메뉴 건너뛰기




Volumn 22, Issue 7, 2012, Pages 365-373

Rho GTPase regulation by miRNAs and covalent modifications

Author keywords

MicroRNAs; Phosphorylation; Small GTPases; Transglutamination; Ubiquitination

Indexed keywords

GUANINE NUCLEOTIDE DISSOCIATION INHIBITOR; GUANINE NUCLEOTIDE EXCHANGE FACTOR; GUANOSINE TRIPHOSPHATASE ACTIVATING PROTEIN; GUANOSINE TRIPHOSPHATE; MICRORNA; RHO GUANINE NUCLEOTIDE BINDING PROTEIN;

EID: 84862773457     PISSN: 09628924     EISSN: 18793088     Source Type: Journal    
DOI: 10.1016/j.tcb.2012.04.004     Document Type: Review
Times cited : (69)

References (103)
  • 1
    • 0037069690 scopus 로고    scopus 로고
    • Rho GTPases in cell biology
    • Etienne-Manneville S., et al. Rho GTPases in cell biology. Nature 2002, 420:629-635.
    • (2002) Nature , vol.420 , pp. 629-635
    • Etienne-Manneville, S.1
  • 2
    • 27944479854 scopus 로고    scopus 로고
    • Rho GTPases: biochemistry and biology
    • Jaffe A.B., Hall A. Rho GTPases: biochemistry and biology. Annu. Rev. Cell Dev. Biol. 2005, 21:247-269.
    • (2005) Annu. Rev. Cell Dev. Biol. , vol.21 , pp. 247-269
    • Jaffe, A.B.1    Hall, A.2
  • 3
    • 33846662015 scopus 로고    scopus 로고
    • Cell type-specific functions of Rho GTPases revealed by gene targeting in mice
    • Wang L., Zheng Y. Cell type-specific functions of Rho GTPases revealed by gene targeting in mice. Trends Cell Biol. 2007, 17:58-64.
    • (2007) Trends Cell Biol. , vol.17 , pp. 58-64
    • Wang, L.1    Zheng, Y.2
  • 4
    • 50149083752 scopus 로고    scopus 로고
    • Mammalian Rho GTPases: new insights into their functions from in vivo studies
    • Heasman S.J., Ridley A.J. Mammalian Rho GTPases: new insights into their functions from in vivo studies. Nat. Rev. Mol. Cell Biol. 2008, 9:690-701.
    • (2008) Nat. Rev. Mol. Cell Biol. , vol.9 , pp. 690-701
    • Heasman, S.J.1    Ridley, A.J.2
  • 6
    • 20544447033 scopus 로고    scopus 로고
    • Rho GTPases, dendritic structure, and mental retardation
    • Newey S.E., et al. Rho GTPases, dendritic structure, and mental retardation. J. Neurobiol. 2005, 64:58-74.
    • (2005) J. Neurobiol. , vol.64 , pp. 58-74
    • Newey, S.E.1
  • 7
    • 0037139607 scopus 로고    scopus 로고
    • The role of Rho GTPases in disease development
    • Boettner B., Van Aelst L. The role of Rho GTPases in disease development. Gene 2002, 286:155-174.
    • (2002) Gene , vol.286 , pp. 155-174
    • Boettner, B.1    Van Aelst, L.2
  • 8
    • 77649215060 scopus 로고    scopus 로고
    • Rho GTPases in hematopoiesis and hemopathies
    • Mulloy J.C., et al. Rho GTPases in hematopoiesis and hemopathies. Blood 2010, 115:936-947.
    • (2010) Blood , vol.115 , pp. 936-947
    • Mulloy, J.C.1
  • 9
    • 4143118857 scopus 로고    scopus 로고
    • Inverted signaling hierarchy between RAS and RAC in T-lymphocytes
    • Zugaza J.L., et al. Inverted signaling hierarchy between RAS and RAC in T-lymphocytes. Oncogene 2004, 23:5823-5833.
    • (2004) Oncogene , vol.23 , pp. 5823-5833
    • Zugaza, J.L.1
  • 10
    • 33750935902 scopus 로고    scopus 로고
    • Regulators of Rho GTPases in neuronal development
    • Watabe-Uchida M., et al. Regulators of Rho GTPases in neuronal development. J. Neurosci. 2006, 26:10633-10655.
    • (2006) J. Neurosci. , vol.26 , pp. 10633-10655
    • Watabe-Uchida, M.1
  • 11
    • 34247175312 scopus 로고    scopus 로고
    • GTP-binding proteins of the Rho/Rac family: regulation, effectors and functions in vivo
    • Bustelo X.R., et al. GTP-binding proteins of the Rho/Rac family: regulation, effectors and functions in vivo. Bioessays 2007, 29:356-370.
    • (2007) Bioessays , vol.29 , pp. 356-370
    • Bustelo, X.R.1
  • 12
    • 0034213327 scopus 로고    scopus 로고
    • Rho GTPases and their effector proteins
    • Bishop A.L., Hall A. Rho GTPases and their effector proteins. Biochem. J. 2000, 348:241-255.
    • (2000) Biochem. J. , vol.348 , pp. 241-255
    • Bishop, A.L.1    Hall, A.2
  • 13
    • 21744432683 scopus 로고    scopus 로고
    • GDIs: central regulatory molecules in Rho GTPase activation
    • DerMardirossian C., et al. GDIs: central regulatory molecules in Rho GTPase activation. Trends Cell Biol. 2005, 15:356-363.
    • (2005) Trends Cell Biol. , vol.15 , pp. 356-363
    • DerMardirossian, C.1
  • 14
    • 0035668525 scopus 로고    scopus 로고
    • Dbl family guanine nucleotide exchange factors
    • Zheng Y. Dbl family guanine nucleotide exchange factors. Trends Biochem. Sci. 2001, 26:724-732.
