메뉴 건너뛰기




Volumn 16, Issue 10, 2011, Pages 8368-8401

Microfluidic devices: Useful tools for bioprocess intensification

Author keywords

Bioprocess intensification; Microfluidic devices; Modeling and simulation

Indexed keywords

BIOCATALYSIS; BIOREACTOR; BIOTECHNOLOGY; HYDRODYNAMICS; INSTRUMENTATION; MICROFLUIDIC ANALYSIS; MICROFLUIDICS; REVIEW;

EID: 80054963800     PISSN: None     EISSN: 14203049     Source Type: Journal    
DOI: 10.3390/molecules16108368     Document Type: Review
Times cited : (86)

References (198)
  • 1
    • 67349243537 scopus 로고    scopus 로고
    • The locks and keys to industrial biotechnology
    • Wohlgemuth, R. The locks and keys to industrial biotechnology. New Biotechnol. 2009, 25, 204-213.
    • (2009) New Biotechnol. , vol.25 , pp. 204-213
    • Wohlgemuth, R.1
  • 3
    • 77954658356 scopus 로고    scopus 로고
    • Process intensification: A perspective on process synthesis
    • Lutze, P.; Gani, R.; Woodley, J. M. Process intensification: A perspective on process synthesis. Chem. Eng. Process. 2010, 49, 547-558.
    • (2010) Chem. Eng. Process. , vol.49 , pp. 547-558
    • Lutze, P.1    Gani, R.2    Woodley, J.M.3
  • 4
    • 15944429349 scopus 로고    scopus 로고
    • Process intensification by miniaturization
    • DOI 10.1002/ceat.200407026
    • Charpentier, J.-C. Process intensification by miniaturization. Chem. Eng. Technol. 2005, 28, 255-258. (Pubitemid 40435941)
    • (2005) Chemical Engineering and Technology , vol.28 , Issue.3 , pp. 255-258
    • Charpentier, J.-C.1
  • 6
    • 80054921989 scopus 로고    scopus 로고
    • Process intensification through microreaction technology
    • Stankiewicz, A., Moulijn, J. A., Eds.; Marcel Dekker, Inc.: New York, NY, USA
    • Ehrfeld, W. Process Intensification Through Microreaction Technology. In Re-engineering the Chemical Process Plant-Process Intensification; Stankiewicz, A., Moulijn, J. A., Eds.; Marcel Dekker, Inc.: New York, NY, USA, 2007; pp. 155-175.
    • (2007) Re-engineering the Chemical Process Plant-process Intensification , pp. 155-175
    • Ehrfeld, W.1
  • 7
    • 84891017590 scopus 로고    scopus 로고
    • Industrial microreactor process development up to production
    • Wirth, T., Ed.; Wiley-VCH: Weinheim, Germany
    • Hessel, V.; Läb, P.; Läwe, H. Industrial microreactor process development up to production. In Microreactors in Organic Synthesis and Catalysis; Wirth, T., Ed.; Wiley-VCH: Weinheim, Germany, 2008; pp. 211-275.
    • (2008) Microreactors in Organic Synthesis and Catalysis , pp. 211-275
    • Hessel, V.1    Läb, P.2    Läwe, H.3
  • 8
    • 74549122023 scopus 로고    scopus 로고
    • Process intensification through microreactor application
    • Pohar, A.; Plazl, I. Process Intensification through Microreactor Application. Chem. Biochem. Eng. Q. 2009, 23, 537-544.
    • (2009) Chem. Biochem. Eng. Q. , vol.23 , pp. 537-544
    • Pohar, A.1    Plazl, I.2
  • 9
    • 44049108894 scopus 로고    scopus 로고
    • Micro biochemical engineering to accelerate the design of industrial-scale downstream processes for biopharmaceutical proteins
    • DOI 10.1002/bit.21788
    • Titchener-Hooker, N. J.; Dunnill, P.; Hoare, M. Micro biochemical engineering to accelerate the design of industrial-scale downstream processes for biopharmaceutical proteins. Biotechnol. Bioeng. 2008, 100, 473-487. (Pubitemid 351792924)
    • (2008) Biotechnology and Bioengineering , vol.100 , Issue.3 , pp. 473-487
    • Titchener-Hooker, N.J.1    Dunnill, P.2    Hoare, M.3
  • 10
    • 35548954272 scopus 로고    scopus 로고
    • Process intensification: History, philosophy, principles
    • Stankiewicz, A., Moulijn, J. A., Eds.; Marcel Dekker, Inc.: New York, NY, USA
    • Stankiewicz, A.; Drinkenburg, A. A. H. Process Intensification: History, Philosophy, Principles. In Re-engineering the Chemical Process Plant-Process Intensification; Stankiewicz, A., Moulijn, J. A., Eds.; Marcel Dekker, Inc.: New York, NY, USA, 2007; pp. 1-28.
    • (2007) Re-engineering the Chemical Process Plant-process Intensification , pp. 1-28
    • Stankiewicz, A.1    Drinkenburg, A.A.H.2
  • 11
    • 47049113735 scopus 로고    scopus 로고
    • Microscale and nanoscale process systems engineering: Challenge and progress
    • Yang, Y.-Q. Microscale and Nanoscale Process Systems Engineering: Challenge and Progress. Chin. J. Proc. Eng. 2008, 8, 616-624.
    • (2008) Chin. J. Proc. Eng. , vol.8 , pp. 616-624
    • Yang, Y.-Q.1
  • 12
    • 79959316650 scopus 로고    scopus 로고
    • Biotransformations in microstructured reactors: More than flowing with the stream?
    • and references therein
    • Bolivar, J. M.; Wiesbauer, J.; Nidetzky, B. Biotransformations in microstructured reactors: More than flowing with the stream? Trends Biotechnol. 2011, 29, 333-342 and references therein.
    • (2011) Trends Biotechnol. , vol.29 , pp. 333-342
    • Bolivar, J.M.1    Wiesbauer, J.2    Nidetzky, B.3
  • 13
    • 77958171527 scopus 로고    scopus 로고
    • Integrated microreactors for reaction automation: New approaches to reaction development
    • and references therein
    • McMullen, J. P.; Jensen, K. F. Integrated Microreactors for Reaction Automation: New Approaches to Reaction Development. Annu. Rev. Anal. Chem. 2010, 3, 19-42 and references therein.
    • (2010) Annu. Rev. Anal. Chem. , vol.3 , pp. 19-42
    • McMullen, J.P.1    Jensen, K.F.2
  • 16
    • 77950900004 scopus 로고    scopus 로고
    • Miniaturization in biocatalysis
    • Fernandes, P. Miniaturization in biocatalysis. Int. J. Mol. Sci. 2010, 11, 858-879.
    • (2010) Int. J. Mol. Sci. , vol.11 , pp. 858-879
    • Fernandes, P.1
  • 18
    • 60349128544 scopus 로고    scopus 로고
    • Microstructural reactors: Concept, development and application
    • Borovinskayaa, E. S.; Reshetilovskii, V. P. Microstructural Reactors: Concept, Development and Application. Russ. J. Appl. Chem. 2008, 81, 2211-2231.
    • (2008) Russ. J. Appl. Chem. , vol.81 , pp. 2211-2231
    • Borovinskayaa, E.S.1    Reshetilovskii, V.P.2
  • 19
    • 0036498804 scopus 로고    scopus 로고
    • Microfabricated devices in biotechnology and biochemical processing
    • DOI 10.1016/S0167-7799(02)01905-4, PII S0167779901019059
    • Chován, T.; Guttman, A. Microfabricated devices in biotechnology and biochemical Processing. Trends Biotechnol. 2002, 20, 116-122. (Pubitemid 34158984)
    • (2002) Trends in Biotechnology , vol.20 , Issue.3 , pp. 116-122
    • Chovan, T.1    Guttman, A.2
  • 20
    • 36048942311 scopus 로고    scopus 로고
    • Microreactor technology and process miniaturization for catalytic reactions-A perspective on recent developments and emerging technologies
    • DOI 10.1016/j.ces.2007.09.021, PII S0009250907007440, 8th International Conference on Gas-Liquid and Gas-Liquid-Solid Reactor Engineering
    • Mills, P. L.; Quiram, D. J.; Ryley, J. F. Microreactor technology and process miniaturization for catalytic reactions-A perspective on recent developments and emerging technologies. Chem. Eng. Sci. 2007, 62, 6992-7010. (Pubitemid 350102525)
    • (2007) Chemical Engineering Science , vol.62 , Issue.24 , pp. 6992-7010
    • Mills, P.L.1    Quiram, D.J.2    Ryley, J.F.3
  • 22
    • 25644439241 scopus 로고    scopus 로고
    • Microfluidic relief for transport limitations
    • Stroock, A. D.; Wheeler, T. D.; Kirtland, J. Microfluidic Relief for Transport Limitations. BioTechniques 2005, 39, 159-162.
    • (2005) BioTechniques , vol.39 , pp. 159-162
    • Stroock, A.D.1    Wheeler, T.D.2    Kirtland, J.3
  • 23
    • 24944498780 scopus 로고    scopus 로고
    • Microfluidics: Fluid physics at the nanoliter scale
    • DOI 10.1103/RevModPhys.77.977
    • Squires, T. M.; Quake, S. R. Microfluidics: Fluid physics at the nanoliter scale. Rev. Mod. Phys. 2005, 77, 977-1026. (Pubitemid 43272528)
    • (2005) Reviews of Modern Physics , vol.77 , Issue.3 , pp. 977-1026
    • Squires, T.M.1    Quake, S.R.2
  • 24
    • 38449122678 scopus 로고    scopus 로고
    • Fundamental principles and applications of microfluidic systems
    • DOI 10.2741/2883
    • Ong, S.-E.; Zhang, S.; Du, H.; Fu, Y. Fundamental principles and applications of microfluidic systems. Front. Biosci. 2008, 13, 2757-2773. (Pubitemid 351611607)
    • (2008) Frontiers in Bioscience , vol.13 , Issue.7 , pp. 2757-2773
    • Ong, S.-E.1    Zhang, S.2    Du, H.3    Fu, Y.4
  • 26
    • 34548152794 scopus 로고    scopus 로고
    • Multiphase flow in microfluidic systems - Control and applications of droplets and interfaces
    • DOI 10.1016/j.cis.2007.03.001, PII S0001868607000590
    • Shui, L.; Eijkel, J. C. T.; van den Berg, A. Multiphase flow in microfluidic systems-Control and applications of droplets and interfaces. Adv. Colloid Interface Sci. 2007, 133, 35-49 and references therein. (Pubitemid 47304430)
    • (2007) Advances in Colloid and Interface Science , vol.133 , Issue.1 , pp. 35-49
    • Shui, L.1    Eijkel, J.C.T.2    Van Den Berg, A.3
  • 27
    • 70349471035 scopus 로고    scopus 로고
    • Microchemical systems for continuous-flow synthesis
    • and references therein
    • Hartman, R. L.; Jensen, K. F. Microchemical systems for continuous-flow synthesis. Lab Chip 2009, 9, 2495-2507 and references therein.
