메뉴 건너뛰기




Volumn 20, Issue 3, 2012, Pages 139-146

Molecular mechanisms of viral inhibitors of RIG-I-like receptors

Author keywords

[No Author keywords available]

Indexed keywords

ALPHA INTERFERON; ANTIVIRUS AGENT; BETA INTERFERON; NONSTRUCTURAL PROTEIN 1; RETINOIC ACID INDUCIBLE PROTEIN I; TRIM25 PROTEIN; UNCLASSIFIED DRUG; VIRUS PROTEIN;

EID: 84857995280     PISSN: 0966842X     EISSN: 18784380     Source Type: Journal    
DOI: 10.1016/j.tim.2011.12.005     Document Type: Review
Times cited : (35)

References (75)
  • 1
    • 78751560494 scopus 로고    scopus 로고
    • Pathogen recognition by the innate immune system
    • Kumar H., et al. Pathogen recognition by the innate immune system. Int. Rev. Immunol. 2011, 30:16-34.
    • (2011) Int. Rev. Immunol. , vol.30 , pp. 16-34
    • Kumar, H.1
  • 2
    • 77949940198 scopus 로고    scopus 로고
    • Intracellular toll-like receptors
    • Blasius A.L., Beutler B. Intracellular toll-like receptors. Immunity 2010, 32:305-315.
    • (2010) Immunity , vol.32 , pp. 305-315
    • Blasius, A.L.1    Beutler, B.2
  • 3
    • 77249132637 scopus 로고    scopus 로고
    • Recognition of viruses by cytoplasmic sensors
    • Wilkins C., Gale M. Recognition of viruses by cytoplasmic sensors. Curr. Opin. Immunol. 2010, 22:41-47.
    • (2010) Curr. Opin. Immunol. , vol.22 , pp. 41-47
    • Wilkins, C.1    Gale, M.2
  • 4
    • 35349016235 scopus 로고    scopus 로고
    • Recognition of microorganisms and activation of the immune response
    • Medzhitov R. Recognition of microorganisms and activation of the immune response. Nature 2007, 449:819-826.
    • (2007) Nature , vol.449 , pp. 819-826
    • Medzhitov, R.1
  • 5
    • 77950343791 scopus 로고    scopus 로고
    • Pattern recognition receptors and inflammation
    • Takeuchi O., Akira S. Pattern recognition receptors and inflammation. Cell 2010, 140:805-820.
    • (2010) Cell , vol.140 , pp. 805-820
    • Takeuchi, O.1    Akira, S.2
  • 6
    • 33750984771 scopus 로고    scopus 로고
    • RIG-I-mediated antiviral responses to single-stranded RNA bearing 5'-phosphates
    • Pichlmair A., et al. RIG-I-mediated antiviral responses to single-stranded RNA bearing 5'-phosphates. Science 2006, 314:997-1001.
    • (2006) Science , vol.314 , pp. 997-1001
    • Pichlmair, A.1
  • 7
    • 68049089651 scopus 로고    scopus 로고
    • Recognition of 5' triphosphate by RIG-I helicase requires short blunt double-stranded RNA as contained in panhandle of negative-strand virus
    • Schlee M., et al. Recognition of 5' triphosphate by RIG-I helicase requires short blunt double-stranded RNA as contained in panhandle of negative-strand virus. Immunity 2009, 31:25-34.
    • (2009) Immunity , vol.31 , pp. 25-34
    • Schlee, M.1
  • 8
    • 67749133995 scopus 로고    scopus 로고
    • 5'-Triphosphate RNA requires base-paired structures to activate antiviral signaling via RIG-I
    • Schmidt A., et al. 5'-Triphosphate RNA requires base-paired structures to activate antiviral signaling via RIG-I. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:12067-12072.
    • (2009) Proc. Natl. Acad. Sci. U.S.A. , vol.106 , pp. 12067-12072
    • Schmidt, A.1
  • 9
    • 46949092022 scopus 로고    scopus 로고
    • Differential recognition of double-stranded RNA by RIG-I-like receptors in antiviral immunity
    • Saito T., Gale M. Differential recognition of double-stranded RNA by RIG-I-like receptors in antiviral immunity. J. Exp. Med. 2008, 205:1523-1527.
