-
1
-
-
78751560494
-
Pathogen recognition by the innate immune system
-
Kumar H., et al. Pathogen recognition by the innate immune system. Int. Rev. Immunol. 2011, 30:16-34.
-
(2011)
Int. Rev. Immunol.
, vol.30
, pp. 16-34
-
-
Kumar, H.1
-
2
-
-
77949940198
-
Intracellular toll-like receptors
-
Blasius A.L., Beutler B. Intracellular toll-like receptors. Immunity 2010, 32:305-315.
-
(2010)
Immunity
, vol.32
, pp. 305-315
-
-
Blasius, A.L.1
Beutler, B.2
-
3
-
-
77249132637
-
Recognition of viruses by cytoplasmic sensors
-
Wilkins C., Gale M. Recognition of viruses by cytoplasmic sensors. Curr. Opin. Immunol. 2010, 22:41-47.
-
(2010)
Curr. Opin. Immunol.
, vol.22
, pp. 41-47
-
-
Wilkins, C.1
Gale, M.2
-
4
-
-
35349016235
-
Recognition of microorganisms and activation of the immune response
-
Medzhitov R. Recognition of microorganisms and activation of the immune response. Nature 2007, 449:819-826.
-
(2007)
Nature
, vol.449
, pp. 819-826
-
-
Medzhitov, R.1
-
5
-
-
77950343791
-
Pattern recognition receptors and inflammation
-
Takeuchi O., Akira S. Pattern recognition receptors and inflammation. Cell 2010, 140:805-820.
-
(2010)
Cell
, vol.140
, pp. 805-820
-
-
Takeuchi, O.1
Akira, S.2
-
6
-
-
33750984771
-
RIG-I-mediated antiviral responses to single-stranded RNA bearing 5'-phosphates
-
Pichlmair A., et al. RIG-I-mediated antiviral responses to single-stranded RNA bearing 5'-phosphates. Science 2006, 314:997-1001.
-
(2006)
Science
, vol.314
, pp. 997-1001
-
-
Pichlmair, A.1
-
7
-
-
68049089651
-
Recognition of 5' triphosphate by RIG-I helicase requires short blunt double-stranded RNA as contained in panhandle of negative-strand virus
-
Schlee M., et al. Recognition of 5' triphosphate by RIG-I helicase requires short blunt double-stranded RNA as contained in panhandle of negative-strand virus. Immunity 2009, 31:25-34.
-
(2009)
Immunity
, vol.31
, pp. 25-34
-
-
Schlee, M.1
-
8
-
-
67749133995
-
5'-Triphosphate RNA requires base-paired structures to activate antiviral signaling via RIG-I
-
Schmidt A., et al. 5'-Triphosphate RNA requires base-paired structures to activate antiviral signaling via RIG-I. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:12067-12072.
-
(2009)
Proc. Natl. Acad. Sci. U.S.A.
, vol.106
, pp. 12067-12072
-
-
Schmidt, A.1
-
9
-
-
46949092022
-
Differential recognition of double-stranded RNA by RIG-I-like receptors in antiviral immunity
-
Saito T., Gale M. Differential recognition of double-stranded RNA by RIG-I-like receptors in antiviral immunity. J. Exp. Med. 2008, 205:1523-1527.
-
(2008)
J. Exp. Med.
, vol.205
, pp. 1523-1527
-
-
Saito, T.1
Gale, M.2
-
10
-
-
70349728538
-
Activation of MDA5 requires higher-order RNA structures generated during virus infection
-
Pichlmair A., et al. Activation of MDA5 requires higher-order RNA structures generated during virus infection. J. Virol. 2009, 83:10761-10769.
-
(2009)
J. Virol.
, vol.83
, pp. 10761-10769
-
-
Pichlmair, A.1
-
11
-
-
33646342149
-
Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses
-
Kato H., et al. Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature 2006, 441:101-105.