    • (2009) Lab Chip , vol.9 , pp. 2495-2507
    • Hartman, R.L.1    Jensen, K.F.2
  • 28
    • 85023073629 scopus 로고    scopus 로고
    • Microreactors with electrical fields
    • Agiral, A.; Gardeniers, H. J. G. E. Microreactors with Electrical Fields. Adv. Chem. Eng. 2010, 38, 37-102.
    • (2010) Adv. Chem. Eng. , vol.38 , pp. 37-102
    • Agiral, A.1    Gardeniers, H.J.G.E.2
  • 29
    • 34547663682 scopus 로고    scopus 로고
    • Possibilities of process intensification using microwaves applied to catalytic microreactors
    • DOI 10.1016/j.cep.2007.05.021, PII S0255270107001912
    • Cecilia, R.; Kunz, U.; Turek, T. Possibilities of process intensification using microwaves applied to catalytic microreactors. Chem. Eng. Proc. 2007, 46, 870-881 (Pubitemid 47211501)
    • (2007) Chemical Engineering and Processing: Process Intensification , vol.46 , Issue.SPEC. ISS. 9 , pp. 870-881
    • Cecilia, R.1    Kunz, U.2    Turek, T.3
  • 30
    • 17644383311 scopus 로고    scopus 로고
    • Bioprocess intensification in flow-through monolithic microbioreactors with immobilized bacteria
    • DOI 10.1002/bit.20376
    • Akay, G.; Erhan, E.; Keskinler, B. Bioprocess Intensification in Flow-Through Monolithic Microbioreactors with Immobilized Bacteria. Biotechnol. Bioeng. 2005, 90, 180-190 (Pubitemid 40571478)
    • (2005) Biotechnology and Bioengineering , vol.90 , Issue.2 , pp. 180-190
    • Akay, G.1    Erhan, E.2    Keskinler, B.3
  • 31
    • 39749088833 scopus 로고    scopus 로고
    • Interactions of electrical fields with fluids:laboratory-on-a-chip applications
    • DOI 10.1049/iet-nbt:20070023
    • Wu J. Interactions of electrical fields with fluids: laboratory-on-a-chip applications. IET Nanobiotechnol. 2008, 2, 14-27. (Pubitemid 351310744)
    • (2008) IET Nanobiotechnology , vol.2 , Issue.1 , pp. 14-27
    • Wu, J.1
  • 32
  • 33
    • 54249099667 scopus 로고    scopus 로고
    • Laminar to turbulent transition and heat transfer in a microreactor: Mathematical modeling and experiments
    • Pohar, A.; Plazl, I. Laminar to Turbulent Transition and Heat Transfer in a Microreactor: Mathematical Modeling and Experiments. Ind. Eng. Chem. Res. 2008, 47, 7447-7455.
    • (2008) Ind. Eng. Chem. Res. , vol.47 , pp. 7447-7455
    • Pohar, A.1    Plazl, I.2
  • 35
    • 0037647579 scopus 로고    scopus 로고
    • On gas-liquid two-phase flow regimes in microchannels
    • DOI 10.1016/S0301-9322(03)00043-0, PII S0301932203000430
    • Akbar, M. K.; Plummer, D. A.; Ghiaasiaan, S. M. On gas-liquid two-phase flow regimes in microchannels. Int. J. Multiphase Flow 2003, 29, 855-865. (Pubitemid 36650233)
    • (2003) International Journal of Multiphase Flow , vol.29 , Issue.5 , pp. 855-865
    • Akbar, M.K.1    Plummer, D.A.2    Ghiaasiaan, S.M.3
  • 36
    • 67349158778 scopus 로고    scopus 로고
    • On the CFD modelling of Taylor flow in microchannels
    • Gupta, R.; Fletcher, D. F.; Haynes, B. S. On the CFD modelling of Taylor flow in microchannels. Chem. Eng. Sci. 2009, 64, 2941-2950.
    • (2009) Chem. Eng. Sci. , vol.64 , pp. 2941-2950
    • Gupta, R.1    Fletcher, D.F.2    Haynes, B.S.3
  • 37
    • 77954281019 scopus 로고    scopus 로고
    • Influence of the contact angle on two-phase flow in microreactors for nitrobenzene-hydrogen-stainless steel/carbon
    • Özkan, F.; Hecht, K.; Pfeifer, P.; Schubert, K.; Kraushaar-Czarnetzki, B. Influence of the contact angle on two-phase flow in microreactors for nitrobenzene-hydrogen-stainless steel/carbon. Surf. Interf. Anal. 2010, 42, 1122-1127.
    • (2010) Surf. Interf. Anal. , vol.42 , pp. 1122-1127
    • Özkan, F.1    Hecht, K.2    Pfeifer, P.3    Schubert, K.4    Kraushaar-Czarnetzki, B.5
  • 38
    • 76049113954 scopus 로고    scopus 로고
    • Numerical modeling and experimental investigation of gas-liquid slug formation in a microchannel T-junction
    • Santos, R. M.; Kawaji, M. Numerical modeling and experimental investigation of gas-liquid slug formation in a microchannel T-junction. Int. J. Multiphase Flow 2010, 36, 314-323.
    • (2010) Int. J. Multiphase Flow , vol.36 , pp. 314-323
    • Santos, R.M.1    Kawaji, M.2
  • 39
    • 54449085294 scopus 로고    scopus 로고
    • Segmented gas-liquid flow characterization in rectangular microchannels
    • Fries, D. M.; Trachsel, F.; von Rohr, P. R. Segmented gas-liquid flow characterization in rectangular microchannels. Int. J. Multiphase Flow 2008, 34, 1108-1118.
    • (2008) Int. J. Multiphase Flow , vol.34 , pp. 1108-1118
    • Fries, D.M.1    Trachsel, F.2    Von Rohr, P.R.3
  • 40
    • 79951566390 scopus 로고    scopus 로고
    • Single-phase fluid flow and mixing in microchannels
    • Kumar, V.; Paraschivoiu, M.; Nigam, K. D. P. Single-phase fluid flow and mixing in microchannels. Chem. Eng. Sci. 2011, 66, 1329-1373.
    • (2011) Chem. Eng. Sci. , vol.66 , pp. 1329-1373
    • Kumar, V.1    Paraschivoiu, M.2    Nigam, K.D.P.3
  • 41
    • 67849085070 scopus 로고    scopus 로고
    • Microstructured reactors for multiphase reactions: State of the art
    • Kiwi-Minsker, L.; Kashid, M. N. Microstructured Reactors for Multiphase Reactions: State of the Art. Ind. Eng. Chem. Res. 2009, 48, 6465-6485.
    • (2009) Ind. Eng. Chem. Res. , vol.48 , pp. 6465-6485
    • Kiwi-Minsker, L.1    Kashid, M.N.2
  • 42
    • 54849413967 scopus 로고    scopus 로고
    • Correlations of droplet formation in T-junction microfluidic devices: From squeezing to dripping
    • Xu, J.; Li, S.; Tan, J.; Luo, G. Correlations of droplet formation in T-junction microfluidic devices: from squeezing to dripping. Microfluid. Nanofluid. 2008, 5, 711-717.
    • (2008) Microfluid. Nanofluid. , vol.5 , pp. 711-717
    • Xu, J.1    Li, S.2    Tan, J.3    Luo, G.4
  • 43
    • 79958803166 scopus 로고    scopus 로고
    • Stability of bifluid jets in microchannels
    • Colin, T.; Tancogne, S. Stability of bifluid jets in microchannels. Eur. J. Mechanics - B/Fluids 2011, 30, 409-420.
    • (2011) Eur. J. Mechanics - B/Fluids , vol.30 , pp. 409-420
    • Colin, T.1    Tancogne, S.2
  • 44
    • 39149103994 scopus 로고    scopus 로고
    • Applications of microfluidic devices in food engineering
    • DOI 10.1007/s11483-007-9043-6
    • Skurtys, O.; Aguilera, J. Applications of Microfluidic Devices in Food Engineering. Food Biophys. 2008, 3, 1-15. (Pubitemid 351257589)
    • (2008) Food Biophysics , vol.3 , Issue.1 , pp. 1-15
    • Skurtys, O.1    Aguilera, J.M.2
  • 46
    • 77953617878 scopus 로고    scopus 로고
    • Effect of geometry on droplet formation in the squeezing regime in a microfluidic T-junction
    • Gupta, A.; Kumar, R. Effect of geometry on droplet formation in the squeezing regime in a microfluidic T-junction. Microfluid. Nanofluid. 2010, 8, 799-812.
    • (2010) Microfluid. Nanofluid. , vol.8 , pp. 799-812
    • Gupta, A.1    Kumar, R.2
  • 47
    • 11144300758 scopus 로고    scopus 로고
    • Theoretische und experimentelle Untersuchungen der Mischvorgänge in T-förmigen Mikroreaktoren - Teil 3: Konvektives Mischen und chemische Reaktionen
    • DOI 10.1002/cite.200407016
    • Kockmann, N.; Engler, M.; Woias, P. Theoretische und experimentelle Untersuchungen der Mischvorgänge in T-färmigen Mikroreaktoren - Teil 3: Konvektives Mischen und chemische Reaktionen. Chem. Ing. Tech. 2004, 76, 1777-1783. (Pubitemid 40026387)
    • (2004) Chemie-Ingenieur-Technik , vol.76 , Issue.12 , pp. 1777-1783
    • Kockmann, N.1    Engler, M.2    Woias, P.3
  • 48
    • 51049122628 scopus 로고    scopus 로고
    • Rate of mixing controls rate and outcome of autocatalytic processes: Theory and microfluidic experiments with chemical reactions and blood coagulation
    • Pompano, R. R.; Li, H. W.; Ismagilov, R. F. Rate of mixing controls rate and outcome of autocatalytic processes: Theory and microfluidic experiments with chemical reactions and blood coagulation. Biophys. J. 2008, 95, 1531-1543.