    • (2001) Trends Biochem. Sci. , vol.26 , pp. 724-732
    • Zheng, Y.1
  • 15
    • 0037213689 scopus 로고    scopus 로고
    • Rho GTPase-activating proteins in cell regulation
    • Moon S.Y., Zheng Y. Rho GTPase-activating proteins in cell regulation. Trends Cell Biol. 2003, 13:13-22.
    • (2003) Trends Cell Biol. , vol.13 , pp. 13-22
    • Moon, S.Y.1    Zheng, Y.2
  • 16
    • 0036644975 scopus 로고    scopus 로고
    • Guanine nucleotide exchange factors for Rho GTPases: turning on the switch
    • Schmidt A., Hall A. Guanine nucleotide exchange factors for Rho GTPases: turning on the switch. Gene Dev. 2002, 16:1587-1609.
    • (2002) Gene Dev. , vol.16 , pp. 1587-1609
    • Schmidt, A.1    Hall, A.2
  • 17
    • 13444252631 scopus 로고    scopus 로고
    • GEF means go: turning on RHO GTPases with guanine nucleotide-exchange factors
    • Rossman K.L., et al. GEF means go: turning on RHO GTPases with guanine nucleotide-exchange factors. Nat. Rev. Mol. Cell Biol. 2005, 6:167-180.
    • (2005) Nat. Rev. Mol. Cell Biol. , vol.6 , pp. 167-180
    • Rossman, K.L.1
  • 18
    • 77951974893 scopus 로고    scopus 로고
    • Regulation of Rho GTPase crosstalk, degradation and activity by RhoGDI1
    • Boulter E., et al. Regulation of Rho GTPase crosstalk, degradation and activity by RhoGDI1. Nat. Cell Biol. 2010, 12:477-483.
    • (2010) Nat. Cell Biol. , vol.12 , pp. 477-483
    • Boulter, E.1
  • 19
    • 38549150275 scopus 로고    scopus 로고
    • MiRBase: tools for microRNA genomics
    • Griffiths-Jones S., et al. miRBase: tools for microRNA genomics. Nucleic Acids Res. 2008, 36:D154-D158.
    • (2008) Nucleic Acids Res. , vol.36
    • Griffiths-Jones, S.1
  • 20
    • 67749132423 scopus 로고    scopus 로고
    • Argonaute HITS-CLIP decodes microRNA-mRNA interaction maps
    • Chi S.W., et al. Argonaute HITS-CLIP decodes microRNA-mRNA interaction maps. Nature 2009, 460:479-486.
    • (2009) Nature , vol.460 , pp. 479-486
    • Chi, S.W.1
  • 21
    • 0347444723 scopus 로고    scopus 로고
    • MicroRNAs: genomics, biogenesis, mechanism, and function
    • Bartel D.P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004, 116:281-297.
    • (2004) Cell , vol.116 , pp. 281-297
    • Bartel, D.P.1
  • 22
    • 0036544755 scopus 로고    scopus 로고
    • MicroRNAs are complementary to 3' UTR sequence motifs that mediate negative post-transcriptional regulation
    • Lai E.C. MicroRNAs are complementary to 3' UTR sequence motifs that mediate negative post-transcriptional regulation. Nat. Genet. 2002, 30:363-364.
    • (2002) Nat. Genet. , vol.30 , pp. 363-364
    • Lai, E.C.1
  • 23
    • 34249279050 scopus 로고    scopus 로고
    • MicroRNA-133 controls cardiac hypertrophy
    • Carè A., et al. MicroRNA-133 controls cardiac hypertrophy. Nat. Med. 2007, 13:613-618.
    • (2007) Nat. Med. , vol.13 , pp. 613-618
    • Carè, A.1
  • 24
    • 79960258642 scopus 로고    scopus 로고
    • Tinman/Nkx2-5 acts via miR-1 and upstream of Cdc42 to regulate heart function across species
    • Qian L., et al. Tinman/Nkx2-5 acts via miR-1 and upstream of Cdc42 to regulate heart function across species. J. Cell Biol. 2011, 193:1181-1196.
    • (2011) J. Cell Biol. , vol.193 , pp. 1181-1196
    • Qian, L.1
  • 25
    • 48849103603 scopus 로고    scopus 로고
    • MicroRNA miR-124 regulates neurite outgrowth during neuronal differentiation
    • Yu J.Y., et al. MicroRNA miR-124 regulates neurite outgrowth during neuronal differentiation. Exp. Cell Res. 2008, 314:2618-2633.
    • (2008) Exp. Cell Res. , vol.314 , pp. 2618-2633
    • Yu, J.Y.1
  • 26
    • 33750370444 scopus 로고    scopus 로고
    • MicroRNA signatures in human cancers
    • Calin G.A., Croce C.M. MicroRNA signatures in human cancers. Nat. Rev. Cancer 2006, 6:857-866.
    • (2006) Nat. Rev. Cancer , vol.6 , pp. 857-866
    • Calin, G.A.1    Croce, C.M.2
  • 27
    • 66449095667 scopus 로고    scopus 로고
    • A pleiotropically acting microRNA, miR-31, inhibits breast cancer metastasis
    • Valastyan S., et al. A pleiotropically acting microRNA, miR-31, inhibits breast cancer metastasis. Cell 2009, 137:1032-1046.
    • (2009) Cell , vol.137 , pp. 1032-1046
    • Valastyan, S.1
  • 28
    • 77953780136 scopus 로고    scopus 로고
    • Concurrent suppression of integrin alpha5, radixin, and RhoA phenocopies the effects of miR-31 on metastasis
    • Valastyan S., et al. Concurrent suppression of integrin alpha5, radixin, and RhoA phenocopies the effects of miR-31 on metastasis. Cancer Res. 2010, 70:5147-5154.
