메뉴 건너뛰기




Volumn 278, Issue 19, 2011, Pages 3579-3595

Mechanisms for ATP-dependent chromatin remodelling: The means to the end

Author keywords

ATP dependent chromatin remodelling; Chd1; histone; Iswi; nucleosome; Snf2; SWI SNF

Indexed keywords

ADENOSINE TRIPHOSPHATASE; ADENOSINE TRIPHOSPHATE; HISTONE; TRANSCRIPTION FACTOR SNF; TRANSCRIPTION FACTOR SNF 2; UNCLASSIFIED DRUG;

EID: 80052970429     PISSN: 1742464X     EISSN: 17424658     Source Type: Journal    
DOI: 10.1111/j.1742-4658.2011.08281.x     Document Type: Review
Times cited : (97)

References (132)
  • 1
    • 0021659727 scopus 로고
    • Five SWI genes are required for expression of the HO gene in yeast
    • DOI 10.1016/0022-2836(84)90315-2
    • Stern M, Jensen R, &, Herskowitz I, (1984) Five SWI genes are required for expression of the HO gene in yeast. J Mol Biol 178, 853-868. (Pubitemid 16223334)
    • (1984) Journal of Molecular Biology , vol.178 , Issue.4 , pp. 853-868
    • Stern, M.1    Jensen, R.2    Herskowitz, I.3
  • 2
    • 0023666079 scopus 로고
    • Both positive and negative regulators of HO transcription are required for mother-cell-specific mating-type switching in yeast
    • Nasmyth K, Stillman D, &, Kipling D, (1987) Both positive and negative regulators of HO transcription are required for mother-cell-specific mating-type switching in yeast. Cell 48, 579-587.
    • (1987) Cell , vol.48 , pp. 579-587
    • Nasmyth, K.1    Stillman, D.2    Kipling, D.3
  • 3
    • 0021715020 scopus 로고
    • Genes affecting the regulation of SUC2 gene expression by glucose repression in Saccharomyces cerevisiae
    • Neigeborn L, &, Carlson M, (1984) Genes affecting the regulation of SUC2 gene expression by glucose repression in Saccharomyces cerevisiae. Genetics 108, 845-858. (Pubitemid 15178605)
    • (1984) Genetics , vol.108 , Issue.4 , pp. 845-858
    • Neigeborn, L.1    Carlson, M.2
  • 4
    • 0022816857 scopus 로고
    • Molecular analysis of SNF2 and SNF5, genes required for expression of glucose-repressible genes in Saccharomyces cerevisiae
    • Abrams E, Neigeborn L, &, Carlson M, (1986) Molecular analysis of SNF2 and SNF5, genes required for expression of glucose-repressible genes in Saccharomyces cerevisiae. Mol Cell Biol 6, 3643-3651.
    • (1986) Mol Cell Biol , vol.6 , pp. 3643-3651
    • Abrams, E.1    Neigeborn, L.2    Carlson, M.3
  • 5
    • 0023666071 scopus 로고
    • Activation of the yeast HO gene by release from multiple negative controls
    • Sternberg PW, Stern MJ, Clark I, &, Herskowitz I, (1987) Activation of the yeast HO gene by release from multiple negative controls. Cell 48, 567-577.
    • (1987) Cell , vol.48 , pp. 567-577
    • Sternberg, P.W.1    Stern, M.J.2    Clark, I.3    Herskowitz, I.4
  • 6
    • 0022606866 scopus 로고
    • Suppressors of SNF2 mutations restore invertase derepression and cause temperature-sensitive lethality in yeast
    • Neigeborn L, Rubin K, &, Carlson M, (1986) Suppressors of SNF2 mutations restore invertase derepression and cause temperature-sensitive lethality in yeast. Genetics 112, 741-753. (Pubitemid 16111275)
    • (1986) Genetics , vol.112 , Issue.4 , pp. 741-753
    • Neigeborn, L.1    Rubin, K.2    Carlson, M.3
  • 7
    • 0028801404 scopus 로고
    • Amino acid substitutions in the structured domains of histones H3 and H4 partially relieve the requirement of the yeast SWI/SNF complex for transcription
    • Kruger W, Peterson CL, Sil A, Coburn C, Arents G, Moudrianakis EN, &, Herskowitz I, (1995) Amino acid substitutions in the structured domains of histones H3 and H4 partially relieve the requirement of the yeast SWI/SNF complex for transcription. Genes Dev 9, 2770-2779.
    • (1995) Genes Dev , vol.9 , pp. 2770-2779
    • Kruger, W.1    Peterson, C.L.2    Sil, A.3    Coburn, C.4    Arents, G.5    Moudrianakis, E.N.6    Herskowitz, I.7
  • 8
    • 0027068143 scopus 로고
    • Evidence that SNF2/SWI2 and SNF5 activate transcription in yeast by altering chromatin structure
    • Hirschhorn JN, Brown SA, Clark CD, &, Winston F, (1992) Evidence that SNF2/SWI2 and SNF5 activate transcription in yeast by altering chromatin structure. Genes Dev 6, 2288-2298. (Pubitemid 23037395)
    • (1992) Genes and Development , vol.6 , Issue.12 , pp. 2288-2298
    • Hirschhorn, J.N.1    Brown, S.A.2    Clark, C.D.3    Winston, F.4
  • 9
    • 0026641776 scopus 로고
    • Yeast SNF/SWI transcriptional activators and the SPT/SIN chromatin connection
    • Winston F, &, Carlson M, (1992) Yeast SNF/SWI transcriptional activators and the SPT/SIN chromatin connection. Trends Genet 8, 387-391.
    • (1992) Trends Genet , vol.8 , pp. 387-391
    • Winston, F.1    Carlson, M.2
  • 10
    • 67650725820 scopus 로고    scopus 로고
    • The biology of chromatin remodeling complexes
    • Clapier CR, &, Cairns BR, (2009) The biology of chromatin remodeling complexes. Annu Rev Biochem 78, 273-304.
    • (2009) Annu Rev Biochem , vol.78 , pp. 273-304
    • Clapier, C.R.1    Cairns, B.R.2
  • 11
  • 12
    • 0033231625 scopus 로고    scopus 로고
    • Two functionally distinct forms of the RSC nucleosome-remodeling complex, containing essential at hook, BAH, and bromodomains
    • Cairns BR, Schlichter A, Erdjument-Bromage H, Tempst P, Kornberg RD, &, Winston F, (1999) Two functionally distinct forms of the RSC nucleosome-remodeling complex, containing essential AT hook, BAH, and bromodomains. Mol Cell 4, 715-723.