    • (2008) Biophys. J. , vol.95 , pp. 1531-1543
    • Pompano, R.R.1    Li, H.W.2    Ismagilov, R.F.3
  • 49
    • 79551530332 scopus 로고    scopus 로고
    • Miscible viscous fingering involving viscosity increase by a chemical reaction with moderate Damkähler number
    • 1-014109.8, doi:10.1063/1.3549844
    • Nagatsu, Y.; Kondo, Y.; Kato, Y.; Tada, Y. Miscible viscous fingering involving viscosity increase by a chemical reaction with moderate Damkähler number. Phys. Fluids. Phys. Fluids 2011, 23, 014109. 1-014109.8, doi:10.1063/1.3549844.
    • (2011) Phys. Fluids. Phys. Fluids , vol.23 , pp. 014109
    • Nagatsu, Y.1    Kondo, Y.2    Kato, Y.3    Tada, Y.4
  • 51
    • 77957938680 scopus 로고    scopus 로고
    • Mass transport in a microchannel enzyme reactor with a porous wall: Hydrodynamic modeling and applications
    • Chen, X. B.; Sui, Y.; Cheng, Y. P.; Lee, H. P.; Yu, P.; Winoto, S. H.; Low, H. T. Mass transport in a microchannel enzyme reactor with a porous wall: Hydrodynamic modeling and applications. Biochem. Eng. J. 2010, 52, 227-235.
    • (2010) Biochem. Eng. J. , vol.52 , pp. 227-235
    • Chen, X.B.1    Sui, Y.2    Cheng, Y.P.3    Lee, H.P.4    Yu, P.5    Winoto, S.H.6    Low, H.T.7
  • 52
    • 79960287227 scopus 로고    scopus 로고
    • Effect of fluidic transport on the reaction kinetics in lectin microarrays
    • Roy, B.; Das, T.; Maiti, T. K.; Chakraborty, S. Effect of fluidic transport on the reaction kinetics in lectin microarrays. Anal. Chim. Acta 2011, 701, 6-14.
    • (2011) Anal. Chim. Acta , vol.701 , pp. 6-14
    • Roy, B.1    Das, T.2    Maiti, T.K.3    Chakraborty, S.4
  • 54
    • 77949687934 scopus 로고    scopus 로고
    • Modeling and finite difference numerical analysis of reaction-diffusion dynamics in a microreactor
    • Plazl, I.; Lakner, M. Modeling and Finite Difference Numerical Analysis of Reaction-Diffusion Dynamics in a Microreactor. Acta Chim. Slov. 2010, 57, 100-109.
    • (2010) Acta Chim. Slov. , vol.57 , pp. 100-109
    • Plazl, I.1    Lakner, M.2
  • 55
    • 2942532081 scopus 로고    scopus 로고
    • Microfluidics-theoretical aspects
    • Geschke, O., Klank, H., Stankiewicz, P. T., Eds.; John Wiley & Sons: New York, NY, USA
    • Kutter, J. P.; Klank, H. Microfluidics-theoretical aspects. In Microsystem Engineering of Lab-ona-chip Devices; Geschke, O., Klank, H., Stankiewicz, P. T., Eds.; John Wiley & Sons: New York, NY, USA, 2004; pp. 13-37.
    • (2004) Microsystem Engineering of Lab-ona-chip Devices , pp. 13-37
    • Kutter, J.P.1    Klank, H.2
  • 56
    • 70349313393 scopus 로고    scopus 로고
    • Characterizing dispersion in microfluidic channels
    • Datta, S.; Ghosal, S. Characterizing Dispersion in Microfluidic Channels. Lab Chip 2009, 9, 2537-2550.
    • (2009) Lab Chip , vol.9 , pp. 2537-2550
    • Datta, S.1    Ghosal, S.2
  • 57
    • 20444397450 scopus 로고    scopus 로고
    • Effects of microreactor geometry on performance: Differences between posted reactors and channel reactors
    • Ni, Z.; Seebauer, E. G.; Masel, R. I. Effects of Microreactor Geometry on Performance: Differences between Posted Reactors and Channel Reactors. Ind. Eng. Chem. Res. 2005, 44, 4267-4271.
    • (2005) Ind. Eng. Chem. Res. , vol.44 , pp. 4267-4271
    • Ni, Z.1    Seebauer, E.G.2    Masel, R.I.3
  • 59
    • 77949687934 scopus 로고    scopus 로고
    • Modeling and finite difference numerical analysis of reaction-diffusion dynamics in a microreactor
    • Plazl, I.; Lakner, M. Modeling and Finite Difference Numerical Analysis of Reaction-Diffusion Dynamics in a Microreactor. Acta Chim. Slov. 2010, 57, 100-109.
    • (2010) Acta Chim. Slov. , vol.57 , pp. 100-109
    • Plazl, I.1    Lakner, M.2
  • 60
    • 59349111923 scopus 로고    scopus 로고
    • Liquid mixing in gas-liquid two-phase flow by meandering microchannels
    • Fries, D. M.; von Rohr, P. R. Liquid mixing in gas-liquid two-phase flow by meandering microchannels. Chem. Eng. Sci. 2009, 64, 1326-1335.
    • (2009) Chem. Eng. Sci. , vol.64 , pp. 1326-1335
    • Fries, D.M.1    Von Rohr, P.R.2
  • 61
    • 33846558913 scopus 로고    scopus 로고
    • Recent advances in synthetic micro reaction technology
    • DOI 10.1039/b609428g
    • Watts, P.; Wiles, C. Recent advances in synthetic micro reaction technology. Chem. Comm. 2007, 443-467. (Pubitemid 46155889)
    • (2007) Chemical Communications , Issue.5 , pp. 443-467
    • Watts, P.1    Wiles, C.2
  • 62
    • 76549092999 scopus 로고    scopus 로고
    • Current methods for characterising mixing and flow in microchannels
    • Aubin, J.; Ferrando, M.; Jiricny, V. Current methods for characterising mixing and flow in microchannels. Chem. Eng. Sci. 2010, 65, 2065-2093.
    • (2010) Chem. Eng. Sci. , vol.65 , pp. 2065-2093
    • Aubin, J.1    Ferrando, M.2    Jiricny, V.3
  • 63
    • 80052284364 scopus 로고    scopus 로고
    • Micromixing within microfluidic devices
    • and references therein
    • Capretto, L.; Cheng, W.; Hill, M.; Zhang, X. Micromixing within Microfluidic Devices. Top. Curr. Chem. 2011, 304, 27-68 and references therein.
    • (2011) Top. Curr. Chem. , vol.304 , pp. 27-68
    • Capretto, L.1    Cheng, W.2    Hill, M.3    Zhang, X.4
  • 64
    • 14544286392 scopus 로고    scopus 로고
    • Micromixers - A review on passive and active mixing principles
    • DOI 10.1016/j.ces.2004.11.033, PII S0009250904009364
    • Hessel, V.; Läwe, H.; Schänfeld, F. Micromixers-A review on passive and active mixing principles. Chem. Eng. Sci. 2005, 60, 2479-2501. (Pubitemid 40306800)
    • (2005) Chemical Engineering Science , vol.60 , Issue.SPEC. ISS. 8-9 , pp. 2479-2501
    • Hessel, V.1    Lowe, H.2    Schonfeld, F.3
  • 65
    • 79952440049 scopus 로고    scopus 로고
    • Design method for micromixers considering influence of channel confluence and bend on diffusion length
    • Aoki, N.; Umei, R.; Yoshida, A.; Mae, K. Design method for micromixers considering influence of channel confluence and bend on diffusion length. Chem. Eng. J. 2011, 167, 643-650.
    • (2011) Chem. Eng. J. , vol.167 , pp. 643-650
    • Aoki, N.1    Umei, R.2    Yoshida, A.3    Mae, K.4
  • 66
    • 50549087924 scopus 로고    scopus 로고
    • A state-of-the-art review of mixing in microfluidic mixers purchase
    • and references therein
    • Mansur, E. A.; Ye, M.; Wang, Y.; Dai, Y. A State-of-the-Art Review of Mixing in Microfluidic Mixers Purchase. Chinese J. Chem. Eng. 2008, 16, 503-516 and references therein.
    • (2008) Chinese J. Chem. Eng. , vol.16 , pp. 503-516
    • Mansur, E.A.1    Ye, M.2    Wang, Y.3    Dai, Y.4
  • 69
    • 80052333223 scopus 로고    scopus 로고
    • Fabrication and characterization of a vertical lamination micromixer for mid-IR spectroscopy
    • Buchegger, W.; Wagner, C.; Svasek, P.; Lendl, B.; Kraft, M.; Vellekoop, M. J. Fabrication and characterization of a vertical lamination micromixer for mid-IR spectroscopy. Sensor Actuat. B Chem. 2011, 159, 336-341.
    • (2011) Sensor Actuat. B Chem. , vol.159 , pp. 336-341
    • Buchegger, W.1    Wagner, C.2    Svasek, P.3    Lendl, B.4    Kraft, M.5    Vellekoop, M.J.6
  • 70
    • 79960433300 scopus 로고    scopus 로고
    • Effects of chemical and physical parameters in the generation of microspheres by hydrodynamic flow focusing
    • Schneider, T.; Chapman, G. H.; Häfeli, U. O. Effects of chemical and physical parameters in the generation of microspheres by hydrodynamic flow focusing. Colloid. Surface B 2011, 87, 361-368.
    • (2011) Colloid. Surface B , vol.87 , pp. 361-368
    • Schneider, T.1    Chapman, G.H.2    Häfeli, U.O.3
  • 71
    • 79953058675 scopus 로고    scopus 로고
    • Synthesis of size-tunable polymeric nanoparticles enabled by 3D hydrodynamic flow focusing in single-layer microchannels
    • Rhee, M.; Valencia, P. M.; Rodriguez, M. I.; Langer, R.; Farokhzad, O. C.; Karnik, R. Synthesis of size-tunable polymeric nanoparticles enabled by 3D hydrodynamic flow focusing in single-layer microchannels. Adv. Mater. 2011, 23, H79-H83.
    • (2011) Adv. Mater. , vol.23
    • Rhee, M.1    Valencia, P.M.2    Rodriguez, M.I.3    Langer, R.4    Farokhzad, O.C.5    Karnik, R.6
  • 74
    • 34247548327 scopus 로고    scopus 로고
    • A passive planar micromixer with obstructions for mixing at low Reynolds numbers
    • DOI 10.1088/0960-1317/17/5/023, PII S0960131707321384, 023
    • Bhagat, A.; Peterson, E.; Papautsky, I. A passive planar micromixer with obstructions for mixing at low Reynolds numbers. J. Micromech. Microeng. 2007, 17, 1017-1024. (Pubitemid 46656156)
    • (2007) Journal of Micromechanics and Microengineering , vol.17 , Issue.5 , pp. 1017-1024
    • Bhagat, A.A.S.1    Peterson, E.T.K.2    Papautsky, I.3
  • 75
    • 77954498940 scopus 로고    scopus 로고
    • A simplified design of the staggered herringbone micromixer for practical applications
    • doi:10.1063/1.3427240
    • Du, Y.; Zhang, Z.; Yim, C.; Lin, M.; Cao, X. A simplified design of the staggered herringbone micromixer for practical applications. Biomicrofluidics 2010, 4, 024105, doi:10.1063/1.3427240.