    • (2008) J. Exp. Med. , vol.205 , pp. 1523-1527
    • Saito, T.1    Gale, M.2
  • 10
    • 70349728538 scopus 로고    scopus 로고
    • Activation of MDA5 requires higher-order RNA structures generated during virus infection
    • Pichlmair A., et al. Activation of MDA5 requires higher-order RNA structures generated during virus infection. J. Virol. 2009, 83:10761-10769.
    • (2009) J. Virol. , vol.83 , pp. 10761-10769
    • Pichlmair, A.1
  • 11
    • 33646342149 scopus 로고    scopus 로고
    • Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses
    • Kato H., et al. Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature 2006, 441:101-105.
    • (2006) Nature , vol.441 , pp. 101-105
    • Kato, H.1
  • 12
    • 23844438864 scopus 로고    scopus 로고
    • Shared and unique functions of the DExD/H-box helicases RIG-I, MDA5, and LGP2 in antiviral innate immunity
    • Yoneyama M., et al. Shared and unique functions of the DExD/H-box helicases RIG-I, MDA5, and LGP2 in antiviral innate immunity. J. Immunol. 2005, 175:2851-2858.
    • (2005) J. Immunol. , vol.175 , pp. 2851-2858
    • Yoneyama, M.1
  • 13
    • 46949097299 scopus 로고    scopus 로고
    • Length-dependent recognition of double-stranded ribonucleic acids by retinoic acid-inducible gene-I and melanoma differentiation-associated gene 5
    • Kato H., et al. Length-dependent recognition of double-stranded ribonucleic acids by retinoic acid-inducible gene-I and melanoma differentiation-associated gene 5. J. Exp. Med. 2008, 205:1601-1610.
    • (2008) J. Exp. Med. , vol.205 , pp. 1601-1610
    • Kato, H.1
  • 14
    • 58049215518 scopus 로고    scopus 로고
    • Approaching the RNA ligand for RIG-I?
    • Schlee M., et al. Approaching the RNA ligand for RIG-I?. Immunol. Rev. 2009, 227:66-74.
    • (2009) Immunol. Rev. , vol.227 , pp. 66-74
    • Schlee, M.1
  • 15
    • 77954242369 scopus 로고    scopus 로고
    • The chase for the RIG-I ligand - recent advances
    • Schlee M., Hartmann G. The chase for the RIG-I ligand - recent advances. Mol. Ther. 2010, 18:1254-1262.
    • (2010) Mol. Ther. , vol.18 , pp. 1254-1262
    • Schlee, M.1    Hartmann, G.2
  • 16
    • 26844503987 scopus 로고    scopus 로고
    • The RNA helicase Lgp2 inhibits TLR-independent sensing of viral replication by retinoic acid-inducible gene-I
    • Rothenfusser S., et al. The RNA helicase Lgp2 inhibits TLR-independent sensing of viral replication by retinoic acid-inducible gene-I. J. Immunol. 2005, 175:5260-5268.
    • (2005) J. Immunol. , vol.175 , pp. 5260-5268
    • Rothenfusser, S.1
  • 17
    • 33846307026 scopus 로고    scopus 로고
    • Regulation of innate antiviral defenses through a shared repressor domain in RIG-I and LGP2
    • Saito T., et al. Regulation of innate antiviral defenses through a shared repressor domain in RIG-I and LGP2. Proc. Natl. Acad. Sci. U.S.A. 2007, 104:582-587.
    • (2007) Proc. Natl. Acad. Sci. U.S.A. , vol.104 , pp. 582-587
    • Saito, T.1
  • 18
    • 80255141860 scopus 로고    scopus 로고
    • The RIG-I ATPase domain structure reveals insights into ATP-dependent antiviral signalling
    • Civril F., et al. The RIG-I ATPase domain structure reveals insights into ATP-dependent antiviral signalling. EMBO Rep. 2011, 12:1127-1134.
    • (2011) EMBO Rep. , vol.12 , pp. 1127-1134
    • Civril, F.1
  • 19
    • 80054703126 scopus 로고    scopus 로고
    • Structural basis for the activation of innate immune pattern-recognition receptor RIG-I by viral RNA
    • Kowalinski E., et al. Structural basis for the activation of innate immune pattern-recognition receptor RIG-I by viral RNA. Cell 2011, 147:423-435.
    • (2011) Cell , vol.147 , pp. 423-435
    • Kowalinski, E.1
  • 20
    • 80054685883 scopus 로고    scopus 로고
    • Structural insights into RNA recognition by RIG-I
    • Luo D., et al. Structural insights into RNA recognition by RIG-I. Cell 2011, 147:409-422.