-
(2006)
Nature
, vol.441
, pp. 101-105
-
-
Kato, H.1
-
12
-
-
23844438864
-
Shared and unique functions of the DExD/H-box helicases RIG-I, MDA5, and LGP2 in antiviral innate immunity
-
Yoneyama M., et al. Shared and unique functions of the DExD/H-box helicases RIG-I, MDA5, and LGP2 in antiviral innate immunity. J. Immunol. 2005, 175:2851-2858.
-
(2005)
J. Immunol.
, vol.175
, pp. 2851-2858
-
-
Yoneyama, M.1
-
13
-
-
46949097299
-
Length-dependent recognition of double-stranded ribonucleic acids by retinoic acid-inducible gene-I and melanoma differentiation-associated gene 5
-
Kato H., et al. Length-dependent recognition of double-stranded ribonucleic acids by retinoic acid-inducible gene-I and melanoma differentiation-associated gene 5. J. Exp. Med. 2008, 205:1601-1610.
-
(2008)
J. Exp. Med.
, vol.205
, pp. 1601-1610
-
-
Kato, H.1
-
14
-
-
58049215518
-
Approaching the RNA ligand for RIG-I?
-
Schlee M., et al. Approaching the RNA ligand for RIG-I?. Immunol. Rev. 2009, 227:66-74.
-
(2009)
Immunol. Rev.
, vol.227
, pp. 66-74
-
-
Schlee, M.1
-
15
-
-
77954242369
-
The chase for the RIG-I ligand - recent advances
-
Schlee M., Hartmann G. The chase for the RIG-I ligand - recent advances. Mol. Ther. 2010, 18:1254-1262.
-
(2010)
Mol. Ther.
, vol.18
, pp. 1254-1262
-
-
Schlee, M.1
Hartmann, G.2
-
16
-
-
26844503987
-
The RNA helicase Lgp2 inhibits TLR-independent sensing of viral replication by retinoic acid-inducible gene-I
-
Rothenfusser S., et al. The RNA helicase Lgp2 inhibits TLR-independent sensing of viral replication by retinoic acid-inducible gene-I. J. Immunol. 2005, 175:5260-5268.
-
(2005)
J. Immunol.
, vol.175
, pp. 5260-5268
-
-
Rothenfusser, S.1
-
17
-
-
33846307026
-
Regulation of innate antiviral defenses through a shared repressor domain in RIG-I and LGP2
-
Saito T., et al. Regulation of innate antiviral defenses through a shared repressor domain in RIG-I and LGP2. Proc. Natl. Acad. Sci. U.S.A. 2007, 104:582-587.
-
(2007)
Proc. Natl. Acad. Sci. U.S.A.
, vol.104
, pp. 582-587
-
-
Saito, T.1
-
18
-
-
80255141860
-
The RIG-I ATPase domain structure reveals insights into ATP-dependent antiviral signalling
-
Civril F., et al. The RIG-I ATPase domain structure reveals insights into ATP-dependent antiviral signalling. EMBO Rep. 2011, 12:1127-1134.
-
(2011)
EMBO Rep.
, vol.12
, pp. 1127-1134
-
-
Civril, F.1
-
19
-
-
80054703126
-
Structural basis for the activation of innate immune pattern-recognition receptor RIG-I by viral RNA
-
Kowalinski E., et al. Structural basis for the activation of innate immune pattern-recognition receptor RIG-I by viral RNA. Cell 2011, 147:423-435.
-
(2011)
Cell
, vol.147
, pp. 423-435
-
-
Kowalinski, E.1
-
20
-
-
80054685883
-
Structural insights into RNA recognition by RIG-I
-
Luo D., et al. Structural insights into RNA recognition by RIG-I. Cell 2011, 147:409-422.
-
(2011)
Cell
, vol.147
, pp. 409-422
-
-
Luo, D.1
-
21
-
-
81555204380
-
Structural basis of RNA recognition and activation by innate immune receptor RIG-I
-
Jiang F., et al. Structural basis of RNA recognition and activation by innate immune receptor RIG-I. Nature 2011, 479:423-427.