    • (2010) Biomicrofluidics , vol.4 , pp. 024105
    • Du, Y.1    Zhang, Z.2    Yim, C.3    Lin, M.4    Cao, X.5
  • 76
    • 0041472497 scopus 로고    scopus 로고
    • Controlling flows in microchannels with patterned surface charge and topography
    • Stroock, A. D.; Whitesides, G. M. Controlling flows in microchannels with patterned surface charge and topography. Acc. Chem. Res. 2003, 36, 597-604.
    • (2003) Acc. Chem. Res. , vol.36 , pp. 597-604
    • Stroock, A.D.1    Whitesides, G.M.2
  • 78
    • 33644841156 scopus 로고    scopus 로고
    • Fluid mixing in planar spiral microchannels
    • Sudarsan, A.; Ugaz, V. Fluid mixing in planar spiral microchannels. Lab Chip 2006, 6, 74-82.
    • (2006) Lab Chip , vol.6 , pp. 74-82
    • Sudarsan, A.1    Ugaz, V.2
  • 80
    • 1642493938 scopus 로고    scopus 로고
    • Design and simulation of the micromixer with chaotic advection in microchannels
    • Jen, C. P.; Wu, C. Y.; Lin, Y. C.; Wu, C. Y. Design and simulation of the micromixer with chaotic advection in microchannels. Lab Chip 2003, 3, 77-81.
    • (2003) Lab Chip , vol.3 , pp. 77-81
    • Jen, C.P.1    Wu, C.Y.2    Lin, Y.C.3    Wu, C.Y.4
  • 81
    • 0037346348 scopus 로고    scopus 로고
    • Laminar mixing in different interdigital micromixers: I. Experimental characterization
    • DOI 10.1002/aic.690490304
    • Hessel, V.; Hardt, S.; Läwe, H.; Schänfeld, F. Laminar mixing in different interdigital micromixers: I. Experimental characterization. AIChE J. 2003, 49, 566-577. (Pubitemid 36378123)
    • (2003) AIChE Journal , vol.49 , Issue.3 , pp. 566-577
    • Hessel, V.1    Hardt, S.2    Lowe, H.3    Schonfeld, F.4
  • 82
    • 0037212099 scopus 로고    scopus 로고
    • Accelerated design of bioconversion processes using automated microscale processing techniques
    • DOI 10.1016/S0167-7799(02)00011-2, PII S0167779902000112
    • Lye, G. J.; Ayazi-Shamlou, P.; Baganz, F.; Dalby, P. A.; Woodley, J. M. Accelerated design of bioconversion processes using automated microscale processing techniques. Trends Biotechnol. 2003, 21, 29-37. (Pubitemid 35441291)
    • (2003) Trends in Biotechnology , vol.21 , Issue.1 , pp. 29-37
    • Lye, G.J.1    Ayazi-Shamlou, P.2    Baganz, F.3    Dalby, P.A.4    Woodley, J.M.5
  • 83
    • 70349307316 scopus 로고    scopus 로고
    • Micro-particle image velocimetry ([small micro (PIV): Recent developments, applications, and guidelines
    • Lindken, R.; Rossi, M.; Grosse, S.; Westerweel, J. Micro-Particle Image Velocimetry ([small micro (PIV): Recent developments, applications, and guidelines. Lab Chip 2009, 9, 2551-2567.
    • (2009) Lab Chip , vol.9 , pp. 2551-2567
    • Lindken, R.1    Rossi, M.2    Grosse, S.3    Westerweel, J.4
  • 84
    • 71849098414 scopus 로고    scopus 로고
    • Performance comparison of micromixers
    • Falk, L.; Commenge, J. M. Performance comparison of micromixers. Chem. Eng. Sci. 2010, 65, 405-411.
    • (2010) Chem. Eng. Sci. , vol.65 , pp. 405-411
    • Falk, L.1    Commenge, J.M.2
  • 85
    • 82855161413 scopus 로고    scopus 로고
    • Villermaux-Dushman protocol for experimental characterization of micromixers
    • doi:10.1016/j.cep. 2011.06.006
    • Commenge, J.-M.; Falk, L. Villermaux-Dushman protocol for experimental characterization of micromixers. Chem. Eng. Process. 2011, doi:10.1016/j.cep. 2011.06.006.
    • (2011) Chem. Eng. Process.
    • Commenge, J.-M.1    Falk, L.2
  • 86
    • 77951108069 scopus 로고    scopus 로고
    • Effective interfacial area for mass transfer in the liquidliquid slug flow capillary microreactors
    • Ghaini, A.; Kashid, M. N.; Agar, D. W. Effective interfacial area for mass transfer in the liquidliquid slug flow capillary microreactors. Chem. Eng. Process. 2010, 49, 358-366.
    • (2010) Chem. Eng. Process. , vol.49 , pp. 358-366
    • Ghaini, A.1    Kashid, M.N.2    Agar, D.W.3
  • 87
    • 34249733700 scopus 로고    scopus 로고
    • Multiscale phenomena in microfluidics and nanofluidics
    • DOI 10.1016/j.ces.2006.11.058, PII S0009250907002679
    • Hu, G.; Li, D. Multiscale phenomena in microfluidics and nanofluidics. Chem. Eng. Sci. 2007, 62, 3443-3454. (Pubitemid 46839220)
    • (2007) Chemical Engineering Science , vol.62 , Issue.13 , pp. 3443-3454
    • Hu, G.1    Li, D.2
  • 88
    • 41349116598 scopus 로고    scopus 로고
    • Numerical simulation of mass transfer in a liquid-liquid membrane contactor for laminar flow conditions
    • Kieffer, R.; Charcosset, C.; Puel, F.; Mangin, D. Numerical simulation of mass transfer in a liquid-liquid membrane contactor for laminar flow conditions. Comp. Chem. Eng. 2008, 32, 1325-1333.
    • (2008) Comp. Chem. Eng. , vol.32 , pp. 1325-1333
    • Kieffer, R.1    Charcosset, C.2    Puel, F.3    Mangin, D.4
  • 89
    • 84860389903 scopus 로고    scopus 로고
    • Guidelines for optimal design of coflow enzyme microreactors
    • Kolfschoten, R. C.; Swarts, J. W.; Janssen, A. E. M.; Boom, R. M. Guidelines for optimal design of coflow enzyme microreactors. Chem. Eng. J. 2011, 172, 1072-1077.
    • (2011) Chem. Eng. J. , vol.172 , pp. 1072-1077
    • Kolfschoten, R.C.1    Swarts, J.W.2    Janssen, A.E.M.3    Boom, R.M.4
  • 90
    • 33947711319 scopus 로고    scopus 로고
    • Computational modelling of slug flow in a capillary microreactor
    • DOI 10.1016/j.cam.2006.04.010, PII S0377042706002184
    • Kashid, M. N.; Platte, F.; Agar, D. W.; Turek, S. Computational modelling of slug flow in a capillary microreactor. J. Comp. Appl. Math. 2007, 203, 487-497. (Pubitemid 46501795)
    • (2007) Journal of Computational and Applied Mathematics , vol.203 , Issue.SPEC. ISS. 2 , pp. 487-497
    • Kashid, M.N.1    Platte, F.2    Agar, D.W.3    Turek, S.4
  • 91
    • 34547956467 scopus 로고    scopus 로고
    • CFD modelling of mass transfer with and without chemical reaction in the liquid-liquid slug flow microreactor
    • DOI 10.1016/j.ces.2007.01.068, PII S0009250907001248
    • Kashid, M. N.; Agar, D. W.; Turek, S. CFD modelling of mass transfer with and without chemical reaction in the liquid-liquid slug flow microreactor. Chem. Eng. Sci. 2007, 62, 5102-5109. (Pubitemid 47268397)
    • (2007) Chemical Engineering Science , vol.62 , Issue.SPEC. ISS. 18-20 , pp. 5102-5109
    • Kashid, M.N.1    Agar, D.W.2    Turek, S.3
  • 92
    • 46149115205 scopus 로고    scopus 로고
    • Multiphase mass transport in mini/micro-channels microreactor
    • Schuster, A.; Sefiane, K.; Ponton, J. Multiphase mass transport in mini/micro-channels microreactor. Chem. Eng. Res. Des. 2008, 86, 527-534.
    • (2008) Chem. Eng. Res. Des. , vol.86 , pp. 527-534
    • Schuster, A.1    Sefiane, K.2    Ponton, J.3
  • 93
    • 77954818551 scopus 로고    scopus 로고
    • On the feasibility of in situ steroid biotransformation and product recovery in microchannels
    • Marques, M. P. C.; Fernandes, P.; Cabral, J. M. S.; Znidarsic-Plazl, P.; Plazl, I. On the feasibility of in situ steroid biotransformation and product recovery in microchannels. Chem. Eng. J. 2010, 160, 708-714.
    • (2010) Chem. Eng. J. , vol.160 , pp. 708-714
    • Marques, M.P.C.1    Fernandes, P.2    Cabral, J.M.S.3    Znidarsic-Plazl, P.4    Plazl, I.5
  • 94
    • 0034234056 scopus 로고    scopus 로고
    • Factorization methods for the numerical approximation of Navier-Stokes equations
    • DOI 10.1016/S0045-7825(99)00192-9, PII S0045782599001929
    • Quarteroni, A.; Saleri, F.; Veneziani, A. Factorization methods for the numerical approximation of Navier-Stokes equations. Comp. Meth. Appl. Mechanics Eng. 2000, 188, 505-526. (Pubitemid 30642207)
    • (2000) Computer Methods in Applied Mechanics and Engineering , vol.188 , Issue.1-3 , pp. 505-526
    • Quarteroni, A.1    Saleri, F.2    Veneziani, A.3
  • 95
    • 78449299910 scopus 로고    scopus 로고
    • Mixing process of immiscible fluids in microchannels
    • Balan, C. M.; Broboana, D.; Balan, C. Mixing process of immiscible fluids in microchannels. Int. J. Heat Fluid Flow 2010, 31, 1125-1133.
