pp. 164-169
-
-
Yoon, Y.S.1
-
100
-
-
78650740081
-
Epigenetic modification of RhoE expression in gastric cancer cells
-
Chen J., et al. Epigenetic modification of RhoE expression in gastric cancer cells. Oncol. Rep. 2011, 25:173-180.
-
(2011)
Oncol. Rep.
, vol.25
, pp. 173-180
-
-
Chen, J.1
-
101
-
-
33747005708
-
The human orthologue of CdGAP is a phosphoprotein and a GTPase-activating protein for Cdc42 and Rac1 but not RhoA
-
Tcherkezian J., et al. The human orthologue of CdGAP is a phosphoprotein and a GTPase-activating protein for Cdc42 and Rac1 but not RhoA. Biol. Cell 2006, 98:445-456.
-
(2006)
Biol. Cell
, vol.98
, pp. 445-456
-
-
Tcherkezian, J.1
-
102
-
-
52649094451
-
Phosphorylation and activation of the Rac1 and Cdc42 GEF Asef in A431 cells stimulated by EGF
-
Itoh R.E., et al. Phosphorylation and activation of the Rac1 and Cdc42 GEF Asef in A431 cells stimulated by EGF. J. Cell Sci. 2008, 121:2635-2642.
-
(2008)
J. Cell Sci.
, vol.121
, pp. 2635-2642
-
-
Itoh, R.E.1
-
103
-
-
81355148858
-
Rho protein crosstalk: another social network?
-
Guilluy C., et al. Rho protein crosstalk: another social network?. Trends Cell Biol. 2011, 21:718-726.
-
(2011)
Trends Cell Biol.
, vol.21
, pp. 718-726
-
-
Guilluy, C.1
|