-
(2011)
Nature
, vol.479
, pp. 423-427
-
-
Jiang, F.1
-
22
-
-
34247341367
-
TRIM25 RING-finger E3 ubiquitin ligase is essential for RIG-I-mediated antiviral activity
-
Gack M.U., et al. TRIM25 RING-finger E3 ubiquitin ligase is essential for RIG-I-mediated antiviral activity. Nature 2007, 446:916-920.
-
(2007)
Nature
, vol.446
, pp. 916-920
-
-
Gack, M.U.1
-
23
-
-
79251550124
-
Linear ubiquitin assembly complex negatively regulates RIG-I- and TRIM25-mediated type I interferon induction
-
Inn K.S., et al. Linear ubiquitin assembly complex negatively regulates RIG-I- and TRIM25-mediated type I interferon induction. Mol. Cell 2011, 41:354-365.
-
(2011)
Mol. Cell
, vol.41
, pp. 354-365
-
-
Inn, K.S.1
-
24
-
-
77951708374
-
Reconstitution of the RIG-I pathway reveals a signaling role of unanchored polyubiquitin chains in innate immunity
-
Zeng W., et al. Reconstitution of the RIG-I pathway reveals a signaling role of unanchored polyubiquitin chains in innate immunity. Cell 2010, 141:315-330.
-
(2010)
Cell
, vol.141
, pp. 315-330
-
-
Zeng, W.1
-
25
-
-
33646592188
-
The specific and essential role of MAVS in antiviral innate immune responses
-
Sun Q., et al. The specific and essential role of MAVS in antiviral innate immune responses. Immunity 2006, 24:633-642.
-
(2006)
Immunity
, vol.24
, pp. 633-642
-
-
Sun, Q.1
-
26
-
-
34447299235
-
Orthomyxoviridae: The viruses and their replication
-
Lippincott Williams & Wilkins, D.M. Knipe (Ed.)
-
Shaw M.L., Palese P. Orthomyxoviridae: The viruses and their replication. Fields Virology 2007, 1647-1689. Lippincott Williams & Wilkins. 5th edn. D.M. Knipe (Ed.).
-
(2007)
Fields Virology
, pp. 1647-1689
-
-
Shaw, M.L.1
Palese, P.2
-
27
-
-
72949109523
-
Interplay between influenza A virus and the innate immune signaling
-
Ehrhardt C., et al. Interplay between influenza A virus and the innate immune signaling. Microbes Infect. 2010, 12:81-87.
-
(2010)
Microbes Infect.
, vol.12
, pp. 81-87
-
-
Ehrhardt, C.1
-
28
-
-
33745242372
-
Influenza virus evades innate and adaptive immunity via the NS1 protein
-
Fernandez-Sesma A., et al. Influenza virus evades innate and adaptive immunity via the NS1 protein. J. Virol. 2006, 80:6295-6304.
-
(2006)
J. Virol.
, vol.80
, pp. 6295-6304
-
-
Fernandez-Sesma, A.1
-
29
-
-
0345004816
-
Influenza A virus lacking the NS1 gene replicates in interferon-deficient systems
-
Garcia-Sastre A., et al. Influenza A virus lacking the NS1 gene replicates in interferon-deficient systems. Virology 1998, 252:324-330.
-
(1998)
Virology
, vol.252
, pp. 324-330
-
-
Garcia-Sastre, A.1
-
30
-
-
37549001315
-
The influenza virus NS1 protein: inhibitor of innate and adaptive immunity
-
Fernandez-Sesma A. The influenza virus NS1 protein: inhibitor of innate and adaptive immunity. Infect. Disord. Drug Targets 2007, 7:336-343.
-
(2007)
Infect. Disord. Drug Targets
, vol.7
, pp. 336-343
-
-
Fernandez-Sesma, A.1
-
31
-
-
0033560753
-
Influenza A virus NS1 protein targets poly(A)-binding protein II of the cellular 3'-end processing machinery
-
Chen Z., et al. Influenza A virus NS1 protein targets poly(A)-binding protein II of the cellular 3'-end processing machinery. EMBO J. 1999, 18:2273-2283.
-
(1999)
EMBO J.