    • (2011) Cell , vol.147 , pp. 409-422
    • Luo, D.1
  • 21
    • 81555204380 scopus 로고    scopus 로고
    • Structural basis of RNA recognition and activation by innate immune receptor RIG-I
    • Jiang F., et al. Structural basis of RNA recognition and activation by innate immune receptor RIG-I. Nature 2011, 479:423-427.
    • (2011) Nature , vol.479 , pp. 423-427
    • Jiang, F.1
  • 22
    • 34247341367 scopus 로고    scopus 로고
    • TRIM25 RING-finger E3 ubiquitin ligase is essential for RIG-I-mediated antiviral activity
    • Gack M.U., et al. TRIM25 RING-finger E3 ubiquitin ligase is essential for RIG-I-mediated antiviral activity. Nature 2007, 446:916-920.
    • (2007) Nature , vol.446 , pp. 916-920
    • Gack, M.U.1
  • 23
    • 79251550124 scopus 로고    scopus 로고
    • Linear ubiquitin assembly complex negatively regulates RIG-I- and TRIM25-mediated type I interferon induction
    • Inn K.S., et al. Linear ubiquitin assembly complex negatively regulates RIG-I- and TRIM25-mediated type I interferon induction. Mol. Cell 2011, 41:354-365.
    • (2011) Mol. Cell , vol.41 , pp. 354-365
    • Inn, K.S.1
  • 24
    • 77951708374 scopus 로고    scopus 로고
    • Reconstitution of the RIG-I pathway reveals a signaling role of unanchored polyubiquitin chains in innate immunity
    • Zeng W., et al. Reconstitution of the RIG-I pathway reveals a signaling role of unanchored polyubiquitin chains in innate immunity. Cell 2010, 141:315-330.
    • (2010) Cell , vol.141 , pp. 315-330
    • Zeng, W.1
  • 25
    • 33646592188 scopus 로고    scopus 로고
    • The specific and essential role of MAVS in antiviral innate immune responses
    • Sun Q., et al. The specific and essential role of MAVS in antiviral innate immune responses. Immunity 2006, 24:633-642.
    • (2006) Immunity , vol.24 , pp. 633-642
    • Sun, Q.1
  • 26
    • 34447299235 scopus 로고    scopus 로고
    • Orthomyxoviridae: The viruses and their replication
    • Lippincott Williams & Wilkins, D.M. Knipe (Ed.)
    • Shaw M.L., Palese P. Orthomyxoviridae: The viruses and their replication. Fields Virology 2007, 1647-1689. Lippincott Williams & Wilkins. 5th edn. D.M. Knipe (Ed.).
    • (2007) Fields Virology , pp. 1647-1689
    • Shaw, M.L.1    Palese, P.2
  • 27
    • 72949109523 scopus 로고    scopus 로고
    • Interplay between influenza A virus and the innate immune signaling
    • Ehrhardt C., et al. Interplay between influenza A virus and the innate immune signaling. Microbes Infect. 2010, 12:81-87.
    • (2010) Microbes Infect. , vol.12 , pp. 81-87
    • Ehrhardt, C.1
  • 28
    • 33745242372 scopus 로고    scopus 로고
    • Influenza virus evades innate and adaptive immunity via the NS1 protein
    • Fernandez-Sesma A., et al. Influenza virus evades innate and adaptive immunity via the NS1 protein. J. Virol. 2006, 80:6295-6304.
    • (2006) J. Virol. , vol.80 , pp. 6295-6304
    • Fernandez-Sesma, A.1
  • 29
    • 0345004816 scopus 로고    scopus 로고
    • Influenza A virus lacking the NS1 gene replicates in interferon-deficient systems
    • Garcia-Sastre A., et al. Influenza A virus lacking the NS1 gene replicates in interferon-deficient systems. Virology 1998, 252:324-330.
    • (1998) Virology , vol.252 , pp. 324-330
    • Garcia-Sastre, A.1
  • 30
    • 37549001315 scopus 로고    scopus 로고
    • The influenza virus NS1 protein: inhibitor of innate and adaptive immunity
    • Fernandez-Sesma A. The influenza virus NS1 protein: inhibitor of innate and adaptive immunity. Infect. Disord. Drug Targets 2007, 7:336-343.