    • (2010) Int. J. Heat Fluid Flow , vol.31 , pp. 1125-1133
    • Balan, C.M.1    Broboana, D.2    Balan, C.3
  • 96
    • 80052024646 scopus 로고    scopus 로고
    • Development of a microchannel based pasteurizer for energy efficient processing of liquids
    • Fisher, L.; Ingram-Goble, R.; Wang, H.; Garrison, A.; Peterson, R. B. Development of a Microchannel Based Pasteurizer for Energy Efficient Processing of Liquids. Appl. Thermal Eng. 2011, 31, 3604-3614.
    • (2011) Appl. Thermal Eng. , vol.31 , pp. 3604-3614
    • Fisher, L.1    Ingram-Goble, R.2    Wang, H.3    Garrison, A.4    Peterson, R.B.5
  • 97
    • 79953033700 scopus 로고    scopus 로고
    • Computational study of convective-diffusive mixing in a microchannel mixer
    • Liu, M. Computational study of convective-diffusive mixing in a microchannel mixer. Chem. Eng. Sci. 2011, 66, 2211-2223.
    • (2011) Chem. Eng. Sci. , vol.66 , pp. 2211-2223
    • Liu, M.1
  • 98
    • 56249141076 scopus 로고    scopus 로고
    • CFD simulations of the effect of inlet conditions on Taylor flow formation
    • Shao, N.; Salman, W.; Gavriilidis, A.; Angeli, P. CFD simulations of the effect of inlet conditions on Taylor flow formation. Int. J. Heat Fluid Flow 2008, 29, 1603-1611.
    • (2008) Int. J. Heat Fluid Flow , vol.29 , pp. 1603-1611
    • Shao, N.1    Salman, W.2    Gavriilidis, A.3    Angeli, P.4
  • 99
    • 76549085351 scopus 로고    scopus 로고
    • CFD modelling of flow and heat transfer in the Taylor flow regime
    • Gupta, R.; Fletcher, D. F.; Haynes, B. S. CFD modelling of flow and heat transfer in the Taylor flow regime. Chem. Eng. Sci. 2010, 65, 2094-2107.
    • (2010) Chem. Eng. Sci. , vol.65 , pp. 2094-2107
    • Gupta, R.1    Fletcher, D.F.2    Haynes, B.S.3
  • 100
    • 79952440259 scopus 로고    scopus 로고
    • Computational fluid dynamics simulation of ethanol steam reforming in catalytic wall microchannels
    • Uriz, I.; Arzamendi, G.; Lápez, E.; Llorca, J.; Gandía, L. M. Computational fluid dynamics simulation of ethanol steam reforming in catalytic wall microchannels. Chem. Eng. J. 2011, 167, 603-609.
    • (2011) Chem. Eng. J. , vol.167 , pp. 603-609
    • Uriz, I.1    Arzamendi, G.2    Lápez, E.3    Llorca, J.4    Gandía, L.M.5
  • 101
    • 0035201785 scopus 로고    scopus 로고
    • Model channel ion currents in NaCl-extended simple point charge water solution with applied-field molecular dynamics
    • Crozier, P. S.; Henderson, D.; Rowley, R. L.; Busath, D. D. Model Channel Ion Currents in NaCl-Extended Simple Point Charge Water Solution with Applied-Field Molecular Dynamics. Biophys. J. 2001, 81, 3077-3089. (Pubitemid 33111460)
    • (2001) Biophysical Journal , vol.81 , Issue.6 , pp. 3077-3089
    • Crozier, P.S.1    Henderson, D.2    Rowley, R.L.3    Busath, D.D.4
  • 104
    • 0031908119 scopus 로고    scopus 로고
    • 2 in air
    • DOI 10.1016/S0009-2509(97)00275-3, PII S0009250997002753
    • Vlachos, D. G. Stochastic modeling of chemical microreactors with detailed kinetics-induction times and ignitions of H2 in air. Chem. Eng. Sci. 1998, 53, 157-168. (Pubitemid 28065385)
    • (1998) Chemical Engineering Science , vol.53 , Issue.1 , pp. 157-168
    • Vlachos, D.G.1
  • 105
    • 0033888570 scopus 로고    scopus 로고
    • Prediction of micro-channel flows using direct simulation Monte Carlo
    • DOI 10.1016/S0266-8920(99)00023-5
    • Xue, H.; Fan, Q.; Shu, C. Prediction of micro-channel flows using direct simulation Monte Carlo. Prob. Eng. Mech. 2000, 15, 213-219. (Pubitemid 30558272)
    • (2000) Probabilistic Engineering Mechanics , vol.15 , Issue.2 , pp. 213-219
    • Xue, H.1    Fan, Q.2    Shu, C.3
  • 106
    • 15944368965 scopus 로고    scopus 로고
    • Net-event kinetic Monte Carlo for overcoming stiffness in spatially homogeneous and distributed systems
    • DOI 10.1016/j.compchemeng.2004.09.016, PII S0098135404002789, Control of Multiscale and Distributed Process Systems
    • Snyder, M. A.; Chatterjee, A.; Vlachos, D. G. Net-event kinetic Monte Carlo for overcoming stiffness in spatially homogeneous and distributed systems. Computers Chem. Eng. 2005, 29, 701-712. (Pubitemid 40432100)
    • (2005) Computers and Chemical Engineering , vol.29 , Issue.4 , pp. 701-712
    • Snyder, M.A.1    Chatterjee, A.2    Vlachos, D.G.3
  • 107
    • 0348195601 scopus 로고    scopus 로고
    • Nonideal gas flow and heat transfer in micro-and nanochannels using the direct simulation Monte Carlo method
    • Wang, M.; Li, Z. Nonideal gas flow and heat transfer in micro-and nanochannels using the direct simulation Monte Carlo method. Phys. Rev. E 2003, 68, 046704
    • (2003) Phys. Rev. E , vol.68 , pp. 046704
    • Wang, M.1    Li, Z.2
  • 108
    • 77953290864 scopus 로고    scopus 로고
    • Lattice Boltzmann study of velocity, temperature, and concentration in micro-reactors
    • Verma, N.; Mewes, D.; Luke, A. Lattice Boltzmann study of velocity, temperature, and concentration in micro-reactors. Int. J. Heat Mass Transfer 2010, 53, 3175-3185.
    • (2010) Int. J. Heat Mass Transfer , vol.53 , pp. 3175-3185
    • Verma, N.1    Mewes, D.2    Luke, A.3
  • 109
    • 34547224224 scopus 로고    scopus 로고
    • An investigation into fixed-bed microreactors using lattice Boltzmann method simulations
    • Kao, P. H.; Ren, T. F.; Yang, R. J. An investigation into fixed-bed microreactors using lattice Boltzmann method simulations. Int. J. Heat Mass Transfer 2007, 50, 4243-4255.
    • (2007) Int. J. Heat Mass Transfer , vol.50 , pp. 4243-4255
    • Kao, P.H.1    Ren, T.F.2    Yang, R.J.3
  • 110
    • 17644396366 scopus 로고    scopus 로고
    • Simulation and optimization of chaotic micromixer using lattice Boltzmann method
    • DOI 10.1016/j.snb.2004.09.006, PII S0925400504006215
    • Li, C.; Chen, T. Simulation and optimization of chaotic micromixer using lattice Boltzmann method. Sensors Actuators B Chem. 2005, 106, 871-877. (Pubitemid 40557652)
    • (2005) Sensors and Actuators, B: Chemical , vol.106 , Issue.2 , pp. 871-877
    • Li, C.1    Chen, T.2
  • 111
    • 47749154828 scopus 로고    scopus 로고
    • Three-dimensional lattice Boltzmann simulations of droplet formation in a cross-junction microchannel
    • Wu, L.; Tsutahara, M.; Kim, L. S.; Ha, M. Three-dimensional lattice Boltzmann simulations of droplet formation in a cross-junction microchannel. Int. J. Multiphase Flow 2008, 34, 852-864.
    • (2008) Int. J. Multiphase Flow , vol.34 , pp. 852-864
    • Wu, L.1    Tsutahara, M.2    Kim, L.S.3    Ha, M.4
  • 112
    • 78650681610 scopus 로고    scopus 로고
    • Numerical analysis of residence time distribution in microchannels
    • Vikhansky, A. Numerical analysis of residence time distribution in microchannels. Chem. Eng. Res. Des. 2011, 89, 347-351.
    • (2011) Chem. Eng. Res. Des. , vol.89 , pp. 347-351
    • Vikhansky, A.1
  • 113
    • 61349174640 scopus 로고    scopus 로고
    • Scalar mixing with fixed and fluidized particles in micro-reactors
    • Derksen, J. J. Scalar mixing with fixed and fluidized particles in micro-reactors. Chem. Eng. Res. Des. 2009, 87, 550-556.
    • (2009) Chem. Eng. Res. Des. , vol.87 , pp. 550-556
    • Derksen, J.J.1
  • 114
    • 74549178596 scopus 로고    scopus 로고
    • A multicomponent lattice boltzmann model for multiphase convection, diffusion, and reaction in two dimensions
    • Parker, J. M.; Jovanovoc, G. N. A Multicomponent Lattice Boltzmann Model for Multiphase Convection, Diffusion, and Reaction in Two Dimensions. Chem. Biochem. Eng. Q. 2009, 23, 399-409.
    • (2009) Chem. Biochem. Eng. Q. , vol.23 , pp. 399-409
    • Parker, J.M.1    Jovanovoc, G.N.2
  • 115
  • 117
  • 118
    • 34347256054 scopus 로고    scopus 로고
    • Microfluidic large-scale integration: The evolution of design rules for biological automation
    • DOI 10.1146/annurev.biophys.36.040306.132646
    • Melin, J.; Quake, S. R. Microfluidic large-scale integration: the evolution of design rules for biological automation. Annu. Rev. Biophys. Biomol. Struct. 2007, 36, 213-231. (Pubitemid 46998117)
    • (2007) Annual Review of Biophysics and Biomolecular Structure , vol.36 , pp. 213-231
    • Melin, J.1    Quake, S.R.2
  • 121
    • 34447318044 scopus 로고    scopus 로고
    • Integrated microfluidics for parallel screening of an in situ click chemistry library
    • Wang, J.; Sui, G.; Mocharla, V. P.; Lin, R. J.; Phelps, M. E.; Kolb, H. C.; Tseng, H.-R. Integrated Microfluidics for Parallel Screening of an In Situ Click Chemistry Library. Angew. Chem. 2006, 118, 5402-5407.