, vol.18
, pp. 2273-2283
-
-
Chen, Z.1
-
32
-
-
0032086357
-
Influenza virus NS1 protein interacts with the cellular 30 kDa subunit of CPSF and inhibits 3'end formation of cellular pre-mRNAs
-
Nemeroff M.E., et al. Influenza virus NS1 protein interacts with the cellular 30 kDa subunit of CPSF and inhibits 3'end formation of cellular pre-mRNAs. Mol. Cell 1998, 1:991-1000.
-
(1998)
Mol. Cell
, vol.1
, pp. 991-1000
-
-
Nemeroff, M.E.1
-
33
-
-
33750976374
-
5'-Triphosphate RNA is the ligand for RIG-I
-
Hornung V., et al. 5'-Triphosphate RNA is the ligand for RIG-I. Science 2006, 314:994-997.
-
(2006)
Science
, vol.314
, pp. 994-997
-
-
Hornung, V.1
-
34
-
-
33846061693
-
Inhibition of retinoic acid-inducible gene I-mediated induction of beta interferon by the NS1 protein of influenza A virus
-
Mibayashi M., et al. Inhibition of retinoic acid-inducible gene I-mediated induction of beta interferon by the NS1 protein of influenza A virus. J. Virol. 2007, 81:514-524.
-
(2007)
J. Virol.
, vol.81
, pp. 514-524
-
-
Mibayashi, M.1
-
35
-
-
33947171000
-
IFNbeta induction by influenza A virus is mediated by RIG-I which is regulated by the viral NS1 protein
-
Opitz B., et al. IFNbeta induction by influenza A virus is mediated by RIG-I which is regulated by the viral NS1 protein. Cell Microbiol. 2007, 9:930-938.
-
(2007)
Cell Microbiol.
, vol.9
, pp. 930-938
-
-
Opitz, B.1
-
36
-
-
0036838725
-
The influenza A virus NS1 protein inhibits activation of Jun N-terminal kinase and AP-1 transcription factors
-
Ludwig S., et al. The influenza A virus NS1 protein inhibits activation of Jun N-terminal kinase and AP-1 transcription factors. J. Virol. 2002, 76:11166-11171.
-
(2002)
J. Virol.
, vol.76
, pp. 11166-11171
-
-
Ludwig, S.1
-
37
-
-
0033870894
-
Activation of interferon regulatory factor 3 is inhibited by the influenza A virus NS1 protein
-
Talon J., et al. Activation of interferon regulatory factor 3 is inhibited by the influenza A virus NS1 protein. J. Virol. 2000, 74:7989-7996.
-
(2000)
J. Virol.
, vol.74
, pp. 7989-7996
-
-
Talon, J.1
-
38
-
-
0345167006
-
A recombinant influenza A virus expressing an RNA-binding-defective NS1 protein induces high levels of beta interferon and is attenuated in mice
-
Donelan N.R., et al. A recombinant influenza A virus expressing an RNA-binding-defective NS1 protein induces high levels of beta interferon and is attenuated in mice. J. Virol. 2003, 77:13257-13266.
-
(2003)
J. Virol.
, vol.77
, pp. 13257-13266
-
-
Donelan, N.R.1
-
39
-
-
38349180176
-
A single-amino-acid substitution in the NS1 protein changes the pathogenicity of H5N1 avian influenza viruses in mice
-
Jiao P., et al. A single-amino-acid substitution in the NS1 protein changes the pathogenicity of H5N1 avian influenza viruses in mice. J. Virol. 2008, 82:1146-1154.
-
(2008)
J. Virol.
, vol.82
, pp. 1146-1154
-
-
Jiao, P.1
-
40
-
-
77957997708
-
Preference of RIG-I for short viral RNA molecules in infected cells revealed by next-generation sequencing
-
Baum A., et al. Preference of RIG-I for short viral RNA molecules in infected cells revealed by next-generation sequencing. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:16303-16308.
-
(2010)
Proc. Natl. Acad. Sci. U.S.A.
, vol.107
, pp. 16303-16308
-
-
Baum, A.1
-
41
-
-
0034044065
-
Influenza virus NS1 protein counteracts PKR-mediated inhibition of replication
-
Bergmann M., et al. Influenza virus NS1 protein counteracts PKR-mediated inhibition of replication. J. Virol. 2000, 74:6203-6206.