    • (2007) Infect. Disord. Drug Targets , vol.7 , pp. 336-343
    • Fernandez-Sesma, A.1
  • 31
    • 0033560753 scopus 로고    scopus 로고
    • Influenza A virus NS1 protein targets poly(A)-binding protein II of the cellular 3'-end processing machinery
    • Chen Z., et al. Influenza A virus NS1 protein targets poly(A)-binding protein II of the cellular 3'-end processing machinery. EMBO J. 1999, 18:2273-2283.
    • (1999) EMBO J. , vol.18 , pp. 2273-2283
    • Chen, Z.1
  • 32
    • 0032086357 scopus 로고    scopus 로고
    • Influenza virus NS1 protein interacts with the cellular 30 kDa subunit of CPSF and inhibits 3'end formation of cellular pre-mRNAs
    • Nemeroff M.E., et al. Influenza virus NS1 protein interacts with the cellular 30 kDa subunit of CPSF and inhibits 3'end formation of cellular pre-mRNAs. Mol. Cell 1998, 1:991-1000.
    • (1998) Mol. Cell , vol.1 , pp. 991-1000
    • Nemeroff, M.E.1
  • 33
    • 33750976374 scopus 로고    scopus 로고
    • 5'-Triphosphate RNA is the ligand for RIG-I
    • Hornung V., et al. 5'-Triphosphate RNA is the ligand for RIG-I. Science 2006, 314:994-997.
    • (2006) Science , vol.314 , pp. 994-997
    • Hornung, V.1
  • 34
    • 33846061693 scopus 로고    scopus 로고
    • Inhibition of retinoic acid-inducible gene I-mediated induction of beta interferon by the NS1 protein of influenza A virus
    • Mibayashi M., et al. Inhibition of retinoic acid-inducible gene I-mediated induction of beta interferon by the NS1 protein of influenza A virus. J. Virol. 2007, 81:514-524.
    • (2007) J. Virol. , vol.81 , pp. 514-524
    • Mibayashi, M.1
  • 35
    • 33947171000 scopus 로고    scopus 로고
    • IFNbeta induction by influenza A virus is mediated by RIG-I which is regulated by the viral NS1 protein
    • Opitz B., et al. IFNbeta induction by influenza A virus is mediated by RIG-I which is regulated by the viral NS1 protein. Cell Microbiol. 2007, 9:930-938.
    • (2007) Cell Microbiol. , vol.9 , pp. 930-938
    • Opitz, B.1
  • 36
    • 0036838725 scopus 로고    scopus 로고
    • The influenza A virus NS1 protein inhibits activation of Jun N-terminal kinase and AP-1 transcription factors
    • Ludwig S., et al. The influenza A virus NS1 protein inhibits activation of Jun N-terminal kinase and AP-1 transcription factors. J. Virol. 2002, 76:11166-11171.
    • (2002) J. Virol. , vol.76 , pp. 11166-11171
    • Ludwig, S.1
  • 37
    • 0033870894 scopus 로고    scopus 로고
    • Activation of interferon regulatory factor 3 is inhibited by the influenza A virus NS1 protein
    • Talon J., et al. Activation of interferon regulatory factor 3 is inhibited by the influenza A virus NS1 protein. J. Virol. 2000, 74:7989-7996.
    • (2000) J. Virol. , vol.74 , pp. 7989-7996
    • Talon, J.1
  • 38
    • 0345167006 scopus 로고    scopus 로고
    • A recombinant influenza A virus expressing an RNA-binding-defective NS1 protein induces high levels of beta interferon and is attenuated in mice
    • Donelan N.R., et al. A recombinant influenza A virus expressing an RNA-binding-defective NS1 protein induces high levels of beta interferon and is attenuated in mice. J. Virol. 2003, 77:13257-13266.
    • (2003) J. Virol. , vol.77 , pp. 13257-13266
    • Donelan, N.R.1
  • 39
    • 38349180176 scopus 로고    scopus 로고
    • A single-amino-acid substitution in the NS1 protein changes the pathogenicity of H5N1 avian influenza viruses in mice
    • Jiao P., et al. A single-amino-acid substitution in the NS1 protein changes the pathogenicity of H5N1 avian influenza viruses in mice. J. Virol. 2008, 82:1146-1154.