    • (1999) Mol Cell , vol.4 , pp. 715-723
    • Cairns, B.R.1    Schlichter, A.2    Erdjument-Bromage, H.3    Tempst, P.4    Kornberg, R.D.5    Winston, F.6
  • 14
    • 0032512794 scopus 로고    scopus 로고
    • New DNA sequence rules for high affinity binding to histone octamer and sequence-directed nucleosome positioning
    • DOI 10.1006/jmbi.1997.1494
    • Lowary PT, &, Widom J, (1998) New DNA sequence rules for high affinity binding to histone octamer and sequence-directed nucleosome positioning. J Mol Biol 276, 19-42. (Pubitemid 28085408)
    • (1998) Journal of Molecular Biology , vol.276 , Issue.1 , pp. 19-42
    • Lowary, P.T.1    Widom, J.2
  • 15
    • 0031587289 scopus 로고    scopus 로고
    • Characterization of nucleosome core particles containing histone proteins made in bacteria
    • DOI 10.1006/jmbi.1997.1235
    • Luger K, Rechsteiner TJ, Flaus AJ, Waye MM, &, Richmond TJ, (1997) Characterization of nucleosome core particles containing histone proteins made in bacteria. J Mol Biol 272, 301-311. (Pubitemid 27410045)
    • (1997) Journal of Molecular Biology , vol.272 , Issue.3 , pp. 301-311
    • Luger, K.1    Rechsteiner, T.J.2    Flaus, A.J.3    Waye, M.M.Y.4    Richmond, T.J.5
  • 18
    • 34547099311 scopus 로고    scopus 로고
    • Acetylated histone tail peptides induce structural rearrangements in the RSC chromatin remodeling complex
    • DOI 10.1074/jbc.C700081200
    • Skiniotis G, Moazed D, &, Walz T, (2007) Acetylated histone tail peptides induce structural rearrangements in the RSC chromatin remodeling complex. J Biol Chem 282, 20804-20808. (Pubitemid 47099895)
    • (2007) Journal of Biological Chemistry , vol.282 , Issue.29 , pp. 20804-20808
    • Skiniotis, G.1    Moazed, D.2    Walz, T.3
  • 20
    • 13844255150 scopus 로고    scopus 로고
    • Structural studies of the human PBAF chromatin-remodeling complex
    • DOI 10.1016/j.str.2004.12.008
    • Leschziner AE, Lemon B, Tjian R, &, Nogales E, (2005) Structural studies of the human PBAF chromatin-remodeling complex. Structure 13, 267-275. (Pubitemid 40247702)
    • (2005) Structure , vol.13 , Issue.2 , pp. 267-275
    • Leschziner, A.E.1    Lemon, B.2    Tjian, R.3    Nogales, E.4
  • 22
    • 80052651122 scopus 로고    scopus 로고
    • Diversity of operation in ATP-dependent chromatin remodelers
    • doi
    • Hota SK, &, Bartholomew B, (2011) Diversity of operation in ATP-dependent chromatin remodelers. Biochim Biophys Acta, doi:.
    • (2011) Biochim Biophys Acta
    • Hota, S.K.1    Bartholomew, B.2
  • 23
    • 79952205478 scopus 로고    scopus 로고
    • SnapShot: Chromatin remodeling: SWI/SNF
    • Kasten MM, Clapier CR, &, Cairns BR, (2011) SnapShot: chromatin remodeling: SWI/SNF. Cell 144, 310e1.
    • (2011) Cell , vol.144
    • Kasten, M.M.1    Clapier, C.R.2    Cairns, B.R.3
  • 26
    • 15244346915 scopus 로고    scopus 로고
    • Swapping function of two chromatin remodeling complexes
    • DOI 10.1016/j.molcel.2005.02.024
    • Fan HY, Trotter KW, Archer TK, &, Kingston RE, (2005) Swapping function of two chromatin remodeling complexes. Mol Cell 17, 805-815. (Pubitemid 40386942)
    • (2005) Molecular Cell , vol.17 , Issue.6 , pp. 805-815
    • Fan, H.-Y.1    Trotter, K.W.2    Archer, T.K.3    Kingston, R.E.4
  • 27
    • 0029157378 scopus 로고
    • Evolution of the SNF2 family of proteins: Subfamilies with distinct sequences and functions
    • Eisen JA, Sweder KS, &, Hanawalt PC, (1995) Evolution of the SNF2 family of proteins: subfamilies with distinct sequences and functions. Nucleic Acids Res 23, 2715-2723.
    • (1995) Nucleic Acids Res , vol.23 , pp. 2715-2723
    • Eisen, J.A.1    Sweder, K.S.2    Hanawalt, P.C.3
  • 28
    • 33745122231 scopus 로고    scopus 로고
    • Identification of multiple distinct Snf2 subfamilies with conserved structural motifs
    • DOI 10.1093/nar/gkl295
    • Flaus A, Martin DM, Barton GJ, &, Owen-Hughes T, (2006) Identification of multiple distinct Snf2 subfamilies with conserved structural motifs. Nucleic Acids Res 34, 2887-2905. (Pubitemid 44540417)
    • (2006) Nucleic Acids Research , vol.34 , Issue.10 , pp. 2887-2905
    • Flaus, A.1    Martin, D.M.A.2    Barton, G.J.3    Owen-Hughes, T.4
  • 29
    • 79952539053 scopus 로고    scopus 로고
    • ATP-dependent chromatin remodeling: Genetics, genomics and mechanisms
    • Hargreaves DC, &, Crabtree GR, (2011) ATP-dependent chromatin remodeling: genetics, genomics and mechanisms. Cell Res 21, 396-420.
    • (2011) Cell Res , vol.21 , pp. 396-420
    • Hargreaves, D.C.1    Crabtree, G.R.2
  • 31
    • 0037428383 scopus 로고    scopus 로고
    • Deficient in DNA methylation 1 (DDM1) defines a novel family of chromatin-remodeling factors
    • DOI 10.1074/jbc.M209260200
    • Brzeski J, &, Jerzmanowski A, (2003) Deficient in DNA methylation 1 (DDM1) defines a novel family of chromatin-remodeling factors. J Biol Chem 278, 823-828. (Pubitemid 36790755)
    • (2003) Journal of Biological Chemistry , vol.278 , Issue.2 , pp. 823-828
    • Brzeski, J.1    Jerzmanowski, A.2
  • 33
    • 0027182114 scopus 로고
    • Helicases: Amino acid sequence comparisons and structure-function relationships
    • Gorbalenya AE, &, Koonin EV, (1993) Helicases: amino acid sequence comparisons and structure-function relationships. Curr Opin Struct Biol 3, 419-429. (Pubitemid 23207576)
    • (1993) Current Opinion in Structural Biology , vol.3 , Issue.3 , pp. 419-429
    • Gorbalenya, A.E.1    Koonin, E.V.2
  • 34
    • 34548638261 scopus 로고    scopus 로고
    • Structure and mechanism of helicases and nucleic acid translocases
    • Singleton MR, Dillingham MS, &, Wigley DB, (2007) Structure and mechanism of helicases and nucleic acid translocases. Annu Rev Biochem 76, 23-50.