-
(2000)
J. Virol.
, vol.74
, pp. 6203-6206
-
-
Bergmann, M.1
-
42
-
-
0032980412
-
Mutant influenza viruses with a defective NS1 protein cannot block the activation of PKR in infected cells
-
Hatada E., et al. Mutant influenza viruses with a defective NS1 protein cannot block the activation of PKR in infected cells. J. Virol. 1999, 73:2425-2433.
-
(1999)
J. Virol.
, vol.73
, pp. 2425-2433
-
-
Hatada, E.1
-
43
-
-
33646517711
-
Binding of the influenza A virus NS1 protein to PKR mediates the inhibition of its activation by either PACT or double-stranded RNA
-
Li S., et al. Binding of the influenza A virus NS1 protein to PKR mediates the inhibition of its activation by either PACT or double-stranded RNA. Virology 2006, 349:13-21.
-
(2006)
Virology
, vol.349
, pp. 13-21
-
-
Li, S.1
-
44
-
-
0028847292
-
Binding of the influenza virus NS1 protein to double-stranded RNA inhibits the activation of the protein kinase that phosphorylates the elF-2 translation initiation factor
-
Lu Y., et al. Binding of the influenza virus NS1 protein to double-stranded RNA inhibits the activation of the protein kinase that phosphorylates the elF-2 translation initiation factor. Virology 1995, 214:222-228.
-
(1995)
Virology
, vol.214
, pp. 222-228
-
-
Lu, Y.1
-
45
-
-
33646478272
-
The primary function of RNA binding by the influenza A virus NS1 protein in infected cells: Inhibiting the 2'-5' oligo(A) synthetase/RNase L pathway
-
Min J.Y., Krug R.M. The primary function of RNA binding by the influenza A virus NS1 protein in infected cells: Inhibiting the 2'-5' oligo(A) synthetase/RNase L pathway. Proc. Natl. Acad. Sci. U.S.A. 2006, 103:7100-7105.
-
(2006)
Proc. Natl. Acad. Sci. U.S.A.
, vol.103
, pp. 7100-7105
-
-
Min, J.Y.1
Krug, R.M.2
-
46
-
-
0031670374
-
Biochemical and genetic evidence for complex formation between the influenza A virus NS1 protein and the interferon-induced PKR protein kinase
-
Tan S.L., Katze M.G. Biochemical and genetic evidence for complex formation between the influenza A virus NS1 protein and the interferon-induced PKR protein kinase. J. Interferon Cytokine Res. 1998, 18:757-766.
-
(1998)
J. Interferon Cytokine Res.
, vol.18
, pp. 757-766
-
-
Tan, S.L.1
Katze, M.G.2
-
47
-
-
65549164536
-
Influenza A virus NS1 targets the ubiquitin ligase TRIM25 to evade recognition by the host viral RNA sensor RIG-I
-
Gack M.U., et al. Influenza A virus NS1 targets the ubiquitin ligase TRIM25 to evade recognition by the host viral RNA sensor RIG-I. Cell Host Microbe 2009, 5:439-449.
-
(2009)
Cell Host Microbe
, vol.5
, pp. 439-449
-
-
Gack, M.U.1
-
48
-
-
57749169511
-
X-ray structure of NS1 from a highly pathogenic H5N1 influenza virus
-
Bornholdt Z.A., Prasad B.V. X-ray structure of NS1 from a highly pathogenic H5N1 influenza virus. Nature 2008, 456:985-988.
-
(2008)
Nature
, vol.456
, pp. 985-988
-
-
Bornholdt, Z.A.1
Prasad, B.V.2
-
49
-
-
59449110919
-
Structural basis for dsRNA recognition by NS1 protein of influenza A virus
-
Cheng A., et al. Structural basis for dsRNA recognition by NS1 protein of influenza A virus. Cell Res. 2009, 19:187-195.
-
(2009)
Cell Res.