    • (2006) Angew. Chem. , vol.118 , pp. 5402-5407
    • Wang, J.1    Sui, G.2    Mocharla, V.P.3    Lin, R.J.4    Phelps, M.E.5    Kolb, H.C.6    Tseng, H.-R.7
  • 122
    • 34347256054 scopus 로고    scopus 로고
    • Microfluidic large-scale integration: The evolution of design rules for biological automation
    • DOI 10.1146/annurev.biophys.36.040306.132646
    • Melin, J.; Quake, S. R. Microfluidic Large-Scale Integration: The Evolution of Design Rules for Biological Automation. Annu. Rev. Biophys. Biomol. Struct. 2007, 36, 213-231. (Pubitemid 46998117)
    • (2007) Annual Review of Biophysics and Biomolecular Structure , vol.36 , pp. 213-231
    • Melin, J.1    Quake, S.R.2
  • 124
    • 67649989420 scopus 로고    scopus 로고
    • Distillation in microchemical systems using capillary forces and segmented flow
    • Hartman, R. L.; Sahoo, H. R.; Yen, B. C.; Jensen, K. F. Distillation in microchemical systems using capillary forces and segmented flow. Lab Chip 2009, 9, 1843-1849.
    • (2009) Lab Chip , vol.9 , pp. 1843-1849
    • Hartman, R.L.1    Sahoo, H.R.2    Yen, B.C.3    Jensen, K.F.4
  • 125
    • 77949821670 scopus 로고    scopus 로고
    • Vacuum membrane distillation by microchip with temperature gradient
    • Zhang, Y.; Kato, S.; Anazawa, T. Vacuum membrane distillation by microchip with temperature gradient. Lab Chip 2010, 10, 899-908.
    • (2010) Lab Chip , vol.10 , pp. 899-908
    • Zhang, Y.1    Kato, S.2    Anazawa, T.3
  • 126
    • 79952655920 scopus 로고    scopus 로고
    • Development of multistage distillation in a microfluidic chip
    • Lam, K. F.; Cao, E.; Sorensen, E.; Gavriilidis, A. Development of multistage distillation in a microfluidic chip. Lab Chip 2011, 11, 1311-1317.
    • (2011) Lab Chip , vol.11 , pp. 1311-1317
    • Lam, K.F.1    Cao, E.2    Sorensen, E.3    Gavriilidis, A.4
  • 127
    • 33644962807 scopus 로고    scopus 로고
    • A microfluidic device for kinetic optimization of protein crystallization and in situ structure determination
    • Hansen, C. L.; Classen, S.; Berger, J. M.; Quake, S. R. A Microfluidic Device for Kinetic Optimization of Protein Crystallization and In Situ Structure Determination. J. Am. Chem. Soc. 2006, 128, 3142-3143.
    • (2006) J. Am. Chem. Soc. , vol.128 , pp. 3142-3143
    • Hansen, C.L.1    Classen, S.2    Berger, J.M.3    Quake, S.R.4
  • 129
    • 49649083650 scopus 로고    scopus 로고
    • Efficient macromolecular crystallization using microfluidics and randomized design of screening reagents
    • May, A. P.; Segelke, B. W. Efficient macromolecular crystallization using microfluidics and randomized design of screening reagents. Methods Mol. Biol. 2008, 426, 387-402.
    • (2008) Methods Mol. Biol. , vol.426 , pp. 387-402
    • May, A.P.1    Segelke, B.W.2
  • 131
    • 58649100634 scopus 로고    scopus 로고
    • Liquid-liquid phase separation: Characterisation of a novel device capable of separating particle carrying multiphase flows
    • Castell, O. K.; Allender, C. J.; Barrow, D. A. Liquid-liquid phase separation: Characterisation of a novel device capable of separating particle carrying multiphase flows. Lab Chip 2009, 9, 388-396.
    • (2009) Lab Chip , vol.9 , pp. 388-396
    • Castell, O.K.1    Allender, C.J.2    Barrow, D.A.3
  • 132
    • 34748901143 scopus 로고    scopus 로고
    • Fully integrated microfluidic separations systems for biochemical analysis
    • DOI 10.1016/j.chroma.2007.06.010, PII S0021967307010217, Editors' Choice I
    • Roman, G. T.; Kennedy, R. T. Fully integrated microfluidic separations systems for biochemical analysis. J. Chromatogr. A 2007, 1168, 170-188. (Pubitemid 47488325)
    • (2007) Journal of Chromatography A , vol.1168 , Issue.1-2 , pp. 170-188
    • Roman, G.T.1    Kennedy, R.T.2
  • 133
    • 79958289702 scopus 로고    scopus 로고
    • Integrated microfluidic reverse transcription-polymerase chain reaction for rapid detection of food-or waterborne pathogenic rotavirus
    • Li, Y.; Zhang, C.; Xing, D. Integrated microfluidic reverse transcription-polymerase chain reaction for rapid detection of food-or waterborne pathogenic rotavirus. Anal. Biochem. 2011, 415, 87-96.
    • (2011) Anal. Biochem. , vol.415 , pp. 87-96
    • Li, Y.1    Zhang, C.2    Xing, D.3
  • 135
    • 33746314243 scopus 로고    scopus 로고
    • Electrochemical fabrication of conducting polymer nanowires in an integrated microfluidic system
    • DOI 10.1039/b604426c
    • Wang, J.; Bunimovich, Y. L.; Sui, G.; Savvas, S.; Wang, J.; Guo, Y., Heath, J. R.; Tseng, H. R. Electrochemical fabrication of conducting polymer nanowires in an integrated microfluidic system. Chem Commun (Camb). 2006, 29, 3075-3077. (Pubitemid 44106983)
    • (2006) Chemical Communications , Issue.29 , pp. 3075-3077
    • Wang, J.1    Bunimovich, Y.L.2    Sui, G.3    Savvas, S.4    Wang, J.5    Guo, Y.6    Heath, J.R.7    Tseng, H.8
  • 136
    • 79960130780 scopus 로고    scopus 로고
    • Design features of microfluidic reactor for [18F]FDG radiopharmaceutical synthesis
    • Oh, J. H.; Lee, B. N.; Nam, K. R.; Attla, G. A.; Lee, K. C.; Cjai, J. S. Design Features Of Microfluidic Reactor For [18F]FDG Radiopharmaceutical Synthesis. AIP Conf. Proc. 2011, 1336, 426-429.
    • (2011) AIP Conf. Proc. , vol.1336 , pp. 426-429
    • Oh, J.H.1    Lee, B.N.2    Nam, K.R.3    Attla, G.A.4    Lee, K.C.5    Cjai, J.S.6
  • 137
    • 77952512357 scopus 로고    scopus 로고
    • A microfluidic oligonucleotide synthesizer
    • Lee, C. C.; Snyder, T. M.; Quake, S. R. A microfluidic oligonucleotide synthesizer. Nucleic Acids Res. 2010, 38, 2514-2521.
    • (2010) Nucleic Acids Res. , vol.38 , pp. 2514-2521
    • Lee, C.C.1    Snyder, T.M.2    Quake, S.R.3
  • 138
    • 77950830615 scopus 로고    scopus 로고
    • DNA sequencing by denaturation: Experimental proof of concept with an integrated fluidic device
    • Chen, Y. J.; Roller, E. E.; Huang, X. H. DNA sequencing by denaturation: experimental proof of concept with an integrated fluidic device. Lab Chip 2010, 10, 1153-1159.
    • (2010) Lab Chip , vol.10 , pp. 1153-1159
    • Chen, Y.J.1    Roller, E.E.2    Huang, X.H.3
  • 139
    • 77956650346 scopus 로고    scopus 로고
    • Microfluidic approaches for systems and synthetic biology
    • Szita, N.; Polizzi, K.; Jaccard, N.; Baganz, F. Microfluidic approaches for systems and synthetic biology. Curr. Op. Biotechnol. 2010, 21, 517-523.
    • (2010) Curr. Op. Biotechnol. , vol.21 , pp. 517-523
    • Szita, N.1    Polizzi, K.2    Jaccard, N.3    Baganz, F.4
  • 140
    • 79851490029 scopus 로고    scopus 로고
    • A review of advanced small-scale parallel bioreactor technology for accelerated process development: Current state and future need
    • Bareither, R.; Pollard, D. A review of advanced small-scale parallel bioreactor technology for accelerated process development: Current state and future need. Biotechnol. Prog. 2011, 27, 2-14.
    • (2011) Biotechnol. Prog. , vol.27 , pp. 2-14
    • Bareither, R.1    Pollard, D.2
  • 142
    • 77955705448 scopus 로고    scopus 로고
    • Rapid catalyst screening by a continuous-flow microreactor interfaced with ultra-high-pressure liquid chromatography
    • Fang, H.; Xiao, Q.; Wu, F.; Floreancig, P. E.; Weber, S. G. Rapid catalyst screening by a continuous-flow microreactor interfaced with ultra-high-pressure liquid chromatography. J. Org. Chem. 2010, 75, 5619-5626.
    • (2010) J. Org. Chem. , vol.75 , pp. 5619-5626
    • Fang, H.1    Xiao, Q.2    Wu, F.3    Floreancig, P.E.4    Weber, S.G.5
  • 144
    • 0036669691 scopus 로고    scopus 로고
    • Industrial microbial enzymes: Their discovery by screening and use in large-scale production of useful chemicals in Japan
    • DOI 10.1016/S0958-1669(02)00331-2
    • Ogawa, J.; Shimizu, S. Industrial microbial enzymes: Their discovery by screening and use in large-scale production of useful chemicals in Japan. Curr. Op. Biotechnol. 2002, 13, 367-375. (Pubitemid 35254096)
    • (2002) Current Opinion in Biotechnology , vol.13 , Issue.4 , pp. 367-375
    • Ogawa, J.1    Shimizu, S.2
  • 145
    • 33645218742 scopus 로고    scopus 로고
    • High-throughput screening of biocatalytic activity: Applications in drug discovery
    • Kumar, R. A.; Clark, D. S. High-throughput screening of biocatalytic activity: applications in drug discovery. Curr. Op. Chem. Biol. 2006, 10, 162-168.
    • (2006) Curr. Op. Chem. Biol. , vol.10 , pp. 162-168
    • Kumar, R.A.1    Clark, D.S.2
  • 147
    • 79951674715 scopus 로고    scopus 로고
    • High-throughput process development for biopharmaceutical drug substances
    • Bhambure, R.; Kumar, K.; Rathore, A. S. High-throughput process development for biopharmaceutical drug substances. Trends Biotechnol. 2011, 29, 127-135.