    • (2007) Annu Rev Biochem , vol.76 , pp. 23-50
    • Singleton, M.R.1    Dillingham, M.S.2    Wigley, D.B.3
  • 35
    • 0035313855 scopus 로고    scopus 로고
    • Mechanisms for ATP-dependent chromatin remodelling
    • DOI 10.1016/S0959-437X(00)00172-6
    • Flaus A, &, Owen-Hughes T, (2001) Mechanisms for ATP-dependent chromatin remodelling. Curr Opin Genet Dev 11, 148-154. (Pubitemid 32209198)
    • (2001) Current Opinion in Genetics and Development , vol.11 , Issue.2 , pp. 148-154
    • Flaus, A.1    Owen-Hughes, T.2
  • 36
    • 4444289406 scopus 로고    scopus 로고
    • ATP-dependent nucleosome remodelling: Factors and functions
    • DOI 10.1242/jcs.01175
    • Eberharter A, &, Becker PB, (2004) ATP-dependent nucleosome remodelling: factors and functions. J Cell Sci 117, 3707-3711. (Pubitemid 39207309)
    • (2004) Journal of Cell Science , vol.117 , Issue.17 , pp. 3707-3711
    • Eberharter, A.1    Becker, P.B.2
  • 38
    • 0029809505 scopus 로고    scopus 로고
    • Functional analysis of the DNA-stimulated ATPase domain of yeast SW12/SNF2
    • DOI 10.1093/nar/24.19.3685
    • Richmond E, &, Peterson CL, (1996) Functional analysis of the DNA-stimulated ATPase domain of yeast SWI2/SNF2. Nucleic Acids Res 24, 3685-3692. (Pubitemid 26335375)
    • (1996) Nucleic Acids Research , vol.24 , Issue.19 , pp. 3685-3692
    • Richmond, E.1    Peterson, C.L.2
  • 39
    • 18844457346 scopus 로고    scopus 로고
    • X-Ray structures of the sulfolobus solfataricus SWI2/SNF2 ATPase core and its complex with DNA
    • DOI 10.1016/j.cell.2005.03.026, PII S0092867405002989
    • Durr H, Korner C, Muller M, Hickmann V, &, Hopfner KP, (2005) X-ray structures of the Sulfolobus solfataricus SWI2/SNF2 ATPase core and its complex with DNA. Cell 121, 363-373. (Pubitemid 40692297)
    • (2005) Cell , vol.121 , Issue.3 , pp. 363-373
    • Durr, H.1    Korner, C.2    Muller, M.3    Hickmann, V.4    Hopfner, K.-P.5
  • 40
    • 33749150994 scopus 로고    scopus 로고
    • Snf2 family ATPases and DExx box helicases: Differences and unifying concepts from high-resolution crystal structures
    • DOI 10.1093/nar/gkl540
    • Durr H, Flaus A, Owen-Hughes T, &, Hopfner KP, (2006) Snf2 family ATPases and DExx box helicases: differences and unifying concepts from high-resolution crystal structures. Nucleic Acids Res 34, 4160-4167. (Pubitemid 44542195)
    • (2006) Nucleic Acids Research , vol.34 , Issue.15 , pp. 4160-4167
    • Durr, H.1    Flaus, A.2    Owen-Hughes, T.3    Hopfner, K.-P.4
  • 41
    • 77956522905 scopus 로고    scopus 로고
    • The chromodomains of the Chd1 chromatin remodeler regulate DNA access to the ATPase motor
    • Hauk G, McKnight JN, Nodelman IM, &, Bowman GD, (2010) The chromodomains of the Chd1 chromatin remodeler regulate DNA access to the ATPase motor. Mol Cell 39, 711-723.
    • (2010) Mol Cell , vol.39 , pp. 711-723
    • Hauk, G.1    McKnight, J.N.2    Nodelman, I.M.3    Bowman, G.D.4
  • 43
    • 0036441510 scopus 로고    scopus 로고
    • Autoinhibitory domains: Modular effectors of cellular regulation
    • DOI 10.1146/annurev.cellbio.18.031502.133614
    • Pufall MA, &, Graves BJ, (2002) Autoinhibitory domains: modular effectors of cellular regulation. Annu Rev Cell Dev Biol 18, 421-462. (Pubitemid 35387357)
    • (2002) Annual Review of Cell and Developmental Biology , vol.18 , pp. 421-462
    • Pufall, M.A.1    Graves, B.J.2
  • 44
    • 38949139024 scopus 로고    scopus 로고
    • The HSA domain of BRG1 mediates critical interactions required for glucocorticoid receptor-dependent transcriptional activation in vivo
    • DOI 10.1128/MCB.01301-07
    • Trotter KW, Fan HY, Ivey ML, Kingston RE, &, Archer TK, (2008) The HSA domain of BRG1 mediates critical interactions required for glucocorticoid receptor-dependent transcriptional activation in vivo. Mol Cell Biol 28, 1413-1426. (Pubitemid 351214142)
    • (2008) Molecular and Cellular Biology , vol.28 , Issue.4 , pp. 1413-1426
    • Trotter, K.W.1    Fan, H.-Y.2    Ivey, M.L.3    Kingston, R.E.4    Archer, T.K.5
  • 45
    • 0031558565 scopus 로고    scopus 로고
    • Nucleosomes: A solution to a crowded intracellular environment?
    • DOI 10.1006/jtbi.1997.0525
    • Minsky A, Ghirlando R, &, Reich Z, (1997) Nucleosomes: a solution to a crowded intracellular environment? J Theor Biol 188, 379-385. (Pubitemid 27491572)
    • (1997) Journal of Theoretical Biology , vol.188 , Issue.3 , pp. 379-385
    • Minsky, A.1    Ghirlando, R.2    Reich, Z.3
  • 46
    • 33748706963 scopus 로고    scopus 로고
    • Archaeal histones and the origin of the histone fold
    • DOI 10.1016/j.mib.2006.08.003, PII S1369527406001251, Antimicrobials/Genomics
    • Sandman K, &, Reeve JN, (2006) Archaeal histones and the origin of the histone fold. Curr Opin Microbiol 9, 520-525. (Pubitemid 44397634)
    • (2006) Current Opinion in Microbiology , vol.9 , Issue.5 , pp. 520-525
    • Sandman, K.1    Reeve, J.N.2
  • 47
    • 50649100744 scopus 로고    scopus 로고
    • Mechanism of eukaryotic homologous recombination
    • San Filippo J, Sung P, &, Klein H, (2008) Mechanism of eukaryotic homologous recombination. Annu Rev Biochem 77, 229-257.
    • (2008) Annu Rev Biochem , vol.77 , pp. 229-257
    • San Filippo, J.1    Sung, P.2    Klein, H.3
  • 48
    • 66049096618 scopus 로고    scopus 로고
    • The basal initiation machinery: Beyond the general transcription factors
    • Sikorski TW, &, Buratowski S, (2009) The basal initiation machinery: beyond the general transcription factors. Curr Opin Cell Biol 21, 344-351.
    • (2009) Curr Opin Cell Biol , vol.21 , pp. 344-351
    • Sikorski, T.W.1    Buratowski, S.2
  • 49
    • 80052657051 scopus 로고    scopus 로고
    • One small step for Mot1; One giant leap for other Swi2/Snf2 enzymes?
    • doi
    • Viswanathan R, &, Auble DT, (2011) One small step for Mot1; one giant leap for other Swi2/Snf2 enzymes? Biochim Biophys Acta, doi:.
    • (2011) Biochim Biophys Acta
    • Viswanathan, R.1    Auble, D.T.2
  • 50
    • 33746666589 scopus 로고    scopus 로고
    • When transcription and repair meet: A complex system
    • Laine JP, &, Egly JM, (2006) When transcription and repair meet: a complex system. Trends Genet 22, 430-436.
    • (2006) Trends Genet , vol.22 , pp. 430-436
    • Laine, J.P.1    Egly, J.M.2
  • 51
    • 0035893255 scopus 로고    scopus 로고
    • RapA, a bacterial homolog of SWI2/SNF2, stimulates RNA polymerase recycling in transcription
    • DOI 10.1101/gad.936701
    • Sukhodolets MV, Cabrera JE, Zhi H, &, Jin DJ, (2001) RapA, a bacterial homolog of SWI2/SNF2, stimulates RNA polymerase recycling in transcription. Genes Dev 15, 3330-3341. (Pubitemid 34008197)
    • (2001) Genes and Development , vol.15 , Issue.24 , pp. 3330-3341
    • Sukhodolets, M.V.1    Cabrera, J.E.2    Zhi, H.3    Ding Jun Jin4
  • 53
    • 80052675107 scopus 로고    scopus 로고
    • Structure and function of RapA: A bacterial Swi2/Snf2 protein required for RNA polymerase recycling in transcription
    • doi
    • Jin DJ, Zhou YN, Shaw G, &, Ji X, (2011) Structure and function of RapA: a bacterial Swi2/Snf2 protein required for RNA polymerase recycling in transcription. Biochim Biophys Acta, doi:.