    • (2010) Cancer Res. , vol.70 , pp. 5147-5154
    • Valastyan, S.1
  • 29
    • 55849123946 scopus 로고    scopus 로고
    • MicroRNA-155 is regulated by the transforming growth factor beta/Smad pathway and contributes to epithelial cell plasticity by targeting RhoA
    • Kong W., et al. MicroRNA-155 is regulated by the transforming growth factor beta/Smad pathway and contributes to epithelial cell plasticity by targeting RhoA. Mol. Cell. Biol. 2008, 28:6773-6784.
    • (2008) Mol. Cell. Biol. , vol.28 , pp. 6773-6784
    • Kong, W.1
  • 30
    • 35148886434 scopus 로고    scopus 로고
    • Tumour invasion and metastasis initiated by microRNA-10b in breast cancer
    • Ma L., et al. Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature 2007, 449:682-688.
    • (2007) Nature , vol.449 , pp. 682-688
    • Ma, L.1
  • 31
    • 70350731129 scopus 로고    scopus 로고
    • Epigenetic regulation of microRNA expression in colorectal cancer
    • Bandres E., et al. Epigenetic regulation of microRNA expression in colorectal cancer. Int. J. Cancer 2009, 125:2723-2743.
    • (2009) Int. J. Cancer , vol.125 , pp. 2723-2743
    • Bandres, E.1
  • 32
    • 79959743039 scopus 로고    scopus 로고
    • MiR-137 is frequently down-regulated in gastric cancer and is a negative regulator of Cdc42
    • Chen Q., et al. miR-137 is frequently down-regulated in gastric cancer and is a negative regulator of Cdc42. Dig. Dis. Sci. 2011, 56:2009-2016.
    • (2011) Dig. Dis. Sci. , vol.56 , pp. 2009-2016
    • Chen, Q.1
  • 33
    • 78650539977 scopus 로고    scopus 로고
    • MiR-137 targets Cdc42 expression, induces cell cycle G1 arrest and inhibits invasion in colorectal cancer cells
    • Liu M., et al. miR-137 targets Cdc42 expression, induces cell cycle G1 arrest and inhibits invasion in colorectal cancer cells. Int. J. Cancer 2011, 128:1269-1279.
    • (2011) Int. J. Cancer , vol.128 , pp. 1269-1279
    • Liu, M.1
  • 34
    • 78651465898 scopus 로고    scopus 로고
    • MiR-185 targets RhoA and Cdc42 expression and inhibits the proliferation potential of human colorectal cells
    • Liu M., et al. miR-185 targets RhoA and Cdc42 expression and inhibits the proliferation potential of human colorectal cells. Cancer Lett. 2011, 301:151-160.
    • (2011) Cancer Lett. , vol.301 , pp. 151-160
    • Liu, M.1
  • 35
    • 58149215802 scopus 로고    scopus 로고
    • MiR-29 miRNAs activate p53 by targeting p85 alpha and CDC42
    • Park S.Y., et al. miR-29 miRNAs activate p53 by targeting p85 alpha and CDC42. Nat. Struct. Mol. Biol. 2009, 16:23-29.
    • (2009) Nat. Struct. Mol. Biol. , vol.16 , pp. 23-29
    • Park, S.Y.1
  • 36
    • 41749113108 scopus 로고    scopus 로고
    • MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer
    • Asangani I.A., et al. MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer. Oncogene 2008, 27:2128-2136.
    • (2008) Oncogene , vol.27 , pp. 2128-2136
    • Asangani, I.A.1
  • 37
    • 22244467087 scopus 로고    scopus 로고
    • MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells
    • Chan J.A., et al. MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res. 2005, 65:6029-6033.
    • (2005) Cancer Res. , vol.65 , pp. 6029-6033
    • Chan, J.A.1
  • 38
    • 80053272794 scopus 로고    scopus 로고
    • MiR-21 targets the tumor suppressor RhoB and regulates proliferation, invasion and apoptosis in colorectal cancer cells
    • Liu M., et al. miR-21 targets the tumor suppressor RhoB and regulates proliferation, invasion and apoptosis in colorectal cancer cells. FEBS Lett. 2011, 585:2998-3005.
    • (2011) FEBS Lett. , vol.585 , pp. 2998-3005
    • Liu, M.1
  • 39
    • 77952948062 scopus 로고    scopus 로고
    • Overexpression of miR-21 promotes an in vitro metastatic phenotype by targeting the tumor suppressor RHOB
    • Connolly E.C., et al. Overexpression of miR-21 promotes an in vitro metastatic phenotype by targeting the tumor suppressor RHOB. Mol. Cancer Res. 2010, 8:691-700.
    • (2010) Mol. Cancer Res. , vol.8 , pp. 691-700
    • Connolly, E.C.1
  • 40
    • 78449298671 scopus 로고    scopus 로고
    • MicroRNA-200b regulates cyclin D1 expression and promotes S-phase entry by targeting RND3 in HeLa cells
    • Xia W., et al. MicroRNA-200b regulates cyclin D1 expression and promotes S-phase entry by targeting RND3 in HeLa cells. Mol. Cell. Biochem. 2010, 344:261-266.
    • (2010) Mol. Cell. Biochem. , vol.344 , pp. 261-266
    • Xia, W.1
  • 41
    • 54449089270 scopus 로고    scopus 로고
    • Rho Family GTPase modification and dependence on CAAX motif-signaled posttranslational modification
    • Roberts P.J., et al. Rho Family GTPase modification and dependence on CAAX motif-signaled posttranslational modification. J. Biol. Chem. 2008, 283:25150-25163.