    • (2011) Trends Biotechnol. , vol.29 , pp. 127-135
    • Bhambure, R.1    Kumar, K.2    Rathore, A.S.3
  • 148
    • 34848830411 scopus 로고    scopus 로고
    • Optical sensing systems for microfluidic devices: A review
    • DOI 10.1016/j.aca.2007.08.046, PII S0003267007014444
    • Kuswandi, B.; Nuriman; Huskens, J.; Verboom, W. Optical sensing systems for microfluidic devices: A review. Anal. Chim. Acta 2007, 601, 141-155. (Pubitemid 47505229)
    • (2007) Analytica Chimica Acta , vol.601 , Issue.2 , pp. 141-155
    • Kuswandi, B.1    Nuriman2    Huskens, J.3    Verboom, W.4
  • 150
    • 77952527887 scopus 로고    scopus 로고
    • Microfluidic lab-on-a-chip platforms: Requirements, characteristics and applications
    • Mark, D.; Haeberle, S.; Roth, G.; von Stetten, F.; Zengerle, R. Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications. Chem. Soc. Rev. 2010, 39, 1153-1182.
    • (2010) Chem. Soc. Rev. , vol.39 , pp. 1153-1182
    • Mark, D.1    Haeberle, S.2    Roth, G.3    Von Stetten, F.4    Zengerle, R.5
  • 151
    • 80054882715 scopus 로고    scopus 로고
    • System integration - A major step toward lab on a chip
    • Sin, M. L.; Gao, J.; Liao, J. C.; Wong, P. K. System Integration - A Major Step toward Lab on a Chip. J. Biol. Eng. 2011, 5, 6.
    • (2011) J. Biol. Eng. , vol.5 , pp. 6
    • Sin, M.L.1    Gao, J.2    Liao, J.C.3    Wong, P.K.4
  • 152
    • 66149121446 scopus 로고    scopus 로고
    • Determination of kinetic parameters, Km and kcat, with a single experiment on a chip
    • Jambovane, S.; Duin, E. C.; Kim, S. K.; Hong, J. W. Determination of kinetic parameters, Km and kcat, with a single experiment on a chip. Anal. Chem. 2009, 81, 3239-3245.
    • (2009) Anal. Chem. , vol.81 , pp. 3239-3245
    • Jambovane, S.1    Duin, E.C.2    Kim, S.K.3    Hong, J.W.4
  • 153
    • 75149198717 scopus 로고    scopus 로고
    • In-line quantification of peroxidase-catalyzed cross-linking of a-lactalbumin in a microreactor
    • and references therein
    • Heijnis, W. A.; Wierenga, P. A.; Janssen, A. E. M.; van Berkel, W. J. H.; Gruppen, H. In-line quantification of peroxidase-catalyzed cross-linking of a-lactalbumin in a microreactor. Chem. Eng. J. 2010, 157, 189-193 and references therein.
    • (2010) Chem. Eng. J. , vol.157 , pp. 189-193
    • Heijnis, W.A.1    Wierenga, P.A.2    Janssen, A.E.M.3    Van Berkel, W.J.H.4    Gruppen, H.5
  • 154
    • 79960762452 scopus 로고    scopus 로고
    • Enzyme-immobilized microfluidic process reactors
    • and references therein
    • Asanomi, Y.; Yamaguchi, H.; Miyazaki, M.; Maeda, H. Enzyme-Immobilized Microfluidic Process Reactors. Molecules 2011, 16, 6041-6059 and references therein.
    • (2011) Molecules , vol.16 , pp. 6041-6059
    • Asanomi, Y.1    Yamaguchi, H.2    Miyazaki, M.3    Maeda, H.4
  • 155
    • 33947110915 scopus 로고    scopus 로고
    • 3-mediated glucose oxidation
    • DOI 10.1016/j.electacta.2007.01.067, PII S0013468607002022
    • Togo, M.; Takamura, A.; Asai, T.; Kaji, H.; Nishizawa, M. An enzyme-based microfluidic biofuel cell using vitamin K3-mediated glucose oxidation. Electrochim. Acta 2007, 52, 4669-4674. (Pubitemid 46412307)
    • (2007) Electrochimica Acta , vol.52 , Issue.14 , pp. 4669-4674
    • Togo, M.1    Takamura, A.2    Asai, T.3    Kaji, H.4    Nishizawa, M.5
  • 156
  • 158
    • 68249099881 scopus 로고    scopus 로고
    • Monolith enzymatic microreactor at the frontier of glycomic toward a new route for the production of bioactive oligosaccharides
    • Delattre, C; Vijayalakshmi, M. A. Monolith enzymatic microreactor at the frontier of glycomic toward a new route for the production of bioactive oligosaccharides. J. Mol. Catal. B Enzym. 2009, 60, 97-105.
    • (2009) J. Mol. Catal. B Enzym. , vol.60 , pp. 97-105
    • Delattre, C.1    Vijayalakshmi, M.A.2
  • 159
    • 77952952915 scopus 로고    scopus 로고
    • Development of enzyme immobilized monolith microreactors integrated with microfluidic electrochemical cell for the evaluation of enzyme kinetics
    • He, P.; Greenway, G.; Haswell, S. J. Development of enzyme immobilized monolith microreactors integrated with microfluidic electrochemical cell for the evaluation of enzyme kinetics. Microfluid. Nanofluid. 2010, 8, 565-573.
    • (2010) Microfluid. Nanofluid. , vol.8 , pp. 565-573
    • He, P.1    Greenway, G.2    Haswell, S.J.3
  • 160
    • 76349083394 scopus 로고    scopus 로고
    • Microreactor with mesoporous silica support layer for lipase catalyzed enantioselective transesterification
    • Kataoka, S.; Takeuchi, Y.; Harada, A.; Yamada, M.; Endo, A. Microreactor with mesoporous silica support layer for lipase catalyzed enantioselective transesterification. Green Chem. 2010, 12, 331-337.
    • (2010) Green Chem. , vol.12 , pp. 331-337
    • Kataoka, S.1    Takeuchi, Y.2    Harada, A.3    Yamada, M.4    Endo, A.5
  • 161
    • 78650192703 scopus 로고    scopus 로고
    • A novel enzymatic microreactor with Aspergillus oryzae P-galactosidase immobilized on silicon dioxide nanosprings
    • Schilke, K. F.; Wilson, K. L.; Cantrell, T.; Corti, G.; McIlroy, D. N.; Kelly, C. A novel enzymatic microreactor with Aspergillus oryzae P-galactosidase immobilized on silicon dioxide nanosprings. Biotechnol Prog. 2010, 26, 1597-1605.
    • (2010) Biotechnol Prog. , vol.26 , pp. 1597-1605
    • Schilke, K.F.1    Wilson, K.L.2    Cantrell, T.3    Corti, G.4    McIlroy, D.N.5    Kelly, C.6
  • 162
    • 79952449009 scopus 로고    scopus 로고
    • Continuous membrane microbioreactor system for development of integrated pectin modification and separation processes
    • Alam, M. N. H. Z.; Pinelo, M., Samantha, K.; Jonsson, G.; Meyer, A.; Gernaey, K. V. A. Continuous Membrane Microbioreactor system for Development of Integrated Pectin Modification and Separation Processes. Chem. Eng. J. 2011, 167, 418-426.
    • (2011) Chem. Eng. J. , vol.167 , pp. 418-426
    • Alam, M.N.H.Z.1    Pinelo, M.2    Samantha, K.3    Jonsson, G.4    Meyer, A.5    Gernaey, K.V.A.6
  • 164
  • 165
    • 75949110372 scopus 로고    scopus 로고
    • The development and evaluation of a continuous flow process for the lipase-mediated oxidation of alkenes
    • Wiles, C; Hammond, M. J.; Watts, P. The development and evaluation of a continuous flow process for the lipase-mediated oxidation of alkenes. Beilstein J. Org. Chem. 2009, 5, 27-39.
    • (2009) Beilstein J. Org. Chem. , vol.5 , pp. 27-39
    • Wiles, C.1    Hammond, M.J.2    Watts, P.3
  • 168
    • 75449105795 scopus 로고    scopus 로고
    • Development of a high throughput screening tool for biotransformations utilizing a thermophilic L-aminoacylase enzyme
    • Ngamsom, B.; Hickey, A. M.; Greenway, G. M.; Littlechild, J. A.; Watts, P.; Wiles, C. Development of a high throughput screening tool for biotransformations utilizing a thermophilic L-aminoacylase enzyme. J. Mol. Catal. B Enzym. 2010, 63, 81-86.
    • (2010) J. Mol. Catal. B Enzym. , vol.63 , pp. 81-86
    • Ngamsom, B.1    Hickey, A.M.2    Greenway, G.M.3    Littlechild, J.A.4    Watts, P.5    Wiles, C.6
  • 169
    • 79952441669 scopus 로고    scopus 로고
    • Biocatalytic microreactor incorporating HRP anchored onmicro-/nano- lithographic patterns for flow oxidation of phenols
    • Tudorache, M.; Mahalu, D.; Teodorescu, C.; Stan, R.; Bala, C.; Parvulescu, V. I. Biocatalytic microreactor incorporating HRP anchored onmicro-/nano-lithographic patterns for flow oxidation of phenols. J. Mol. Catal. B Enzym. 2011, 69, 133-139.
    • (2011) J. Mol. Catal. B Enzym. , vol.69 , pp. 133-139
    • Tudorache, M.1    Mahalu, D.2    Teodorescu, C.3    Stan, R.4    Bala, C.5    Parvulescu, V.I.6
  • 170
    • 35048846130 scopus 로고    scopus 로고
    • Silica-immobilized enzymes for multi-step synthesis in microfluidic devices
    • DOI 10.1002/bit.21447
    • Luckarift, H. R.; Ku, B. S.; Dordick, J. S.; Spain, J. C. Silica-immobilized enzymes for multi-step synthesis in microfluidic devices. Biotechnol. Bioeng. 2007, 98, 701-705. (Pubitemid 47556137)
    • (2007) Biotechnology and Bioengineering , vol.98 , Issue.3 , pp. 701-705
    • Luckarift, H.R.1    Ku, B.S.2    Dordick, J.S.3    Spain, J.C.4
  • 171
    • 64549089736 scopus 로고    scopus 로고
    • Coated-wall microreactor for continuous biocatalytic transformations using immobilized enzymes
    • Thomsen, M. S.; Nidetzky, B. Coated-wall microreactor for continuous biocatalytic transformations using immobilized enzymes. Biotechnol. J. 2009, 4, 98-107.
    • (2009) Biotechnol. J. , vol.4 , pp. 98-107
    • Thomsen, M.S.1    Nidetzky, B.2
  • 172
    • 67650825702 scopus 로고    scopus 로고
    • Enzymatic synthesis of β-glucosylglycerol using a continuous-flow microreactor containing thermostable β-glycoside hydrolase CelB immobilized on coated microchannel walls
    • Schwarz, A.; Thomsen, M. S.; Nidetzky, B. Enzymatic synthesis of β-glucosylglycerol using a continuous-flow microreactor containing thermostable β-glycoside hydrolase CelB immobilized on coated microchannel walls. Biotechnol. Bioeng. 2009, 103, 865-872.