    • (2011) Biochim Biophys Acta
    • Jin, D.J.1    Zhou, Y.N.2    Shaw, G.3    Ji, X.4
  • 54
    • 69049091036 scopus 로고    scopus 로고
    • RapA, the SWI/SNF subunit of Escherichia coli RNA polymerase, promotes the release of nascent RNA from transcription complexes
    • Yawn B, Zhang L, Mura C, &, Sukhodolets MV, (2009) RapA, the SWI/SNF subunit of Escherichia coli RNA polymerase, promotes the release of nascent RNA from transcription complexes. Biochemistry 48, 7794-7806.
    • (2009) Biochemistry , vol.48 , pp. 7794-7806
    • Yawn, B.1    Zhang, L.2    Mura, C.3    Sukhodolets, M.V.4
  • 55
    • 11844252069 scopus 로고    scopus 로고
    • Crystal structure and functional implications of Pyrococcus furiosus Hef helicase domain involved in branched DNA processing
    • DOI 10.1016/j.str.2004.11.008, PII S0969212604003934
    • Nishino T, Komori K, Tsuchiya D, Ishino Y, &, Morikawa K, (2005) Crystal structure and functional implications of Pyrococcus furiosus hef helicase domain involved in branched DNA processing. Structure 13, 143-153. (Pubitemid 40092482)
    • (2005) Structure , vol.13 , Issue.1 , pp. 143-153
    • Nishino, T.1    Komori, K.2    Tsuchiya, D.3    Ishino, Y.4    Morikawa, K.5
  • 57
    • 77949686097 scopus 로고    scopus 로고
    • Shotgun proteomics data from multiple organisms reveals remarkable quantitative conservation of the eukaryotic core proteome
    • Weiss M, Schrimpf S, Hengartner MO, Lercher MJ, &, von Mering C, (2010) Shotgun proteomics data from multiple organisms reveals remarkable quantitative conservation of the eukaryotic core proteome. Proteomics 10, 1297-1306.
    • (2010) Proteomics , vol.10 , pp. 1297-1306
    • Weiss, M.1    Schrimpf, S.2    Hengartner, M.O.3    Lercher, M.J.4    Von Mering, C.5
  • 58
    • 57149143976 scopus 로고    scopus 로고
    • A quantitative estimation of the global translational activity in logarithmically growing yeast cells
    • von der Haar T, (2008) A quantitative estimation of the global translational activity in logarithmically growing yeast cells. BMC Syst Biol 2, 87.
    • (2008) BMC Syst Biol , vol.2 , pp. 87
    • Von Der Haar, T.1
  • 60
    • 80052965587 scopus 로고    scopus 로고
    • ISWI chromatin remodellers in mammalian cells - Where, when and why?
    • Erdel F, &, Rippe K, (2011) ISWI chromatin remodellers in mammalian cells-where, when and why? FEBS J.
    • (2011) FEBS J
    • Erdel, F.1    Rippe, K.2
  • 61
    • 35548941098 scopus 로고    scopus 로고
    • Histone Modifications Influence the Action of Snf2 Family Remodelling Enzymes by Different Mechanisms
    • DOI 10.1016/j.jmb.2007.09.059, PII S0022283607012016
    • Ferreira H, Flaus A, &, Owen-Hughes T, (2007) Histone modifications influence the action of Snf2 family remodelling enzymes by different mechanisms. J Mol Biol 374, 563-579. (Pubitemid 350018763)
    • (2007) Journal of Molecular Biology , vol.374 , Issue.3 , pp. 563-579
    • Ferreira, H.1    Flaus, A.2    Owen-Hughes, T.3
  • 63
    • 25444441167 scopus 로고    scopus 로고
    • ATP-dependent chromatin remodeling and DNA double-strand break repair
    • van Attikum H, &, Gasser SM, (2005) ATP-dependent chromatin remodeling and DNA double-strand break repair. Cell Cycle 4, 1011-1014. (Pubitemid 41365352)
    • (2005) Cell Cycle , vol.4 , Issue.8 , pp. 1011-1014
    • Van Attikum, H.1    Gasser, S.M.2
  • 64
    • 79952113300 scopus 로고    scopus 로고
    • Nucleosome dynamics and epigenetic stability
    • Korber P, &, Becker PB, (2010) Nucleosome dynamics and epigenetic stability. Essays Biochem 48, 63-74.
    • (2010) Essays Biochem , vol.48 , pp. 63-74
    • Korber, P.1    Becker, P.B.2
  • 65
    • 70349173215 scopus 로고    scopus 로고
    • Interaction of transcriptional regulators with specific nucleosomes across the Saccharomyces genome
    • Koerber RT, Rhee HS, Jiang C, &, Pugh BF, (2009) Interaction of transcriptional regulators with specific nucleosomes across the Saccharomyces genome. Mol Cell 35, 889-902.
    • (2009) Mol Cell , vol.35 , pp. 889-902
    • Koerber, R.T.1    Rhee, H.S.2    Jiang, C.3    Pugh, B.F.4
  • 66
    • 33645067395 scopus 로고    scopus 로고
    • The ISWI and CHD1 chromatin remodelling activities influence ADH2 expression and chromatin organization
    • Xella B, Goding C, Agricola E, Di Mauro E, &, Caserta M, (2006) The ISWI and CHD1 chromatin remodelling activities influence ADH2 expression and chromatin organization. Mol Microbiol 59, 1531-1541.
    • (2006) Mol Microbiol , vol.59 , pp. 1531-1541
    • Xella, B.1    Goding, C.2    Agricola, E.3    Di Mauro, E.4    Caserta, M.5
  • 67
    • 33745847547 scopus 로고    scopus 로고
    • Antagonistic forces that position nucleosomes in vivo
    • DOI 10.1038/nsmb1111, PII NSMB1111
    • Whitehouse I, &, Tsukiyama T, (2006) Antagonistic forces that position nucleosomes in vivo. Nat Struct Mol Biol 13, 633-640. (Pubitemid 44036474)
    • (2006) Nature Structural and Molecular Biology , vol.13 , Issue.7 , pp. 633-640
    • Whitehouse, I.1    Tsukiyama, T.2
  • 68
    • 76349103252 scopus 로고    scopus 로고
    • Schizosaccharomyces pombe genome-wide nucleosome mapping reveals positioning mechanisms distinct from those of Saccharomyces cerevisiae
    • Lantermann AB, Straub T, Stralfors A, Yuan GC, Ekwall K, &, Korber P, (2010) Schizosaccharomyces pombe genome-wide nucleosome mapping reveals positioning mechanisms distinct from those of Saccharomyces cerevisiae. Nat Struct Mol Biol 17, 251-257.