    • (2008) J. Biol. Chem. , vol.283 , pp. 25150-25163
    • Roberts, P.J.1
  • 42
    • 84855884600 scopus 로고    scopus 로고
    • Posttranslational lipid modification of Rho family small GTPases
    • Mitin N., et al. Posttranslational lipid modification of Rho family small GTPases. Methods Mol. Biol. 2012, 827:87-95.
    • (2012) Methods Mol. Biol. , vol.827 , pp. 87-95
    • Mitin, N.1
  • 43
    • 84862753776 scopus 로고    scopus 로고
    • A palmitoylation switch mechanism regulates Rac1 function and membrane organization
    • Navarro-Lérida I., et al. A palmitoylation switch mechanism regulates Rac1 function and membrane organization. EMBO J. 2011, 31:534-551.
    • (2011) EMBO J. , vol.31 , pp. 534-551
    • Navarro-Lérida, I.1
  • 44
    • 77949524142 scopus 로고    scopus 로고
    • The C-terminal sequence of RhoB directs protein degradation through an endo-lysosomal pathway
    • Pérez-Sala D., et al. The C-terminal sequence of RhoB directs protein degradation through an endo-lysosomal pathway. PLoS ONE 2009, 4:e8117.
    • (2009) PLoS ONE , vol.4
    • Pérez-Sala, D.1
  • 45
    • 25444481924 scopus 로고    scopus 로고
    • Transforming activity of the Rho family GTPase, Wrch-1, a Wnt-regulated Cdc42 homolog, is dependent on a novel carboxyl-terminal palmitoylation motif
    • Berzat A.C., et al. Transforming activity of the Rho family GTPase, Wrch-1, a Wnt-regulated Cdc42 homolog, is dependent on a novel carboxyl-terminal palmitoylation motif. J. Biol. Chem. 2005, 280:33055-33065.
    • (2005) J. Biol. Chem. , vol.280 , pp. 33055-33065
    • Berzat, A.C.1
  • 46
    • 17144379674 scopus 로고    scopus 로고
    • Critical and distinct roles of amino- and carboxyl-terminal sequences in regulation of the biological activity of the Chp atypical Rho GTPase
    • Chenette E.J., et al. Critical and distinct roles of amino- and carboxyl-terminal sequences in regulation of the biological activity of the Chp atypical Rho GTPase. J. Biol. Chem. 2005, 280:13784-13792.
    • (2005) J. Biol. Chem. , vol.280 , pp. 13784-13792
    • Chenette, E.J.1
  • 47
    • 80053586195 scopus 로고    scopus 로고
    • Coronin 1A promotes a cytoskeletal-based feedback loop that facilitates Rac1 translocation and activation
    • Castro-Castro A., et al. Coronin 1A promotes a cytoskeletal-based feedback loop that facilitates Rac1 translocation and activation. EMBO J. 2011, 30:3913-3927.
    • (2011) EMBO J. , vol.30 , pp. 3913-3927
    • Castro-Castro, A.1
  • 48
    • 0142027035 scopus 로고    scopus 로고
    • The polybasic region of Ras and Rho family small GTPases: a regulator of protein interactions and membrane association and a site of nuclear localization signal sequences
    • Williams C.L. The polybasic region of Ras and Rho family small GTPases: a regulator of protein interactions and membrane association and a site of nuclear localization signal sequences. Cell. Signal. 2003, 15:1071-1080.
    • (2003) Cell. Signal. , vol.15 , pp. 1071-1080
    • Williams, C.L.1
  • 49
    • 0038485593 scopus 로고    scopus 로고
    • Novel mechanism of the co-regulation of nuclear transport of SmgGDS and Rac1
    • Lanning C.C., et al. Novel mechanism of the co-regulation of nuclear transport of SmgGDS and Rac1. J. Biol. Chem. 2003, 278:12495-12506.
    • (2003) J. Biol. Chem. , vol.278 , pp. 12495-12506
    • Lanning, C.C.1
  • 50
    • 6344231828 scopus 로고    scopus 로고
    • The Rac1 C-terminal polybasic region regulates the nuclear localization and protein degradation of Rac1
    • Lanning C.C., et al. The Rac1 C-terminal polybasic region regulates the nuclear localization and protein degradation of Rac1. J. Biol. Chem. 2004, 279:44197-44210.
    • (2004) J. Biol. Chem. , vol.279 , pp. 44197-44210
    • Lanning, C.C.1
  • 51
    • 73549115097 scopus 로고    scopus 로고
    • The nuclear import of the small GTPase Rac1 is mediated by the direct interaction with karyopherin alpha2
    • Sandrock K., et al. The nuclear import of the small GTPase Rac1 is mediated by the direct interaction with karyopherin alpha2. Traffic 2010, 11:198-209.
    • (2010) Traffic , vol.11 , pp. 198-209
    • Sandrock, K.1
  • 52
    • 62149105253 scopus 로고    scopus 로고
    • DLC1 interacts with 14-3-3 proteins to inhibit RhoGAP activity and block nucleocytoplasmic shuttling
    • Scholz R.P., et al. DLC1 interacts with 14-3-3 proteins to inhibit RhoGAP activity and block nucleocytoplasmic shuttling. J. Cell Sci. 2009, 122:92-102.
    • (2009) J. Cell Sci. , vol.122 , pp. 92-102
    • Scholz, R.P.1
  • 53
    • 33744961538 scopus 로고    scopus 로고
    • Nuclear Rho kinase, ROCK2, targets p300 acetyltransferase
    • Tanaka T., et al. Nuclear Rho kinase, ROCK2, targets p300 acetyltransferase. J. Biol. Chem. 2006, 281:15320-15329.