    • (2008) J. Virol. , vol.82 , pp. 1146-1154
    • Jiao, P.1
  • 40
    • 77957997708 scopus 로고    scopus 로고
    • Preference of RIG-I for short viral RNA molecules in infected cells revealed by next-generation sequencing
    • Baum A., et al. Preference of RIG-I for short viral RNA molecules in infected cells revealed by next-generation sequencing. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:16303-16308.
    • (2010) Proc. Natl. Acad. Sci. U.S.A. , vol.107 , pp. 16303-16308
    • Baum, A.1
  • 41
    • 0034044065 scopus 로고    scopus 로고
    • Influenza virus NS1 protein counteracts PKR-mediated inhibition of replication
    • Bergmann M., et al. Influenza virus NS1 protein counteracts PKR-mediated inhibition of replication. J. Virol. 2000, 74:6203-6206.
    • (2000) J. Virol. , vol.74 , pp. 6203-6206
    • Bergmann, M.1
  • 42
    • 0032980412 scopus 로고    scopus 로고
    • Mutant influenza viruses with a defective NS1 protein cannot block the activation of PKR in infected cells
    • Hatada E., et al. Mutant influenza viruses with a defective NS1 protein cannot block the activation of PKR in infected cells. J. Virol. 1999, 73:2425-2433.
    • (1999) J. Virol. , vol.73 , pp. 2425-2433
    • Hatada, E.1
  • 43
    • 33646517711 scopus 로고    scopus 로고
    • Binding of the influenza A virus NS1 protein to PKR mediates the inhibition of its activation by either PACT or double-stranded RNA
    • Li S., et al. Binding of the influenza A virus NS1 protein to PKR mediates the inhibition of its activation by either PACT or double-stranded RNA. Virology 2006, 349:13-21.
    • (2006) Virology , vol.349 , pp. 13-21
    • Li, S.1
  • 44
    • 0028847292 scopus 로고
    • Binding of the influenza virus NS1 protein to double-stranded RNA inhibits the activation of the protein kinase that phosphorylates the elF-2 translation initiation factor
    • Lu Y., et al. Binding of the influenza virus NS1 protein to double-stranded RNA inhibits the activation of the protein kinase that phosphorylates the elF-2 translation initiation factor. Virology 1995, 214:222-228.
    • (1995) Virology , vol.214 , pp. 222-228
    • Lu, Y.1
  • 45
    • 33646478272 scopus 로고    scopus 로고
    • The primary function of RNA binding by the influenza A virus NS1 protein in infected cells: Inhibiting the 2'-5' oligo(A) synthetase/RNase L pathway
    • Min J.Y., Krug R.M. The primary function of RNA binding by the influenza A virus NS1 protein in infected cells: Inhibiting the 2'-5' oligo(A) synthetase/RNase L pathway. Proc. Natl. Acad. Sci. U.S.A. 2006, 103:7100-7105.
    • (2006) Proc. Natl. Acad. Sci. U.S.A. , vol.103 , pp. 7100-7105
    • Min, J.Y.1    Krug, R.M.2
  • 46
    • 0031670374 scopus 로고    scopus 로고
    • Biochemical and genetic evidence for complex formation between the influenza A virus NS1 protein and the interferon-induced PKR protein kinase
    • Tan S.L., Katze M.G. Biochemical and genetic evidence for complex formation between the influenza A virus NS1 protein and the interferon-induced PKR protein kinase. J. Interferon Cytokine Res. 1998, 18:757-766.
    • (1998) J. Interferon Cytokine Res. , vol.18 , pp. 757-766
    • Tan, S.L.1    Katze, M.G.2
  • 47
    • 65549164536 scopus 로고    scopus 로고
    • Influenza A virus NS1 targets the ubiquitin ligase TRIM25 to evade recognition by the host viral RNA sensor RIG-I
    • Gack M.U., et al. Influenza A virus NS1 targets the ubiquitin ligase TRIM25 to evade recognition by the host viral RNA sensor RIG-I. Cell Host Microbe 2009, 5:439-449.
    • (2009) Cell Host Microbe , vol.5 , pp. 439-449
    • Gack, M.U.1
  • 48
    • 57749169511 scopus 로고    scopus 로고
    • X-ray structure of NS1 from a highly pathogenic H5N1 influenza virus
    • Bornholdt Z.A., Prasad B.V. X-ray structure of NS1 from a highly pathogenic H5N1 influenza virus. Nature 2008, 456:985-988.