    • (2010) Nat Struct Mol Biol , vol.17 , pp. 251-257
    • Lantermann, A.B.1    Straub, T.2    Stralfors, A.3    Yuan, G.C.4    Ekwall, K.5    Korber, P.6
  • 70
    • 0032504102 scopus 로고    scopus 로고
    • Human SWI/SNF interconverts a nucleosome between its base state and a stable remodeled state
    • DOI 10.1016/S0092-8674(00)81217-9
    • Schnitzler G, Sif S, &, Kingston RE, (1998) Human SWI/SNF interconverts a nucleosome between its base state and a stable remodeled state. Cell 94, 17-27. (Pubitemid 28347465)
    • (1998) Cell , vol.94 , Issue.1 , pp. 17-27
    • Schnitzler, G.1    Sif, S.2    Kingston, R.E.3
  • 72
    • 2942561969 scopus 로고    scopus 로고
    • Topography of the ISW2-nucleosome complex: Insights into nucleosome spacing and chromatin remodeling
    • DOI 10.1038/sj.emboj.7600220
    • Kagalwala MN, Glaus BJ, Dang W, Zofall M, &, Bartholomew B, (2004) Topography of the ISW2-nucleosome complex: insights into nucleosome spacing and chromatin remodeling. EMBO J 23, 2092-2104. (Pubitemid 38737736)
    • (2004) EMBO Journal , vol.23 , Issue.10 , pp. 2092-2104
    • Kagalwala, M.N.1    Glaus, B.J.2    Dang, W.3    Zofall, M.4    Bartholomew, B.5
  • 73
    • 0141922979 scopus 로고    scopus 로고
    • Crystal structure and functional analysis of a nucleosome recognition module of the remodeling factor ISWI
    • DOI 10.1016/S1097-2765(03)00273-9
    • Grune T, Brzeski J, Eberharter A, Clapier CR, Corona DF, Becker PB, &, Muller CW, (2003) Crystal structure and functional analysis of a nucleosome recognition module of the remodeling factor ISWI. Mol Cell 12, 449-460. (Pubitemid 37238931)
    • (2003) Molecular Cell , vol.12 , Issue.2 , pp. 449-460
    • Grune, T.1    Brzeski, J.2    Eberharter, A.3    Clapier, C.R.4    Corona, D.F.V.5    Becker, P.B.6    Muller, C.W.7
  • 74
    • 79960065933 scopus 로고    scopus 로고
    • The DNA-binding domain of the Chd1 chromatin-remodelling enzyme contains SANT and SLIDE domains
    • Ryan DP, Sundaramoorthy R, Martin D, Singh V, &, Owen-Hughes T, (2011) The DNA-binding domain of the Chd1 chromatin-remodelling enzyme contains SANT and SLIDE domains. EMBO J, 30, 2596-2609.
    • (2011) EMBO J , vol.30 , pp. 2596-2609
    • Ryan, D.P.1    Sundaramoorthy, R.2    Martin, D.3    Singh, V.4    Owen-Hughes, T.5
  • 75
    • 67649668797 scopus 로고    scopus 로고
    • Conformational changes associated with template commitment in ATP-dependent chromatin remodeling by ISW2
    • Gangaraju VK, Prasad P, Srour A, Kagalwala MN, &, Bartholomew B, (2009) Conformational changes associated with template commitment in ATP-dependent chromatin remodeling by ISW2. Mol Cell 35, 58-69.
    • (2009) Mol Cell , vol.35 , pp. 58-69
    • Gangaraju, V.K.1    Prasad, P.2    Srour, A.3    Kagalwala, M.N.4    Bartholomew, B.5
  • 76
    • 72949099668 scopus 로고    scopus 로고
    • Dynamics of nucleosome remodelling by individual ACF complexes
    • Blosser TR, Yang JG, Stone MD, Narlikar GJ, &, Zhuang X, (2009) Dynamics of nucleosome remodelling by individual ACF complexes. Nature 462, 1022-1027.
    • (2009) Nature , vol.462 , pp. 1022-1027
    • Blosser, T.R.1    Yang, J.G.2    Stone, M.D.3    Narlikar, G.J.4    Zhuang, X.5
  • 78
    • 77951236660 scopus 로고    scopus 로고
    • The Snf2 Homolog Fun30 Acts as a Homodimeric ATP-dependent Chromatin-remodeling Enzyme
    • Awad S, Ryan D, Prochasson P, Owen-Hughes T, &, Hassan AH, (2010) The Snf2 Homolog Fun30 Acts as a Homodimeric ATP-dependent Chromatin-remodeling Enzyme. J Biol Chem 285, 9477-9484.
    • (2010) J Biol Chem , vol.285 , pp. 9477-9484
    • Awad, S.1    Ryan, D.2    Prochasson, P.3    Owen-Hughes, T.4    Hassan, A.H.5
  • 79
    • 43049157587 scopus 로고    scopus 로고
    • Nucleosome Retention and the Stochastic Nature of Promoter Chromatin Remodeling for Transcription
    • DOI 10.1016/j.cell.2008.02.051, PII S0092867408004455
    • Boeger H, Griesenbeck J, &, Kornberg RD, (2008) Nucleosome retention and the stochastic nature of promoter chromatin remodeling for transcription. Cell 133, 716-726. (Pubitemid 351636300)
    • (2008) Cell , vol.133 , Issue.4 , pp. 716-726
    • Boeger, H.1    Griesenbeck, J.2    Kornberg, R.D.3
  • 82
    • 80052965260 scopus 로고    scopus 로고
    • Nucleosome remodelling machines and other molecular motors observed at single molecule level
    • Lavelle C, Praly E, Bensimon D, Le Cam E, &, Croquette V, (2011) Nucleosome remodelling machines and other molecular motors observed at single molecule level. FEBS J.
    • (2011) FEBS J
    • Lavelle, C.1    Praly, E.2    Bensimon, D.3    Le Cam, E.4    Croquette, V.5
  • 83
    • 67749086828 scopus 로고    scopus 로고
    • Multiple aspects of ATP-dependent nucleosome translocation by RSC and Mi-2 are directed by the underlying DNA sequence
    • van Vugt JJ, de Jager M, Murawska M, Brehm A, van Noort J, &, Logie C, (2009) Multiple aspects of ATP-dependent nucleosome translocation by RSC and Mi-2 are directed by the underlying DNA sequence. PLoS ONE 4, e6345.