    • (2006) J. Biol. Chem. , vol.281 , pp. 15320-15329
    • Tanaka, T.1
  • 54
    • 0346101745 scopus 로고    scopus 로고
    • P57Kip2 regulates actin dynamics by binding and translocating LIM-kinase 1 to the nucleus
    • Yokoo T., et al. p57Kip2 regulates actin dynamics by binding and translocating LIM-kinase 1 to the nucleus. J. Biol. Chem. 2003, 278:52919-52923.
    • (2003) J. Biol. Chem. , vol.278 , pp. 52919-52923
    • Yokoo, T.1
  • 55
    • 79952084024 scopus 로고    scopus 로고
    • The small GTPase RhoA localizes to the nucleus and is activated by Net1 and DNA damage signals
    • Dubash A.D., et al. The small GTPase RhoA localizes to the nucleus and is activated by Net1 and DNA damage signals. PLoS ONE 2011, 6:e17380.
    • (2011) PLoS ONE , vol.6
    • Dubash, A.D.1
  • 56
    • 77954858290 scopus 로고    scopus 로고
    • Direct modifications of Rho proteins: deconstructing GTPase regulation
    • Visvikis O., et al. Direct modifications of Rho proteins: deconstructing GTPase regulation. Biol. Cell 2010, 102:377-389.
    • (2010) Biol. Cell , vol.102 , pp. 377-389
    • Visvikis, O.1
  • 57
    • 78149280470 scopus 로고    scopus 로고
    • SUMOylation of the GTPase Rac1 is required for optimal cell migration
    • Castillo-Lluva S., et al. SUMOylation of the GTPase Rac1 is required for optimal cell migration. Nat. Cell Biol. 2010, 12:1078-1085.
    • (2010) Nat. Cell Biol. , vol.12 , pp. 1078-1085
    • Castillo-Lluva, S.1
  • 58
    • 0030992838 scopus 로고    scopus 로고
    • Toxin-induced activation of the G protein p21 Rho by deamidation of glutamine
    • Flatau G., et al. Toxin-induced activation of the G protein p21 Rho by deamidation of glutamine. Nature 1997, 387:729-733.
    • (1997) Nature , vol.387 , pp. 729-733
    • Flatau, G.1
  • 59
    • 0030610785 scopus 로고    scopus 로고
    • Gln 63 of Rho is deamidated by Escherichia coli cytotoxic necrotizing factor-1
    • Schmidt G., et al. Gln 63 of Rho is deamidated by Escherichia coli cytotoxic necrotizing factor-1. Nature 1997, 387:725-729.
    • (1997) Nature , vol.387 , pp. 725-729
    • Schmidt, G.1
  • 60
    • 0035872859 scopus 로고    scopus 로고
    • Role of transglutaminase II in retinoic acid-induced activation of RhoA-associated kinase-2
    • Singh U.S., et al. Role of transglutaminase II in retinoic acid-induced activation of RhoA-associated kinase-2. EMBO J. 2001, 20:2413-2423.
    • (2001) EMBO J. , vol.20 , pp. 2413-2423
    • Singh, U.S.1
  • 61
    • 0037414822 scopus 로고    scopus 로고
    • Tissue transglutaminase mediates activation of RhoA and MAP kinase pathways during retinoic acid-induced neuronal differentiation of SH-SY5Y cells
    • Singh U.S., et al. Tissue transglutaminase mediates activation of RhoA and MAP kinase pathways during retinoic acid-induced neuronal differentiation of SH-SY5Y cells. J. Biol. Chem. 2003, 278:391-399.
    • (2003) J. Biol. Chem. , vol.278 , pp. 391-399
    • Singh, U.S.1
  • 62
    • 34047253930 scopus 로고    scopus 로고
    • Transglutaminase-dependent RhoA activation and depletion by serotonin in vascular smooth muscle cells
    • Guilluy C., et al. Transglutaminase-dependent RhoA activation and depletion by serotonin in vascular smooth muscle cells. J. Biol. Chem. 2007, 282:2918-2928.
    • (2007) J. Biol. Chem. , vol.282 , pp. 2918-2928
    • Guilluy, C.1
  • 63
    • 67449105737 scopus 로고    scopus 로고
    • RhoA and Rho kinase activation in human pulmonary hypertension: role of 5-HT signaling
    • Guilluy C., et al. RhoA and Rho kinase activation in human pulmonary hypertension: role of 5-HT signaling. Am. J. Respir. Crit. Care Med. 2009, 179:1151-1158.
    • (2009) Am. J. Respir. Crit. Care Med. , vol.179 , pp. 1151-1158
    • Guilluy, C.1
  • 64
    • 0030040750 scopus 로고    scopus 로고
    • Protein kinase A phosphorylation of RhoA mediates the morphological and functional effects of cyclic AMP in cytotoxic lymphocytes
    • Lang P., et al. Protein kinase A phosphorylation of RhoA mediates the morphological and functional effects of cyclic AMP in cytotoxic lymphocytes. EMBO J. 1996, 15:510-519.
    • (1996) EMBO J. , vol.15 , pp. 510-519
    • Lang, P.1
  • 65
    • 0034647534 scopus 로고    scopus 로고
    • Cyclic GMP-dependent protein kinase signaling pathway inhibits RhoA-induced Ca2+ sensitization of contraction in vascular smooth muscle
    • Sauzeau V., et al. Cyclic GMP-dependent protein kinase signaling pathway inhibits RhoA-induced Ca2+ sensitization of contraction in vascular smooth muscle. J. Biol. Chem. 2000, 275:21722-21729.