, vol.19
, pp. 187-195
-
-
Cheng, A.1
-
50
-
-
47749143963
-
Structure of an avian influenza A virus NS1 protein effector domain
-
Hale B.G., et al. Structure of an avian influenza A virus NS1 protein effector domain. Virology 2008, 378:1-5.
-
(2008)
Virology
, vol.378
, pp. 1-5
-
-
Hale, B.G.1
-
51
-
-
42449154473
-
Poxviridae: the viruses and their replication
-
Lippincott Williams & Wilkins, D.M. Knipe (Ed.)
-
Moss B. Poxviridae: the viruses and their replication. Fields Virology 2007, 2905-2945. Lippincott Williams & Wilkins. 5th edn. D.M. Knipe (Ed.).
-
(2007)
Fields Virology
, pp. 2905-2945
-
-
Moss, B.1
-
52
-
-
70349260534
-
The interferon system and vaccinia virus evasion mechanisms
-
Perdiguero B., Esteban M. The interferon system and vaccinia virus evasion mechanisms. J. Interferon Cytokine Res. 2009, 29:581-598.
-
(2009)
J. Interferon Cytokine Res.
, vol.29
, pp. 581-598
-
-
Perdiguero, B.1
Esteban, M.2
-
53
-
-
0027163047
-
Identification of a conserved motif that is necessary for binding of the vaccinia virus E3L gene products to double-stranded RNA
-
Chang H.W., Jacobs B.L. Identification of a conserved motif that is necessary for binding of the vaccinia virus E3L gene products to double-stranded RNA. Virology 1993, 194:537-547.
-
(1993)
Virology
, vol.194
, pp. 537-547
-
-
Chang, H.W.1
Jacobs, B.L.2
-
54
-
-
0031723958
-
Inhibition of double-stranded RNA-dependent protein kinase PKR by vaccinia virus E3: role of complex formation and the E3 N-terminal domain
-
Romano P.R., et al. Inhibition of double-stranded RNA-dependent protein kinase PKR by vaccinia virus E3: role of complex formation and the E3 N-terminal domain. Mol. Cell. Biol. 1998, 18:7304-7316.
-
(1998)
Mol. Cell. Biol.
, vol.18
, pp. 7304-7316
-
-
Romano, P.R.1
-
55
-
-
0027407080
-
The E3L and K3L vaccinia virus gene products stimulate translation through inhibition of the double-stranded RNA-dependent protein kinase by different mechanisms
-
Davies M.V., et al. The E3L and K3L vaccinia virus gene products stimulate translation through inhibition of the double-stranded RNA-dependent protein kinase by different mechanisms. J. Virol. 1993, 67:1688-1692.
-
(1993)
J. Virol.
, vol.67
, pp. 1688-1692
-
-
Davies, M.V.1
-
56
-
-
0032502728
-
Vaccinia virus E3L protein is an inhibitor of the interferon (i.f.n.)-induced 2-5A synthetase enzyme
-
Rivas C., et al. Vaccinia virus E3L protein is an inhibitor of the interferon (i.f.n.)-induced 2-5A synthetase enzyme. Virology 1998, 243:406-414.
-
(1998)
Virology
, vol.243
, pp. 406-414
-
-
Rivas, C.1
-
57
-
-
0032566917
-
The vaccinia virus E3L gene product interacts with both the regulatory and the substrate binding regions of PKR: implications for PKR autoregulation
-
Sharp T.V., et al. The vaccinia virus E3L gene product interacts with both the regulatory and the substrate binding regions of PKR: implications for PKR autoregulation. Virology 1998, 250:302-315.
-
(1998)
Virology
, vol.250
, pp. 302-315
-
-
Sharp, T.V.1
-
58
-
-
0035950596
-
Vaccinia virus E3L interferon resistance protein inhibits the interferon-induced adenosine deaminase A-to-I editing activity
-
Liu Y., et al. Vaccinia virus E3L interferon resistance protein inhibits the interferon-induced adenosine deaminase A-to-I editing activity. Virology 2001, 289:378-387.