    • (2008) Nature , vol.456 , pp. 985-988
    • Bornholdt, Z.A.1    Prasad, B.V.2
  • 49
    • 59449110919 scopus 로고    scopus 로고
    • Structural basis for dsRNA recognition by NS1 protein of influenza A virus
    • Cheng A., et al. Structural basis for dsRNA recognition by NS1 protein of influenza A virus. Cell Res. 2009, 19:187-195.
    • (2009) Cell Res. , vol.19 , pp. 187-195
    • Cheng, A.1
  • 50
    • 47749143963 scopus 로고    scopus 로고
    • Structure of an avian influenza A virus NS1 protein effector domain
    • Hale B.G., et al. Structure of an avian influenza A virus NS1 protein effector domain. Virology 2008, 378:1-5.
    • (2008) Virology , vol.378 , pp. 1-5
    • Hale, B.G.1
  • 51
    • 42449154473 scopus 로고    scopus 로고
    • Poxviridae: the viruses and their replication
    • Lippincott Williams & Wilkins, D.M. Knipe (Ed.)
    • Moss B. Poxviridae: the viruses and their replication. Fields Virology 2007, 2905-2945. Lippincott Williams & Wilkins. 5th edn. D.M. Knipe (Ed.).
    • (2007) Fields Virology , pp. 2905-2945
    • Moss, B.1
  • 52
    • 70349260534 scopus 로고    scopus 로고
    • The interferon system and vaccinia virus evasion mechanisms
    • Perdiguero B., Esteban M. The interferon system and vaccinia virus evasion mechanisms. J. Interferon Cytokine Res. 2009, 29:581-598.
    • (2009) J. Interferon Cytokine Res. , vol.29 , pp. 581-598
    • Perdiguero, B.1    Esteban, M.2
  • 53
    • 0027163047 scopus 로고
    • Identification of a conserved motif that is necessary for binding of the vaccinia virus E3L gene products to double-stranded RNA
    • Chang H.W., Jacobs B.L. Identification of a conserved motif that is necessary for binding of the vaccinia virus E3L gene products to double-stranded RNA. Virology 1993, 194:537-547.
    • (1993) Virology , vol.194 , pp. 537-547
    • Chang, H.W.1    Jacobs, B.L.2
  • 54
    • 0031723958 scopus 로고    scopus 로고
    • Inhibition of double-stranded RNA-dependent protein kinase PKR by vaccinia virus E3: role of complex formation and the E3 N-terminal domain
    • Romano P.R., et al. Inhibition of double-stranded RNA-dependent protein kinase PKR by vaccinia virus E3: role of complex formation and the E3 N-terminal domain. Mol. Cell. Biol. 1998, 18:7304-7316.
    • (1998) Mol. Cell. Biol. , vol.18 , pp. 7304-7316
    • Romano, P.R.1
  • 55
    • 0027407080 scopus 로고
    • The E3L and K3L vaccinia virus gene products stimulate translation through inhibition of the double-stranded RNA-dependent protein kinase by different mechanisms
    • Davies M.V., et al. The E3L and K3L vaccinia virus gene products stimulate translation through inhibition of the double-stranded RNA-dependent protein kinase by different mechanisms. J. Virol. 1993, 67:1688-1692.
    • (1993) J. Virol. , vol.67 , pp. 1688-1692
    • Davies, M.V.1
  • 56
    • 0032502728 scopus 로고    scopus 로고
    • Vaccinia virus E3L protein is an inhibitor of the interferon (i.f.n.)-induced 2-5A synthetase enzyme
    • Rivas C., et al. Vaccinia virus E3L protein is an inhibitor of the interferon (i.f.n.)-induced 2-5A synthetase enzyme. Virology 1998, 243:406-414.
    • (1998) Virology , vol.243 , pp. 406-414
    • Rivas, C.1
  • 57
    • 0032566917 scopus 로고    scopus 로고
    • The vaccinia virus E3L gene product interacts with both the regulatory and the substrate binding regions of PKR: implications for PKR autoregulation
    • Sharp T.V., et al. The vaccinia virus E3L gene product interacts with both the regulatory and the substrate binding regions of PKR: implications for PKR autoregulation. Virology 1998, 250:302-315.
    • (1998) Virology , vol.250 , pp. 302-315
    • Sharp, T.V.1
  • 58
    • 0035950596 scopus 로고    scopus 로고
    • Vaccinia virus E3L interferon resistance protein inhibits the interferon-induced adenosine deaminase A-to-I editing activity
    • Liu Y., et al. Vaccinia virus E3L interferon resistance protein inhibits the interferon-induced adenosine deaminase A-to-I editing activity. Virology 2001, 289:378-387.