    • (2000) J. Biol. Chem. , vol.275 , pp. 21722-21729
    • Sauzeau, V.1
  • 66
    • 1442290184 scopus 로고    scopus 로고
    • Epidermal growth factor-dependent regulation of Cdc42 is mediated by the Src tyrosine kinase
    • Tu S., et al. Epidermal growth factor-dependent regulation of Cdc42 is mediated by the Src tyrosine kinase. J. Biol. Chem. 2003, 278:49293-49300.
    • (2003) J. Biol. Chem. , vol.278 , pp. 49293-49300
    • Tu, S.1
  • 67
    • 0034614606 scopus 로고    scopus 로고
    • Akt protein kinase inhibits Rac1-GTP binding through phosphorylation at serine 71 of Rac1
    • Kwon T., et al. Akt protein kinase inhibits Rac1-GTP binding through phosphorylation at serine 71 of Rac1. J. Biol. Chem. 2000, 275:423-428.
    • (2000) J. Biol. Chem. , vol.275 , pp. 423-428
    • Kwon, T.1
  • 68
    • 0037805583 scopus 로고    scopus 로고
    • Serine phosphorylation negatively regulates RhoA in vivo
    • Ellerbroek S.M., et al. Serine phosphorylation negatively regulates RhoA in vivo. J. Biol. Chem. 2003, 278:19023-19031.
    • (2003) J. Biol. Chem. , vol.278 , pp. 19023-19031
    • Ellerbroek, S.M.1
  • 69
    • 30944448805 scopus 로고    scopus 로고
    • Serine phosphorylation differentially affects RhoA binding to effectors: implications to NGF-induced neurite outgrowth
    • Nusser N., et al. Serine phosphorylation differentially affects RhoA binding to effectors: implications to NGF-induced neurite outgrowth. Cell. Signal. 2006, 18:704-714.
    • (2006) Cell. Signal. , vol.18 , pp. 704-714
    • Nusser, N.1
  • 70
    • 18344374044 scopus 로고    scopus 로고
    • Negative regulation of RhoA/Rho kinase by angiotensin II type 2 receptor in vascular smooth muscle cells: role in angiotensin II-induced vasodilation in stroke-prone spontaneously hypertensive rats
    • Savoia C., et al. Negative regulation of RhoA/Rho kinase by angiotensin II type 2 receptor in vascular smooth muscle cells: role in angiotensin II-induced vasodilation in stroke-prone spontaneously hypertensive rats. J. Hypertens. 2005, 23:1037-1045.
    • (2005) J. Hypertens. , vol.23 , pp. 1037-1045
    • Savoia, C.1
  • 71
    • 20444480169 scopus 로고    scopus 로고
    • Phosphorylation of serine 188 protects RhoA from ubiquitin/proteasome-mediated degradation in vascular smooth muscle cells
    • Rolli-Derkinderen M., et al. Phosphorylation of serine 188 protects RhoA from ubiquitin/proteasome-mediated degradation in vascular smooth muscle cells. Circ. Res. 2005, 96:1152-1160.
    • (2005) Circ. Res. , vol.96 , pp. 1152-1160
    • Rolli-Derkinderen, M.1
  • 72
    • 74949139625 scopus 로고    scopus 로고
    • The Rho/Rac exchange factor Vav2 controls nitric oxide-dependent responses in mouse vascular smooth muscle cells
    • Sauzeau V., et al. The Rho/Rac exchange factor Vav2 controls nitric oxide-dependent responses in mouse vascular smooth muscle cells. J. Clin. Invest. 2010, 120:315-330.
    • (2010) J. Clin. Invest. , vol.120 , pp. 315-330
    • Sauzeau, V.1
  • 73
    • 17144377069 scopus 로고    scopus 로고
    • RhoE function is regulated by ROCK I-mediated phosphorylation
    • Riento K., et al. RhoE function is regulated by ROCK I-mediated phosphorylation. EMBO J. 2005, 24:1170-1180.
    • (2005) EMBO J. , vol.24 , pp. 1170-1180
    • Riento, K.1
  • 74
    • 50249150751 scopus 로고    scopus 로고
    • Phosphorylation of RhoB by CK1 impedes actin stress fiber organization and epidermal growth factor receptor stabilization
    • Tillement V., et al. Phosphorylation of RhoB by CK1 impedes actin stress fiber organization and epidermal growth factor receptor stabilization. Exp. Cell Res. 2008, 314:2811-2821.
    • (2008) Exp. Cell Res. , vol.314 , pp. 2811-2821
    • Tillement, V.1
  • 75
    • 33750121336 scopus 로고    scopus 로고
    • RhoH GTPase recruits and activates Zap70 required for T cell receptor signaling and thymocyte development
    • Gu Y., et al. RhoH GTPase recruits and activates Zap70 required for T cell receptor signaling and thymocyte development. Nat. Immunol. 2006, 7:1182-1190.
    • (2006) Nat. Immunol. , vol.7 , pp. 1182-1190
    • Gu, Y.1
  • 76
    • 33745684577 scopus 로고    scopus 로고
    • Regulation of Rho proteins by phosphorylation in the cardiovascular system
    • Loirand G., et al. Regulation of Rho proteins by phosphorylation in the cardiovascular system. Trends Cardiovasc. Med. 2006, 16:199-204.
    • (2006) Trends Cardiovasc. Med. , vol.16 , pp. 199-204
    • Loirand, G.1
  • 77
    • 0037205231 scopus 로고    scopus 로고
    • A Yersinia effector and a Pseudomonas avirulence protein define a family of cysteine proteases functioning in bacterial pathogenesis
    • Shao F., et al. A Yersinia effector and a Pseudomonas avirulence protein define a family of cysteine proteases functioning in bacterial pathogenesis. Cell 2002, 109:575-588.