-
(2001)
Virology
, vol.289
, pp. 378-387
-
-
Liu, Y.1
-
59
-
-
0033661892
-
The vaccinia virus E3L protein interacts with SUMO-1 and ribosomal protein L23a in a yeast two hybrid assay
-
Rogan S., Heaphy S. The vaccinia virus E3L protein interacts with SUMO-1 and ribosomal protein L23a in a yeast two hybrid assay. Virus Genes 2000, 21:193-195.
-
(2000)
Virus Genes
, vol.21
, pp. 193-195
-
-
Rogan, S.1
Heaphy, S.2
-
60
-
-
48249105524
-
Vaccinia virus E3 protein prevents the antiviral action of ISG15
-
Guerra S., et al. Vaccinia virus E3 protein prevents the antiviral action of ISG15. PLoS Pathog. 2008, 4:e1000096.
-
(2008)
PLoS Pathog.
, vol.4
-
-
Guerra, S.1
-
61
-
-
67650915065
-
Innate immune sensing of modified vaccinia virus Ankara (MVA) is mediated by TLR2-TLR6, MDA-5 and the NALP3 inflammasome
-
Delaloye J., et al. Innate immune sensing of modified vaccinia virus Ankara (MVA) is mediated by TLR2-TLR6, MDA-5 and the NALP3 inflammasome. PLoS Pathog. 2009, 5:e1000480.
-
(2009)
PLoS Pathog.
, vol.5
-
-
Delaloye, J.1
-
62
-
-
77956275377
-
Inhibition of the RNA polymerase III-mediated dsDNA-sensing pathway of innate immunity by vaccinia virus protein E3
-
Valentine R., Smith G.L. Inhibition of the RNA polymerase III-mediated dsDNA-sensing pathway of innate immunity by vaccinia virus protein E3. J. Gen. Virol. 2010, 91:2221-2229.
-
(2010)
J. Gen. Virol.
, vol.91
, pp. 2221-2229
-
-
Valentine, R.1
Smith, G.L.2
-
63
-
-
67449107496
-
Vaccinia virus E3 suppresses expression of diverse cytokines through inhibition of the PKR, NF-kappaB, and IRF3 pathways
-
Myskiw C., et al. Vaccinia virus E3 suppresses expression of diverse cytokines through inhibition of the PKR, NF-kappaB, and IRF3 pathways. J. Virol. 2009, 83:6757-6768.
-
(2009)
J. Virol.
, vol.83
, pp. 6757-6768
-
-
Myskiw, C.1
-
64
-
-
66149111054
-
Protein kinase PKR-dependent activation of mitogen-activated protein kinases occurs through mitochondrial adapter IPS-1 and is antagonized by vaccinia virus E3L
-
Zhang P., et al. Protein kinase PKR-dependent activation of mitogen-activated protein kinases occurs through mitochondrial adapter IPS-1 and is antagonized by vaccinia virus E3L. J. Virol. 2009, 83:5718-5725.
-
(2009)
J. Virol.
, vol.83
, pp. 5718-5725
-
-
Zhang, P.1
-
65
-
-
70350022721
-
The double-stranded RNA binding domain of the vaccinia virus E3L protein inhibits both RNA- and DNA-induced activation of interferon beta
-
Marq J.B., et al. The double-stranded RNA binding domain of the vaccinia virus E3L protein inhibits both RNA- and DNA-induced activation of interferon beta. J. Biol. Chem. 2009, 284:25471-25478.
-
(2009)
J. Biol. Chem.
, vol.284
, pp. 25471-25478
-
-
Marq, J.B.1
-
66
-
-
58049190885
-
Induction of protein kinase PKR-dependent activation of interferon regulatory factor 3 by vaccinia virus occurs through adapter IPS-1 signaling
-
Zhang P., Samuel C.E. Induction of protein kinase PKR-dependent activation of interferon regulatory factor 3 by vaccinia virus occurs through adapter IPS-1 signaling. J. Biol. Chem. 2008, 283:34580-34587.