    • (2009) PLoS ONE , vol.4
    • Van Vugt, J.J.1    De Jager, M.2    Murawska, M.3    Brehm, A.4    Van Noort, J.5    Logie, C.6
  • 84
    • 0033584369 scopus 로고    scopus 로고
    • Nucleosome mobilization catalysed by the yeast SWI/SNF complex
    • DOI 10.1038/23506
    • Whitehouse I, Flaus A, Cairns BR, White MF, Workman JL, &, Owen-Hughes T, (1999) Nucleosome mobilization catalysed by the yeast SWI/SNF complex. Nature 400, 784-787. (Pubitemid 29399542)
    • (1999) Nature , vol.400 , Issue.6746 , pp. 784-787
    • Whitehouse, I.1    Flaus, A.2    Cairns, B.R.3    White, M.F.4    Workman, J.L.5    Owen-Hughes, T.6
  • 85
    • 0035930334 scopus 로고    scopus 로고
    • ISWI induces nucleosome sliding on nicked DNA
    • DOI 10.1016/S1097-2765(01)00397-5
    • Langst G, &, Becker PB, (2001) ISWI induces nucleosome sliding on nicked DNA. Mol Cell 8, 1085-1092. (Pubitemid 34031810)
    • (2001) Molecular Cell , vol.8 , Issue.5 , pp. 1085-1092
    • Langst, G.1    Becker, P.B.2
  • 86
    • 33744916194 scopus 로고    scopus 로고
    • Chromatin remodeling by ISW2 and SWI/SNF requires DNA translocation inside the nucleosome
    • DOI 10.1038/nsmb1071, PII N1071
    • Zofall M, Persinger J, Kassabov SR, &, Bartholomew B, (2006) Chromatin remodeling by ISW2 and SWI/SNF requires DNA translocation inside the nucleosome. Nat Struct Mol Biol 13, 339-346. (Pubitemid 43873505)
    • (2006) Nature Structural and Molecular Biology , vol.13 , Issue.4 , pp. 339-346
    • Zofall, M.1    Persinger, J.2    Kassabov, S.R.3    Bartholomew, B.4
  • 87
    • 26944461283 scopus 로고    scopus 로고
    • Chromatin remodeling through directional DNA translocation from an internal nucleosomal site
    • DOI 10.1038/nsmb973, PII NSMB973
    • Saha A, Wittmeyer J, &, Cairns BR, (2005) Chromatin remodeling through directional DNA translocation from an internal nucleosomal site. Nat Struct Mol Biol 12, 747-755. (Pubitemid 43102285)
    • (2005) Nature Structural and Molecular Biology , vol.12 , Issue.9 , pp. 747-755
    • Saha, A.1    Wittmeyer, J.2    Cairns, B.R.3
  • 88
    • 42449141601 scopus 로고    scopus 로고
    • Non-hexameric DNA helicases and translocases: Mechanisms and regulation
    • DOI 10.1038/nrm2394, PII NRM2394
    • Lohman TM, Tomko EJ, &, Wu CG, (2008) Non-hexameric DNA helicases and translocases: mechanisms and regulation. Nat Rev Mol Cell Biol 9, 391-401. (Pubitemid 351574201)
    • (2008) Nature Reviews Molecular Cell Biology , vol.9 , Issue.5 , pp. 391-401
    • Lohman, T.M.1    Tomko, E.J.2    Wu, C.G.3
  • 89
    • 4544266390 scopus 로고    scopus 로고
    • Spatial contacts and nucleosome step movements induced by the NURF chromatin remodeling complex
    • DOI 10.1074/jbc.M406060200
    • Schwanbeck R, Xiao H, &, Wu C, (2004) Spatial contacts and nucleosome step movements induced by the NURF chromatin remodeling complex. J Biol Chem 279, 39933-39941. (Pubitemid 39258266)
    • (2004) Journal of Biological Chemistry , vol.279 , Issue.38 , pp. 39933-39941
    • Schwanbeck, R.1    Xiao, H.2    Wu, C.3
  • 90
    • 36849004886 scopus 로고    scopus 로고
    • Domain architecture of the catalytic subunit in the ISW2-nucleosome complex
    • DOI 10.1128/MCB.01351-07
    • Dang W, &, Bartholomew B, (2007) Domain architecture of the catalytic subunit in the ISW2-nucleosome complex. Mol Cell Biol 27, 8306-8317. (Pubitemid 350234242)
    • (2007) Molecular and Cellular Biology , vol.27 , Issue.23 , pp. 8306-8317
    • Dang, W.1    Bartholomew, B.2
  • 91
    • 79551685899 scopus 로고    scopus 로고
    • Nucleosome structural studies
    • Tan S, &, Davey CA, (2011) Nucleosome structural studies. Curr Opin Struct Biol 21, 128-136.
    • (2011) Curr Opin Struct Biol , vol.21 , pp. 128-136
    • Tan, S.1    Davey, C.A.2
  • 92
    • 0036307707 scopus 로고    scopus 로고
    • Solvent mediated interactions in the structure of the nucleosome core particle at 1.9 A resolution
    • DOI 10.1016/S0022-2836(02)00386-8
    • Davey CA, Sargent DF, Luger K, Maeder AW, &, Richmond TJ, (2002) Solvent mediated interactions in the structure of the nucleosome core particle at 1.9 a resolution. J Mol Biol 319, 1097-1113. (Pubitemid 34729421)
    • (2002) Journal of Molecular Biology , vol.319 , Issue.5 , pp. 1097-1113
    • Davey, C.A.1    Sargent, D.F.2    Luger, K.3    Maeder, A.W.4    Richmond, T.J.5
  • 93
    • 1542380572 scopus 로고    scopus 로고
    • Sin mutations alter inherent nucleosome mobility
    • DOI 10.1038/sj.emboj.7600047
    • Flaus A, Rencurel C, Ferreira H, Wiechens N, &, Owen-Hughes T, (2004) Sin mutations alter inherent nucleosome mobility. EMBO J 23, 343-353. (Pubitemid 38294499)
    • (2004) EMBO Journal , vol.23 , Issue.2 , pp. 343-353
    • Flaus, A.1    Rencurel, C.2    Ferreira, H.3    Wiechens, N.4    Owen-Hughes, T.5
  • 94
    • 0028791330 scopus 로고
    • Mechanism of protein access to specific DNA sequences in chromatin: A dynamic equilibrium model for gene regulation
    • Polach KJ, &, Widom J, (1995) Mechanism of protein access to specific DNA sequences in chromatin: a dynamic equilibrium model for gene regulation. J Mol Biol 254, 130-149.
    • (1995) J Mol Biol , vol.254 , pp. 130-149
    • Polach, K.J.1    Widom, J.2
  • 97
    • 0347539781 scopus 로고    scopus 로고
    • Histone H2A/H2B Dimer Exchange by ATP-Dependent Chromatin Remodeling Activities
    • DOI 10.1016/S1097-2765(03)00499-4
    • Bruno M, Flaus A, Stockdale C, Rencurel C, Ferreira H, &, Owen-Hughes T, (2003) Histone H2A/H2B dimer exchange by ATP-dependent chromatin remodeling activities. Mol Cell 12, 1599-1606. (Pubitemid 38037026)
    • (2003) Molecular Cell , vol.12 , Issue.6 , pp. 1599-1606
    • Bruno, M.1    Flaus, A.2    Stockdale, C.3    Rencurel, C.4    Ferreira, H.5    Owen-Hughes, T.6
  • 98
    • 77449157577 scopus 로고    scopus 로고
    • Probing the (H3-H4)2 histone tetramer structure using pulsed EPR spectroscopy combined with site-directed spin labelling
    • Bowman A, Ward R, El-Mkami H, Owen-Hughes T, &, Norman DG, (2010) Probing the (H3-H4)2 histone tetramer structure using pulsed EPR spectroscopy combined with site-directed spin labelling. Nucleic Acids Res 38, 695-707.
    • (2010) Nucleic Acids Res , vol.38 , pp. 695-707
    • Bowman, A.1    Ward, R.2    El-Mkami, H.3    Owen-Hughes, T.4    Norman, D.G.5
  • 99
    • 77956897642 scopus 로고    scopus 로고
    • The structure of (CENP-A-H4)(2) reveals physical features that mark centromeres
    • Sekulic N, Bassett EA, Rogers DJ, &, Black BE, (2010) The structure of (CENP-A-H4)(2) reveals physical features that mark centromeres. Nature 467, 347-351.
    • (2010) Nature , vol.467 , pp. 347-351
    • Sekulic, N.1    Bassett, E.A.2    Rogers, D.J.3    Black, B.E.4
  • 101
    • 0037388372 scopus 로고    scopus 로고
    • Mechanisms for nucleosome mobilization
    • DOI 10.1002/bip.10323
    • Flaus A, &, Owen-Hughes T, (2003) Mechanisms for nucleosome mobilization. Biopolymers 68, 563-578. (Pubitemid 36427880)
    • (2003) Biopolymers , vol.68 , Issue.4 , pp. 563-578
    • Flaus, A.1    Owen-Hughes, T.2
  • 102
    • 80052966432 scopus 로고    scopus 로고
    • The dynamics of the nucleosome: Thermal effects, external forces, and ATP
    • Blossey R, &, Schiessel H, (2011) The dynamics of the nucleosome: thermal effects, external forces, and ATP. FEBS J.