    • (2002) Cell , vol.109 , pp. 575-588
    • Shao, F.1
  • 78
    • 58149400542 scopus 로고    scopus 로고
    • AMPylation of Rho GTPases by Vibrio VopS disrupts effector binding and downstream signaling
    • Yarbrough M.L., et al. AMPylation of Rho GTPases by Vibrio VopS disrupts effector binding and downstream signaling. Science 2009, 323:269-272.
    • (2009) Science , vol.323 , pp. 269-272
    • Yarbrough, M.L.1
  • 79
    • 63649139064 scopus 로고    scopus 로고
    • The fic domain: regulation of cell signaling by adenylylation
    • Worby C.A., et al. The fic domain: regulation of cell signaling by adenylylation. Mol. Cell 2009, 34:93-103.
    • (2009) Mol. Cell , vol.34 , pp. 93-103
    • Worby, C.A.1
  • 80
    • 67149136177 scopus 로고    scopus 로고
    • Fido, a novel AMPylation domain common to fic, doc, and AvrB
    • Kinch L.N., et al. Fido, a novel AMPylation domain common to fic, doc, and AvrB. PLoS ONE 2009, 4:e5818.
    • (2009) PLoS ONE , vol.4
    • Kinch, L.N.1
  • 81
    • 79959213985 scopus 로고    scopus 로고
    • Bacterial protein toxins that modify host regulatory GTPases
    • Aktories K. Bacterial protein toxins that modify host regulatory GTPases. Nat. Rev. Microbiol. 2011, 9:487-498.
    • (2011) Nat. Rev. Microbiol. , vol.9 , pp. 487-498
    • Aktories, K.1
  • 82
    • 33749346301 scopus 로고    scopus 로고
    • Modification of proteins by ubiquitin and ubiquitin-like proteins
    • Kerscher O., et al. Modification of proteins by ubiquitin and ubiquitin-like proteins. Annu. Rev. Cell Dev. Biol. 2006, 22:159-180.
    • (2006) Annu. Rev. Cell Dev. Biol. , vol.22 , pp. 159-180
    • Kerscher, O.1
  • 83
    • 18744379729 scopus 로고    scopus 로고
    • CNF1 exploits the ubiquitin-proteasome machinery to restrict Rho GTPase activation for bacterial host cell invasion
    • Doye A., et al. CNF1 exploits the ubiquitin-proteasome machinery to restrict Rho GTPase activation for bacterial host cell invasion. Cell 2002, 111:553-564.
    • (2002) Cell , vol.111 , pp. 553-564
    • Doye, A.1
  • 84
    • 0035824573 scopus 로고    scopus 로고
    • Redox regulation of human Rac1 stability by the proteasome in human aortic endothelial cells
    • Kovacic H.N., et al. Redox regulation of human Rac1 stability by the proteasome in human aortic endothelial cells. J. Biol. Chem. 2001, 276:45856-45861.
    • (2001) J. Biol. Chem. , vol.276 , pp. 45856-45861
    • Kovacic, H.N.1
  • 85
    • 33745753386 scopus 로고    scopus 로고
    • Proteasome-mediated degradation of Rac1-GTP during epithelial cell scattering
    • Lynch E.A., et al. Proteasome-mediated degradation of Rac1-GTP during epithelial cell scattering. Mol. Biol. Cell 2006, 17:2236-2242.
    • (2006) Mol. Biol. Cell , vol.17 , pp. 2236-2242
    • Lynch, E.A.1
  • 86
    • 77953162073 scopus 로고    scopus 로고
    • Focal-adhesion targeting links caveolin-1 to a Rac1-degradation pathway
    • Nethe M., et al. Focal-adhesion targeting links caveolin-1 to a Rac1-degradation pathway. J. Cell Sci. 2010, 123:1948-1958.
    • (2010) J. Cell Sci. , vol.123 , pp. 1948-1958
    • Nethe, M.1
  • 87
    • 78649729521 scopus 로고    scopus 로고
    • The role of ubiquitylation and degradation in RhoGTPase signalling
    • Nethe M., Hordijk P.L. The role of ubiquitylation and degradation in RhoGTPase signalling. J. Cell Sci. 2010, 123:4011-4018.
    • (2010) J. Cell Sci. , vol.123 , pp. 4011-4018
    • Nethe, M.1    Hordijk, P.L.2
  • 88
    • 37849050182 scopus 로고    scopus 로고
    • Activated Rac1, but not the tumorigenic variant Rac1b, is ubiquitinated on Lys 147 through a JNK-regulated process
    • Visvikis O., et al. Activated Rac1, but not the tumorigenic variant Rac1b, is ubiquitinated on Lys 147 through a JNK-regulated process. FEBS J. 2008, 275:386-396.
    • (2008) FEBS J. , vol.275 , pp. 386-396
    • Visvikis, O.1
  • 89
    • 80755189006 scopus 로고    scopus 로고
    • The E3 ubiquitin-ligase HACE1 catalyzes the ubiquitylation of active Rac1
    • Torrino S., et al. The E3 ubiquitin-ligase HACE1 catalyzes the ubiquitylation of active Rac1. Dev. Cell 2011, 21:959-965.
    • (2011) Dev. Cell , vol.21 , pp. 959-965
    • Torrino, S.1
  • 90
    • 4644371621 scopus 로고    scopus 로고
    • Smurf1: a link between cell polarity and ubiquitination
    • Zhang Y., et al. Smurf1: a link between cell polarity and ubiquitination. Cell Cycle 2004, 3:391-392.