-
(2008)
J. Biol. Chem.
, vol.283
, pp. 34580-34587
-
-
Zhang, P.1
Samuel, C.E.2
-
67
-
-
0034710952
-
The Ebola virus VP35 protein functions as a type I IFN antagonist
-
Basler C.F., et al. The Ebola virus VP35 protein functions as a type I IFN antagonist. Proc. Natl. Acad. Sci. U.S.A. 2000, 97:12289-12294.
-
(2000)
Proc. Natl. Acad. Sci. U.S.A.
, vol.97
, pp. 12289-12294
-
-
Basler, C.F.1
-
68
-
-
33646748294
-
Ebola virus VP35 protein binds double-stranded RNA and inhibits alpha/beta interferon production induced by RIG-I signaling
-
Cardenas W.B., et al. Ebola virus VP35 protein binds double-stranded RNA and inhibits alpha/beta interferon production induced by RIG-I signaling. J. Virol. 2006, 80:5168-5178.
-
(2006)
J. Virol.
, vol.80
, pp. 5168-5178
-
-
Cardenas, W.B.1
-
69
-
-
76349125544
-
Structural basis for dsRNA recognition and interferon antagonism by Ebola VP35
-
Leung D.W., et al. Structural basis for dsRNA recognition and interferon antagonism by Ebola VP35. Nat. Struct. Mol. Biol. 2010, 17:165-172.
-
(2010)
Nat. Struct. Mol. Biol.
, vol.17
, pp. 165-172
-
-
Leung, D.W.1
-
70
-
-
0037744789
-
The Ebola virus VP35 protein inhibits activation of interferon regulatory factor 3
-
Basler C.F., et al. The Ebola virus VP35 protein inhibits activation of interferon regulatory factor 3. J. Virol. 2003, 77:7945-7956.
-
(2003)
J. Virol.
, vol.77
, pp. 7945-7956
-
-
Basler, C.F.1
-
71
-
-
63149113399
-
Ebola virus protein VP35 impairs the function of interferon regulatory factor-activating kinases IKKepsilon and TBK-1
-
Prins K.C., et al. Ebola virus protein VP35 impairs the function of interferon regulatory factor-activating kinases IKKepsilon and TBK-1. J. Virol. 2009, 83:3069-3077.
-
(2009)
J. Virol.
, vol.83
, pp. 3069-3077
-
-
Prins, K.C.1
-
72
-
-
5344258197
-
A C-terminal basic amino acid motif of Zaire ebolavirus VP35 is essential for type I interferon antagonism and displays high identity with the RNA-binding domain of another interferon antagonist, the NS1 protein of influenza A virus
-
Hartman A.L., et al. A C-terminal basic amino acid motif of Zaire ebolavirus VP35 is essential for type I interferon antagonism and displays high identity with the RNA-binding domain of another interferon antagonist, the NS1 protein of influenza A virus. Virology 2004, 328:177-184.
-
(2004)
Virology
, vol.328
, pp. 177-184
-
-
Hartman, A.L.1
-
73
-
-
58849098002
-
Structure of the Ebola VP35 interferon inhibitory domain
-
Leung D.W., et al. Structure of the Ebola VP35 interferon inhibitory domain. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:411-416.
-
(2009)
Proc. Natl. Acad. Sci. U.S.A.
, vol.106
, pp. 411-416
-
-
Leung, D.W.1
-
74
-
-
77649090101
-
Mutations abrogating VP35 interaction with double-stranded RNA render ebola virus avirulent in guinea pigs
-
Prins K.C., et al. Mutations abrogating VP35 interaction with double-stranded RNA render ebola virus avirulent in guinea pigs. J. Virol. 2010, 84:3004-3015.
-
(2010)
J. Virol.
, vol.84
, pp. 3004-3015
-
-
Prins, K.C.1
-
75
-
-
76249120477
-
Ebolavirus VP35 uses a bimodal strategy to bind dsRNA for innate immune suppression
-
Kimberlin C.R., et al. Ebolavirus VP35 uses a bimodal strategy to bind dsRNA for innate immune suppression. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:314-319.
-
(2010)
Proc. Natl. Acad. Sci. U.S.A.
, vol.107
, pp. 314-319
-
-
Kimberlin, C.R.1
|