    • (2011) FEBS J
    • Blossey, R.1    Schiessel, H.2
  • 103
    • 0028467446 scopus 로고
    • Stimulation of GAL4 derivative binding to nucleosomal DNA by the yeast SWI/SNF complex
    • Cote J, Quinn J, Workman JL, &, Peterson CL, (1994) Stimulation of GAL4 derivative binding to nucleosomal DNA by the yeast SWI/SNF complex. Science 265, 53-60. (Pubitemid 24253171)
    • (1994) Science , vol.265 , Issue.5168 , pp. 53-60
    • Cote, J.1    Quinn, J.2    Workman, J.L.3    Peterson, C.L.4
  • 106
    • 0035016612 scopus 로고    scopus 로고
    • Interactions of Isw2 chromatin remodeling complex with nucleosomal arrays: Analyses using recombinant yeast histones and immobilized templates
    • DOI 10.1128/MCB.21.6.2098-2106.2001
    • Gelbart ME, Rechsteiner T, Richmond TJ, &, Tsukiyama T, (2001) Interactions of Isw2 chromatin remodeling complex with nucleosomal arrays: analyses using recombinant yeast histones and immobilized templates. Mol Cell Biol 21, 2098-2106. (Pubitemid 32479631)
    • (2001) Molecular and Cellular Biology , vol.21 , Issue.6 , pp. 2098-2106
    • Gelbart, M.E.1    Rechsteiner, T.2    Richmond, T.J.3    Tsukiyama, T.4
  • 107
    • 0034657071 scopus 로고    scopus 로고
    • The chrome domain protein Chd1p from budding yeast is an ATP-dependent chromatin-modifying factor
    • Tran HG, Steger DJ, Iyer VR, &, Johnson AD, (2000) The chromo domain protein chd1p from budding yeast is an ATP-dependent chromatin-modifying factor. EMBO J 19, 2323-2331. (Pubitemid 30259013)
    • (2000) EMBO Journal , vol.19 , Issue.10 , pp. 2323-2331
    • Tran, H.G.1    Steger, D.J.2    Iyer, V.R.3    Johnson, A.D.4
  • 108
    • 33745221438 scopus 로고    scopus 로고
    • Analysis of nucleosome repositioning by yeast ISWI and Chd1 chromatin remodeling complexes
    • Stockdale C, Flaus A, Ferreira H, &, Owen-Hughes T, (2006) Analysis of nucleosome repositioning by yeast ISWI and Chd1 chromatin remodeling complexes. J Biol Chem 281, 16279-16288.
    • (2006) J Biol Chem , vol.281 , pp. 16279-16288
    • Stockdale, C.1    Flaus, A.2    Ferreira, H.3    Owen-Hughes, T.4
  • 109
    • 0348184963 scopus 로고    scopus 로고
    • ATP-Driven Exchange of Histone H2AZ Variant Catalyzed by SWR1 Chromatin Remodeling Complex
    • DOI 10.1126/science.1090701
    • Mizuguchi G, Shen X, Landry J, Wu WH, Sen S, &, Wu C, (2004) ATP-driven exchange of histone H2AZ variant catalyzed by SWR1 chromatin remodeling complex. Science 303, 343-348. (Pubitemid 38095768)
    • (2004) Science , vol.303 , Issue.5656 , pp. 343-348
    • Mizuguchi, G.1    Shen, X.2    Landry, J.3    Wu, W.-H.4    Sen, S.5    Wu, C.6
  • 112
    • 78751536862 scopus 로고    scopus 로고
    • Stepwise histone replacement by SWR1 requires dual activation with histone H2A.Z and canonical nucleosome
    • Luk E, Ranjan A, FitzGerald PC, Mizuguchi G, Huang Y, Wei D, &, Wu C, (2010) Stepwise histone replacement by SWR1 requires dual activation with histone H2A.Z and canonical nucleosome. Cell 143, 725-736.
    • (2010) Cell , vol.143 , pp. 725-736
    • Luk, E.1    Ranjan, A.2    Fitzgerald, P.C.3    Mizuguchi, G.4    Huang, Y.5    Wei, D.6    Wu, C.7
  • 114
    • 0034601464 scopus 로고    scopus 로고
    • A chromatin remodelling complex involved in transcription and DNA processing
    • DOI 10.1038/35020123
    • Shen X, Mizuguchi G, Hamiche A, &, Wu C, (2000) A chromatin remodelling complex involved in transcription and DNA processing. Nature 406, 541-544. (Pubitemid 30625741)
    • (2000) Nature , vol.406 , Issue.6795 , pp. 541-544
    • Shen, X.1    Mizuguchi, G.2    Hamiche, A.3    Carl, W.4
  • 115
    • 78651510784 scopus 로고    scopus 로고
    • Global regulation of H2A.Z localization by the INO80 chromatin-remodeling enzyme is essential for genome integrity
    • Papamichos-Chronakis M, Watanabe S, Rando OJ, &, Peterson CL, (2011) Global regulation of H2A.Z localization by the INO80 chromatin-remodeling enzyme is essential for genome integrity. Cell 144, 200-213.
    • (2011) Cell , vol.144 , pp. 200-213
    • Papamichos-Chronakis, M.1    Watanabe, S.2    Rando, O.J.3    Peterson, C.L.4
  • 116
    • 0030910889 scopus 로고    scopus 로고
    • Recombinational repair in yeast: Functional interactions between Rad51 and Rad54 proteins
    • DOI 10.1093/emboj/16.9.2535
    • Clever B, Interthal H, SchmuckliMaurer J, King J, Sigrist M, &, Heyer WD, (1997) Recombinational repair in yeast: functional interactions between Rad51 and Rad54 proteins. EMBO J 16, 2535-2544. (Pubitemid 27258649)
    • (1997) EMBO Journal , vol.16 , Issue.9 , pp. 2535-2544
    • Clever, B.1    Interthal, H.2    Schmuckli-Maurer, J.3    King, J.4    Sigrist, M.5    Heyer, W.-D.6
  • 117
    • 77956924865 scopus 로고    scopus 로고
    • Swi2/Snf2-related translocases prevent accumulation of toxic Rad51 complexes during mitotic growth
    • Shah PP, Zheng XZ, Epshtein A, Carey JN, Bishop DK, &, Klein HL, (2010) Swi2/Snf2-related translocases prevent accumulation of toxic Rad51 complexes during mitotic growth. Mol Cell 39, 862-872.
    • (2010) Mol Cell , vol.39 , pp. 862-872
    • Shah, P.P.1    Zheng, X.Z.2    Epshtein, A.3    Carey, J.N.4    Bishop, D.K.5    Klein, H.L.6
  • 118
    • 0030778197 scopus 로고    scopus 로고
    • RDH54, a RAD54 homologue in Saccharomyces cerevisiae, is required for mitotic diploid-specific recombination and repair and for meiosis
    • Klein HL, (1997) RDH54, a RAD54 homologue in Saccharomyces cerevisiae, is required for mitotic diploid-specific recombination and repair and for meiosis. Genetics 147, 1533-1543. (Pubitemid 27525451)
    • (1997) Genetics , vol.147 , Issue.4 , pp. 1533-1543
    • Klein, H.L.1
  • 120
    • 0026661167 scopus 로고
    • Saccharomyces-cerevisiae Rad5-encoded DNA-repair protein contains DNA helicase and zinc-binding sequence motifs and affects the stability of simple repetitive sequences in the genome
    • Johnson RE, Henderson ST, Petes TD, Prakash S, Bankmann M, &, Prakash L, (1992) Saccharomyces-cerevisiae Rad5-encoded DNA-repair protein contains DNA helicase and zinc-binding sequence motifs and affects the stability of simple repetitive sequences in the genome. Mol Cell Biol 12, 3807-3818.