    • (2001) Virology , vol.289 , pp. 378-387
    • Liu, Y.1
  • 59
    • 0033661892 scopus 로고    scopus 로고
    • The vaccinia virus E3L protein interacts with SUMO-1 and ribosomal protein L23a in a yeast two hybrid assay
    • Rogan S., Heaphy S. The vaccinia virus E3L protein interacts with SUMO-1 and ribosomal protein L23a in a yeast two hybrid assay. Virus Genes 2000, 21:193-195.
    • (2000) Virus Genes , vol.21 , pp. 193-195
    • Rogan, S.1    Heaphy, S.2
  • 60
    • 48249105524 scopus 로고    scopus 로고
    • Vaccinia virus E3 protein prevents the antiviral action of ISG15
    • Guerra S., et al. Vaccinia virus E3 protein prevents the antiviral action of ISG15. PLoS Pathog. 2008, 4:e1000096.
    • (2008) PLoS Pathog. , vol.4
    • Guerra, S.1
  • 61
    • 67650915065 scopus 로고    scopus 로고
    • Innate immune sensing of modified vaccinia virus Ankara (MVA) is mediated by TLR2-TLR6, MDA-5 and the NALP3 inflammasome
    • Delaloye J., et al. Innate immune sensing of modified vaccinia virus Ankara (MVA) is mediated by TLR2-TLR6, MDA-5 and the NALP3 inflammasome. PLoS Pathog. 2009, 5:e1000480.
    • (2009) PLoS Pathog. , vol.5
    • Delaloye, J.1
  • 62
    • 77956275377 scopus 로고    scopus 로고
    • Inhibition of the RNA polymerase III-mediated dsDNA-sensing pathway of innate immunity by vaccinia virus protein E3
    • Valentine R., Smith G.L. Inhibition of the RNA polymerase III-mediated dsDNA-sensing pathway of innate immunity by vaccinia virus protein E3. J. Gen. Virol. 2010, 91:2221-2229.
    • (2010) J. Gen. Virol. , vol.91 , pp. 2221-2229
    • Valentine, R.1    Smith, G.L.2
  • 63
    • 67449107496 scopus 로고    scopus 로고
    • Vaccinia virus E3 suppresses expression of diverse cytokines through inhibition of the PKR, NF-kappaB, and IRF3 pathways
    • Myskiw C., et al. Vaccinia virus E3 suppresses expression of diverse cytokines through inhibition of the PKR, NF-kappaB, and IRF3 pathways. J. Virol. 2009, 83:6757-6768.
    • (2009) J. Virol. , vol.83 , pp. 6757-6768
    • Myskiw, C.1
  • 64
    • 66149111054 scopus 로고    scopus 로고
    • Protein kinase PKR-dependent activation of mitogen-activated protein kinases occurs through mitochondrial adapter IPS-1 and is antagonized by vaccinia virus E3L
    • Zhang P., et al. Protein kinase PKR-dependent activation of mitogen-activated protein kinases occurs through mitochondrial adapter IPS-1 and is antagonized by vaccinia virus E3L. J. Virol. 2009, 83:5718-5725.
    • (2009) J. Virol. , vol.83 , pp. 5718-5725
    • Zhang, P.1
  • 65
    • 70350022721 scopus 로고    scopus 로고
    • The double-stranded RNA binding domain of the vaccinia virus E3L protein inhibits both RNA- and DNA-induced activation of interferon beta
    • Marq J.B., et al. The double-stranded RNA binding domain of the vaccinia virus E3L protein inhibits both RNA- and DNA-induced activation of interferon beta. J. Biol. Chem. 2009, 284:25471-25478.
    • (2009) J. Biol. Chem. , vol.284 , pp. 25471-25478
    • Marq, J.B.1
  • 66
    • 58049190885 scopus 로고    scopus 로고
    • Induction of protein kinase PKR-dependent activation of interferon regulatory factor 3 by vaccinia virus occurs through adapter IPS-1 signaling
    • Zhang P., Samuel C.E. Induction of protein kinase PKR-dependent activation of interferon regulatory factor 3 by vaccinia virus occurs through adapter IPS-1 signaling. J. Biol. Chem. 2008, 283:34580-34587.