    • (2009) Biotechnol. Bioeng. , vol.103 , pp. 865-872
    • Schwarz, A.1    Thomsen, M.S.2    Nidetzky, B.3
  • 173
    • 79955971581 scopus 로고    scopus 로고
    • L-Malic acid production within a microreactor with surface immobilised fumarase
    • Stojkovic, G.; Plazl, I.; Znidarsic-Plazl, P. L-Malic acid production within a microreactor with surface immobilised fumarase. Microfluid. Nanofluid. 2011, 10, 627-635.
    • (2011) Microfluid. Nanofluid. , vol.10 , pp. 627-635
    • Stojkovic, G.1    Plazl, I.2    Znidarsic-Plazl, P.3
  • 174
    • 43049164276 scopus 로고    scopus 로고
    • Characterization of mesoporous catalyst supports on microreactor walls
    • Kataoka, S.; Endo, A.; Harada, A.; Inagi, Y.; Ohmori, T. Characterization of mesoporous catalyst supports on microreactor walls. Appl. Catal. A Gen. 2008, 342, 107-112
    • (2008) Appl. Catal. A Gen. , vol.342 , pp. 107-112
    • Kataoka, S.1    Endo, A.2    Harada, A.3    Inagi, Y.4    Ohmori, T.5
  • 175
    • 78049235505 scopus 로고    scopus 로고
    • Lipase immobilized microstructured fiber based flow-through microreactor for facile lipid transformations J
    • Mugo, S. M.; Ayton, K. Lipase immobilized microstructured fiber based flow-through microreactor for facile lipid transformations J. Mol. Catal. B: Enzym. 2010, 67, 202-207.
    • (2010) Mol. Catal. B: Enzym. , vol.67 , pp. 202-207
    • Mugo, S.M.1    Ayton, K.2
  • 176
    • 77949735167 scopus 로고    scopus 로고
    • Immobilization of yeast cells within microchannels of different materials
    • Stojkovic, P.; Znidarsic-Plazl, P. Immobilization of yeast cells within microchannels of different materials. Acta Chim. Slov. 2010, 57, 144-149.
    • (2010) Acta Chim. Slov. , vol.57 , pp. 144-149
    • Stojkovic, P.1    Znidarsic-Plazl, P.2
  • 177
    • 33748428332 scopus 로고    scopus 로고
    • Surface engineering of microchannel walls for protein separation and
    • DOI 10.1002/jssc.200600150
    • Huang, T. T.; Mosier, N. S.; Ladisch, M. R. Surface engineering of microchannel walls for protein separation and directed microfluidic flow. J. Sep. Sci. 2006, 29, 1733-1742. (Pubitemid 44340019)
    • (2006) Journal of Separation Science , vol.29 , Issue.12 , pp. 1733-1742
    • Huang, T.T.1    Mosler, N.S.2    Ladisch, M.R.3
  • 179
    • 77649183889 scopus 로고    scopus 로고
    • Development of a monolith based immobilized lipase microreactor for biocatalytic reactions in a biphasic mobile system
    • He, P.; Greenway, G.; Haswell, S. J. Development of a monolith based immobilized lipase microreactor for biocatalytic reactions in a biphasic mobile system. Process Biochem. 2010, 45, 593-597.
    • (2010) Process Biochem. , vol.45 , pp. 593-597
    • He, P.1    Greenway, G.2    Haswell, S.J.3
  • 182
    • 69249208514 scopus 로고    scopus 로고
    • Modelling and experimental studies on lipase-catalyzed isoamyl acetate synthesis in a microreactor
    • Znidarsic-Plazl, P.; Plazl, I. Modelling and experimental studies on lipase-catalyzed isoamyl acetate synthesis in a microreactor. Process Biochem. 2009, 44, 1115-1121.
    • (2009) Process Biochem. , vol.44 , pp. 1115-1121
    • Znidarsic-Plazl, P.1    Plazl, I.2
  • 184
    • 72849126049 scopus 로고    scopus 로고
    • Lipase-catalyzed synthesis of isoamyl acetate in an ionic liquid/n-heptane two-phase system at the microreactor scale
    • Pohar, A.; Plazl, I.; Znidarsic-Plazl, P. Lipase-catalyzed synthesis of isoamyl acetate in an ionic liquid/n-heptane two-phase system at the microreactor scale. Lab Chip 2009, 9, 3385-3390.
    • (2009) Lab Chip , vol.9 , pp. 3385-3390
    • Pohar, A.1    Plazl, I.2    Znidarsic-Plazl, P.3
  • 186
    • 44049108894 scopus 로고    scopus 로고
    • Micro biochemical engineering to accelerate the design of industrial-scale downstream processes for biopharmaceutical proteins
    • DOI 10.1002/bit.21788
    • Titchener-Hooker, N. J.; Dunnill, P.; Hoare, M. Micro biochemical engineering to accelerate the design of industrial-scale downstream processes for biopharmaceutical proteins. Biotechnol. Bioeng. 2008, 100, 473-487. (Pubitemid 351792924)
    • (2008) Biotechnology and Bioengineering , vol.100 , Issue.3 , pp. 473-487
    • Titchener-Hooker, N.J.1    Dunnill, P.2    Hoare, M.3
  • 187
    • 79951674715 scopus 로고    scopus 로고
    • High-throughput process development for biopharmaceutical drug substances
    • Bhambure, R.; Kumar, K.; Rathore, A. S. High-throughput process development for biopharmaceutical drug substances. Trends Biotechnol. 2011, 29, 127-135.
    • (2011) Trends Biotechnol. , vol.29 , pp. 127-135
    • Bhambure, R.1    Kumar, K.2    Rathore, A.S.3
  • 188
    • 64549104303 scopus 로고    scopus 로고
    • Design and characterization of a microfluidic packed bed system for protein breakthrough and dynamic binding capacity determination
    • Shapiro, M. S.; Haswell, S. J.; Lye, G. J.; Bracewell, D. G. Design and characterization of a microfluidic packed bed system for protein breakthrough and dynamic binding capacity determination. Biotechnol. Prog. 2009, 25, 277-285.
    • (2009) Biotechnol. Prog. , vol.25 , pp. 277-285
    • Shapiro, M.S.1    Haswell, S.J.2    Lye, G.J.3    Bracewell, D.G.4
  • 189
    • 78751638354 scopus 로고    scopus 로고
    • Microfluidic chromatography for early stage evaluation of biopharmaceutical binding and separation conditions
    • Shapiro, M. S.; Haswell, S. J.; Lye, G. J.; Bracewell, D. G. Microfluidic Chromatography for Early Stage Evaluation of Biopharmaceutical Binding and Separation Conditions. Sep. Sci. Technol. 2011, 46, 185-194.
    • (2011) Sep. Sci. Technol. , vol.46 , pp. 185-194
    • Shapiro, M.S.1    Haswell, S.J.2    Lye, G.J.3    Bracewell, D.G.4
  • 190
    • 41149172373 scopus 로고    scopus 로고
    • Rapid, continuous purification of proteins in a microfluidic device using genetically-engineered partition tags
    • DOI 10.1039/b716462a
    • Meagher, R. J.; Light, Y. K.; Singh, A. K. Rapid, continuous purification of proteins in a microfluidic device using genetically-engineered partition tags. Lab Chip 2008, 8, 527-532. (Pubitemid 351442768)
    • (2008) Lab on a Chip - Miniaturisation for Chemistry and Biology , vol.8 , Issue.4 , pp. 527-532
    • Meagher, R.J.1    Light, Y.K.2    Singh, A.K.3
  • 191
    • 77957859668 scopus 로고    scopus 로고
    • Rapid separation of bacteriorhodopsin using a laminar-flow extraction system in a microfluidic device
    • Huh, Y. S.; Jeong, C. M.; Chang, H. N.; Lee, S. Y.; Hong, W. H.; Park, T. J. Rapid separation of bacteriorhodopsin using a laminar-flow extraction system in a microfluidic device. Biomicrofluidics 2010, 4, 14103.
    • (2010) Biomicrofluidics , vol.4 , pp. 14103
    • Huh, Y.S.1    Jeong, C.M.2    Chang, H.N.3    Lee, S.Y.4    Hong, W.H.5    Park, T.J.6
  • 192
    • 78650418004 scopus 로고    scopus 로고
    • Rapid, highly efficient extraction and purification of membrane proteins using a microfluidic continuous-flow based aqueous twophase system
    • Hu, R.; Feng, X.; Chen, P.; Fu, M.; Chen, H.; Guo, L.; Liu, B. F. Rapid, highly efficient extraction and purification of membrane proteins using a microfluidic continuous-flow based aqueous twophase system. J. Chromatogr. A 2011, 1218, 171-177.
    • (2011) J. Chromatogr. A , vol.1218 , pp. 171-177
    • Hu, R.1    Feng, X.2    Chen, P.3    Fu, M.4    Chen, H.5    Guo, L.6    Liu, B.F.7
  • 193
    • 24144457591 scopus 로고    scopus 로고
    • Continuous-flow fractionation of animal cells in microfluidic device using aqueous two-phase extraction
    • DOI 10.1007/s10544-005-3025-6
    • Nam, K.-H.; Chang, W.-J.; Hong, H.; Lim, S.-M.; Kim, D.-I.; Koo, Y.-M. Continuous-flow fractionation of animal cells in microfluidic device using aqueous two-phase extraction. Biomed. Microdevices 2005, 7, 189-195. (Pubitemid 41236287)
    • (2005) Biomedical Microdevices , vol.7 , Issue.3 , pp. 189-195
    • Nam, K.-H.1    Chang, W.-J.2    Hong, H.3    Lim, S.-M.4    Kim, D.-I.5    Koo, Y.-M.6
  • 195
    • 62649093040 scopus 로고    scopus 로고
    • Microfluidic aqueous two phase system for leukocyte concentration from whole blood
    • SooHoo, J.; Walker, G. Microfluidic aqueous two phase system for leukocyte concentration from whole blood. Biomed. Microdevices 2009, 11, 323-329.
    • (2009) Biomed. Microdevices , vol.11 , pp. 323-329
    • SooHoo, J.1    Walker, G.2
  • 197
    • 78049272756 scopus 로고    scopus 로고
    • Development of a continuous steroid biotransformation process and product extraction within microchannel system
    • Znidarsic-Plazl, P.; Plazl, I. Development of a continuous steroid biotransformation process and product extraction within microchannel system. Catal. Today 2010, 157, 315-320.
    • (2010) Catal. Today , vol.157 , pp. 315-320
    • Znidarsic-Plazl, P.1    Plazl, I.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.