    • (1992) Mol Cell Biol , vol.12 , pp. 3807-3818
    • Johnson, R.E.1    Henderson, S.T.2    Petes, T.D.3    Prakash, S.4    Bankmann, M.5    Prakash, L.6
  • 121
    • 35148847451 scopus 로고    scopus 로고
    • Yeast Rad5 Protein Required for Postreplication Repair Has a DNA Helicase Activity Specific for Replication Fork Regression
    • DOI 10.1016/j.molcel.2007.07.030, PII S1097276507005473
    • Blastyak A, Pinter L, Unk I, Prakash L, Prakash S, &, Haracska L, (2007) Yeast Rad5 protein required for postreplication repair has a DNA helicase activity specific for replication fork regression. Mol Cell 28, 167-175. (Pubitemid 47542303)
    • (2007) Molecular Cell , vol.28 , Issue.1 , pp. 167-175
    • Blastyak, A.1    Pinter, L.2    Unk, I.3    Prakash, L.4    Prakash, S.5    Haracska, L.6
  • 122
    • 0030856090 scopus 로고    scopus 로고
    • Yeast RAD7-RAD16 complex, specific for the nucleotide excision repair of the nontranscribed DNA strand, is an ATP-dependent DNA damage sensor
    • DOI 10.1074/jbc.272.35.21665
    • Guzder SN, Sung P, Prakash L, &, Prakash S, (1997) Yeast Rad7-Rad16 complex, specific for the nucleotide excision repair of the nontranscribed DNA strand, is an ATP-dependent DNA damage sensor. J Biol Chem 272, 21665-21668. (Pubitemid 27382775)
    • (1997) Journal of Biological Chemistry , vol.272 , Issue.35 , pp. 21665-21668
    • Guzder, S.N.1    Sung, P.2    Prakash, L.3    Prakash, S.4
  • 123
    • 0033398560 scopus 로고    scopus 로고
    • Yeast autonomously replicating sequence binding factor is involved in nucleotide excision repair
    • DOI 10.1101/gad.13.23.3052
    • Reed SH, Akiyama M, Stillman B, &, Friedberg EC, (1999) Yeast autonomously replicating sequence binding factor is involved in nucleotide excision repair. Genes Dev 13, 3052-3058. (Pubitemid 30016105)
    • (1999) Genes and Development , vol.13 , Issue.23 , pp. 3052-3058
    • Reed, S.H.1    Akiyama, M.2    Stillman, B.3    Friedberg, E.C.4
  • 124
    • 37748999305 scopus 로고    scopus 로고
    • Genome-wide analysis of Rad52 foci reveals diverse mechanisms impacting recombination
    • Alvaro D, Lisby M, &, Rothstein R, (2007) Genome-wide analysis of Rad52 foci reveals diverse mechanisms impacting recombination. Plos Genet 3, 2439-2449.
    • (2007) Plos Genet , vol.3 , pp. 2439-2449
    • Alvaro, D.1    Lisby, M.2    Rothstein, R.3
  • 125
    • 0030848286 scopus 로고    scopus 로고
    • Identification of a member of a DNA-dependent ATPase family that causes interference with silencing
    • Zhang ZM, &, Buchman AR, (1997) Identification of a member of a DNA-dependent ATPase family that causes interference with silencing. Mol Cell Biol 17, 5461-5472. (Pubitemid 27357643)
    • (1997) Molecular and Cellular Biology , vol.17 , Issue.9 , pp. 5461-5472
    • Zhang, Z.1    Buchman, A.R.2
  • 127
    • 3142691854 scopus 로고    scopus 로고
    • DNA damage-induced Def1-RNA polymerase II interaction and Def1 requirement for polymerase ubiquitylation in vitro
    • DOI 10.1074/jbc.C400185200
    • Reid J, &, Svejstrup JQ, (2004) DNA damage-induced Def1-RNA polymerase II interaction and Def1 requirement for polymerase ubiquitylation in vitro. J Biol Chem 279, 29875-29878. (Pubitemid 38937905)
    • (2004) Journal of Biological Chemistry , vol.279 , Issue.29 , pp. 29875-29878
    • Reid, J.1    Svejstrup, J.Q.2
  • 128
    • 0028070378 scopus 로고
    • Yeast Taf170 is encoded by MOT1 and exists in a TATA box-binding protein (TBP)-TBP-associated factor complex distinct from transcription factor IID
    • Poon D, Campbell AM, Bai Y, &, Weil PA, (1994) Yeast Taf170 is encoded by MOT1 and exists in a TATA box-binding protein (TBP)-TBP-associated factor complex distinct from transcription factor IID. J Biol Chem 269, 23135-23140. (Pubitemid 24283298)
    • (1994) Journal of Biological Chemistry , vol.269 , Issue.37 , pp. 23135-23140
    • Poon, D.1    Campbell, A.M.2    Bai, Y.3    Weil, P.A.4
  • 129
    • 0028038315 scopus 로고
    • Mot1, a global repressor of RNA polymerase II transcription, inhibits TBP binding to DNA by an ATP-dependent mechanism
    • Auble DT, Hansen KE, Mueller CG, Lane WS, Thorner J, &, Hahn S, (1994) Mot1, a global repressor of RNA polymerase II transcription, inhibits TBP binding to DNA by an ATP-dependent mechanism. Genes Dev 8, 1920-1934. (Pubitemid 24273892)
    • (1994) Genes and Development , vol.8 , Issue.16 , pp. 1920-1934
    • Auble, D.T.1    Hansen, K.E.2    Mueller, C.G.F.3    Lane, W.S.4    Thorner, J.5    Hahn, S.6
  • 130
    • 0037938469 scopus 로고    scopus 로고
    • High-affinity DNA binding by a Mot1p-TBP complex: Implications for TAF-independent transcription
    • DOI 10.1093/emboj/cdg304
    • Gumbs OH, Campbell AM, &, Weil PA, (2003) High-affinity DNA binding by a Mot1p-TBP complex: implications for TAF-independent transcription. EMBO J 22, 3131-3141. (Pubitemid 36758633)
    • (2003) EMBO Journal , vol.22 , Issue.12 , pp. 3131-3141
    • Gumbs, O.H.1    Campbell, A.M.2    Weil, P.A.3
  • 131
    • 33645988522 scopus 로고    scopus 로고
    • Conserved XPB core structure and motifs for DNA unwinding: Implications for pathway selection of transcription or excision repair
    • Fan L, Arvai AS, Cooper PK, Iwai S, Hanaoka F, &, Tainer JA, (2006) Conserved XPB core structure and motifs for DNA unwinding: implications for pathway selection of transcription or excision repair. Mol Cell 22, 27-37.
    • (2006) Mol Cell , vol.22 , pp. 27-37
    • Fan, L.1    Arvai, A.S.2    Cooper, P.K.3    Iwai, S.4    Hanaoka, F.5    Tainer, J.A.6
  • 132
    • 33646017369 scopus 로고    scopus 로고
    • Structural basis for RNA unwinding by the DEAD-box protein Drosophila Vasa
    • Sengoku T, Nureki O, Nakamura A, Kobayashi S, &, Yokoyama S, (2006) Structural basis for RNA unwinding by the DEAD-box protein Drosophila Vasa. Cell 125, 287-300.
    • (2006) Cell , vol.125 , pp. 287-300
    • Sengoku, T.1    Nureki, O.2    Nakamura, A.3    Kobayashi, S.4    Yokoyama, S.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.