    • (2008) J. Biol. Chem. , vol.283 , pp. 34580-34587
    • Zhang, P.1    Samuel, C.E.2
  • 67
    • 0034710952 scopus 로고    scopus 로고
    • The Ebola virus VP35 protein functions as a type I IFN antagonist
    • Basler C.F., et al. The Ebola virus VP35 protein functions as a type I IFN antagonist. Proc. Natl. Acad. Sci. U.S.A. 2000, 97:12289-12294.
    • (2000) Proc. Natl. Acad. Sci. U.S.A. , vol.97 , pp. 12289-12294
    • Basler, C.F.1
  • 68
    • 33646748294 scopus 로고    scopus 로고
    • Ebola virus VP35 protein binds double-stranded RNA and inhibits alpha/beta interferon production induced by RIG-I signaling
    • Cardenas W.B., et al. Ebola virus VP35 protein binds double-stranded RNA and inhibits alpha/beta interferon production induced by RIG-I signaling. J. Virol. 2006, 80:5168-5178.
    • (2006) J. Virol. , vol.80 , pp. 5168-5178
    • Cardenas, W.B.1
  • 69
    • 76349125544 scopus 로고    scopus 로고
    • Structural basis for dsRNA recognition and interferon antagonism by Ebola VP35
    • Leung D.W., et al. Structural basis for dsRNA recognition and interferon antagonism by Ebola VP35. Nat. Struct. Mol. Biol. 2010, 17:165-172.
    • (2010) Nat. Struct. Mol. Biol. , vol.17 , pp. 165-172
    • Leung, D.W.1
  • 70
    • 0037744789 scopus 로고    scopus 로고
    • The Ebola virus VP35 protein inhibits activation of interferon regulatory factor 3
    • Basler C.F., et al. The Ebola virus VP35 protein inhibits activation of interferon regulatory factor 3. J. Virol. 2003, 77:7945-7956.
    • (2003) J. Virol. , vol.77 , pp. 7945-7956
    • Basler, C.F.1
  • 71
    • 63149113399 scopus 로고    scopus 로고
    • Ebola virus protein VP35 impairs the function of interferon regulatory factor-activating kinases IKKepsilon and TBK-1
    • Prins K.C., et al. Ebola virus protein VP35 impairs the function of interferon regulatory factor-activating kinases IKKepsilon and TBK-1. J. Virol. 2009, 83:3069-3077.
    • (2009) J. Virol. , vol.83 , pp. 3069-3077
    • Prins, K.C.1
  • 72
    • 5344258197 scopus 로고    scopus 로고
    • A C-terminal basic amino acid motif of Zaire ebolavirus VP35 is essential for type I interferon antagonism and displays high identity with the RNA-binding domain of another interferon antagonist, the NS1 protein of influenza A virus
    • Hartman A.L., et al. A C-terminal basic amino acid motif of Zaire ebolavirus VP35 is essential for type I interferon antagonism and displays high identity with the RNA-binding domain of another interferon antagonist, the NS1 protein of influenza A virus. Virology 2004, 328:177-184.
    • (2004) Virology , vol.328 , pp. 177-184
    • Hartman, A.L.1
  • 73
    • 58849098002 scopus 로고    scopus 로고
    • Structure of the Ebola VP35 interferon inhibitory domain
    • Leung D.W., et al. Structure of the Ebola VP35 interferon inhibitory domain. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:411-416.
    • (2009) Proc. Natl. Acad. Sci. U.S.A. , vol.106 , pp. 411-416
    • Leung, D.W.1
  • 74
    • 77649090101 scopus 로고    scopus 로고
    • Mutations abrogating VP35 interaction with double-stranded RNA render ebola virus avirulent in guinea pigs
    • Prins K.C., et al. Mutations abrogating VP35 interaction with double-stranded RNA render ebola virus avirulent in guinea pigs. J. Virol. 2010, 84:3004-3015.
    • (2010) J. Virol. , vol.84 , pp. 3004-3015
    • Prins, K.C.1
  • 75
    • 76249120477 scopus 로고    scopus 로고
    • Ebolavirus VP35 uses a bimodal strategy to bind dsRNA for innate immune suppression
    • Kimberlin C.R., et al. Ebolavirus VP35 uses a bimodal strategy to bind dsRNA for innate immune suppression. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:314-319.
    • (2010) Proc. Natl. Acad. Sci. U.S.A. , vol.107 , pp. 314-319
    • Kimberlin, C.R.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.