    • (2004) Cell Cycle , vol.3 , pp. 391-392
    • Zhang, Y.1
  • 91
    • 14844364701 scopus 로고    scopus 로고
    • Regulation of the polarity protein Par6 by TGFbeta receptors controls epithelial cell plasticity
    • Ozdamar B., et al. Regulation of the polarity protein Par6 by TGFbeta receptors controls epithelial cell plasticity. Science 2005, 307:1603-1609.
    • (2005) Science , vol.307 , pp. 1603-1609
    • Ozdamar, B.1
  • 92
    • 0344758986 scopus 로고    scopus 로고
    • Regulation of cell polarity and protrusion formation by targeting RhoA for degradation
    • Wang H.R., et al. Regulation of cell polarity and protrusion formation by targeting RhoA for degradation. Science 2003, 302:1775-1779.
    • (2003) Science , vol.302 , pp. 1775-1779
    • Wang, H.R.1
  • 93
    • 32144456975 scopus 로고    scopus 로고
    • Degradation of RhoA by Smurf1 ubiquitin ligase
    • Wang H.R., et al. Degradation of RhoA by Smurf1 ubiquitin ligase. Methods Enzymol. 2006, 406:437-447.
    • (2006) Methods Enzymol. , vol.406 , pp. 437-447
    • Wang, H.R.1
  • 94
    • 79960359069 scopus 로고    scopus 로고
    • Binding of RhoA by the C2 domain of E3 ligase Smurf1 is essential for Smurf1-regulated RhoA ubiquitination and cell protrusive activity
    • Tian M., et al. Binding of RhoA by the C2 domain of E3 ligase Smurf1 is essential for Smurf1-regulated RhoA ubiquitination and cell protrusive activity. FEBS Lett. 2011, 585:2199-2204.
    • (2011) FEBS Lett. , vol.585 , pp. 2199-2204
    • Tian, M.1
  • 95
    • 13844257637 scopus 로고    scopus 로고
    • Ubiquitination of RhoA by Smurf1 promotes neurite outgrowth
    • Bryan B., et al. Ubiquitination of RhoA by Smurf1 promotes neurite outgrowth. FEBS Lett. 2005, 579:1015-1019.
    • (2005) FEBS Lett. , vol.579 , pp. 1015-1019
    • Bryan, B.1
  • 96
    • 33846014269 scopus 로고    scopus 로고
    • Smurf1 regulates tumor cell plasticity and motility through degradation of RhoA leading to localized inhibition of contractility
    • Sahai E., et al. Smurf1 regulates tumor cell plasticity and motility through degradation of RhoA leading to localized inhibition of contractility. J. Cell Biol. 2007, 176:35-42.
    • (2007) J. Cell Biol. , vol.176 , pp. 35-42
    • Sahai, E.1
  • 97
    • 70349168448 scopus 로고    scopus 로고
    • Cullin mediates degradation of RhoA through evolutionarily conserved BTB adaptors to control actin cytoskeleton structure and cell movement
    • Chen Y., et al. Cullin mediates degradation of RhoA through evolutionarily conserved BTB adaptors to control actin cytoskeleton structure and cell movement. Mol. Cell 2009, 35:841-855.
    • (2009) Mol. Cell , vol.35 , pp. 841-855
    • Chen, Y.1
  • 98
    • 79953235713 scopus 로고    scopus 로고
    • The deubiquitinating enzyme USP17 is essential for GTPase subcellular localization and cell motility
    • de la Vega M., et al. The deubiquitinating enzyme USP17 is essential for GTPase subcellular localization and cell motility. Nat. Commun. 2011, 2:259.
    • (2011) Nat. Commun. , vol.2 , pp. 259
    • de la Vega, M.1
  • 99
    • 34548182080 scopus 로고    scopus 로고
    • RhoB is epigenetically regulated in an age- and tissue-specific manner
    • Yoon Y.S., et al. RhoB is epigenetically regulated in an age- and tissue-specific manner. Biochem. Biophys. Res. Commun. 2007, 362:164-169.
    • (2007) Biochem. Biophys. Res. Commun. , vol.362 , pp. 164-169
    • Yoon, Y.S.1
  • 100
    • 78650740081 scopus 로고    scopus 로고
    • Epigenetic modification of RhoE expression in gastric cancer cells
    • Chen J., et al. Epigenetic modification of RhoE expression in gastric cancer cells. Oncol. Rep. 2011, 25:173-180.
    • (2011) Oncol. Rep. , vol.25 , pp. 173-180
    • Chen, J.1
  • 101
    • 33747005708 scopus 로고    scopus 로고
    • The human orthologue of CdGAP is a phosphoprotein and a GTPase-activating protein for Cdc42 and Rac1 but not RhoA
    • Tcherkezian J., et al. The human orthologue of CdGAP is a phosphoprotein and a GTPase-activating protein for Cdc42 and Rac1 but not RhoA. Biol. Cell 2006, 98:445-456.
    • (2006) Biol. Cell , vol.98 , pp. 445-456
    • Tcherkezian, J.1
  • 102
    • 52649094451 scopus 로고    scopus 로고
    • Phosphorylation and activation of the Rac1 and Cdc42 GEF Asef in A431 cells stimulated by EGF
    • Itoh R.E., et al. Phosphorylation and activation of the Rac1 and Cdc42 GEF Asef in A431 cells stimulated by EGF. J. Cell Sci. 2008, 121:2635-2642.
    • (2008) J. Cell Sci. , vol.121 , pp. 2635-2642
    • Itoh, R.E.1
  • 103
    • 81355148858 scopus 로고    scopus 로고
    • Rho protein crosstalk: another social network?
    • Guilluy C., et al. Rho protein crosstalk: another social network?. Trends Cell Biol. 2011, 21:718-726.
    • (2011) Trends Cell Biol. , vol.21 , pp. 718-726
    • Guilluy, C.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.