메뉴 건너뛰기




Volumn 27, Issue 5, 2011, Pages 641-650

The use of neural networks in statistical process control charts

Author keywords

autocorrelated processes; multivariate control charts; neural networks; quality control charts

Indexed keywords

ALTERNATIVE METHODS; AUTOCORRELATED PROCESS; HUMAN BRAIN; MANUFACTURING ENVIRONMENTS; MASSIVELY PARALLEL COMPUTING; MONITORING PROCESS; MULTIVARIATE CONTROL CHARTS; OUT-OF-CONTROL; QUALITY CONTROL CHARTS; STATISTICAL PROCESS CONTROL CHARTS; VARIANCE SHIFTS;

EID: 79960836280     PISSN: 07488017     EISSN: 10991638     Source Type: Journal    
DOI: 10.1002/qre.1227     Document Type: Conference Paper
Times cited : (42)

References (101)
  • 2
    • 51249194645 scopus 로고
    • A logical calculus of the ideas immanent in nervous activity
    • McCulloch WS, Pitts W,. A logical calculus of the ideas immanent in nervous activity. Bulletin of Mathematical Biophysics 1943; 5: 115-133.
    • (1943) Bulletin of Mathematical Biophysics , vol.5 , pp. 115-133
    • McCulloch, W.S.1    Pitts, W.2
  • 3
    • 0002916530 scopus 로고
    • Continuous inspection schemes
    • Page ES,. Continuous inspection schemes. Biometrika 1954; 41: 100-115.
    • (1954) Biometrika , vol.41 , pp. 100-115
    • Page, E.S.1
  • 4
    • 84946637626 scopus 로고
    • Control charts tests based on geometric moving averages
    • Roberts SW,. Control charts tests based on geometric moving averages. Technometrics 1959; 1: 239-250.
    • (1959) Technometrics , vol.1 , pp. 239-250
    • Roberts, S.W.1
  • 10
    • 0000646059 scopus 로고
    • Learning internal representations by error propagation
    • MIT Press: Cambridge, MA.
    • Rumelhart DE, Hinton GE, Williams RJ,. Learning internal representations by error propagation. Parallel Distributed Processing. vol. 1, MIT Press: Cambridge, MA, 1986; 318-362.
    • (1986) Parallel Distributed Processing , vol.1 , pp. 318-362
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 11
    • 0000672424 scopus 로고
    • Fast learning in networks of locally-tuned processing units
    • Moody J, Darken CJ,. Fast learning in networks of locally-tuned processing units. Neural Computation 1989; 1: 281-293.
    • (1989) Neural Computation , vol.1 , pp. 281-293
    • Moody, J.1    Darken, C.J.2
  • 12
    • 0024922715 scopus 로고
    • Phoneme classification experiments using radial basis functions
    • Renals S, Rohwer R,. Phoneme classification experiments using radial basis function. Proceedings of International Joint Conference on Neural Networks, vol. 1, Washington, DC, U.S.A., 1989; 461-467. (Pubitemid 20642007)
    • (1989) IJCNN Int Jt Conf Neural Network , pp. 461-467
    • Renals Steve1    Rohwer Richard2
  • 13
    • 0032092762 scopus 로고    scopus 로고
    • A review of neural networks for statistical process control
    • DOI: 10.1023/A:1008818817588.
    • Zorriassatine F, Tannock JDT,. A review of neural networks for statistical process control. Journal of Intelligent Manufacturing 1998; 9: 209-224. DOI: 10.1023/A:1008818817588.
    • (1998) Journal of Intelligent Manufacturing , vol.9 , pp. 209-224
    • Zorriassatine, F.1    Tannock, J.D.T.2
  • 14
    • 0024943235 scopus 로고
    • Synthetic neural networks for process control
    • Pugh GA,. Synthetic neural networks for process control. Computers and Industrial Engineering 1989; 17: 24-26. DOI: 10.1016/0360-8352(89)90030-2. (Pubitemid 20627091)
    • (1989) Computers and Industrial Engineering , vol.17 , Issue.1-4 , pp. 24-26
    • Pugh G.Allen1
  • 15
    • 0000313624 scopus 로고
    • A comparison of neural networks to SPC charts
    • DOI: 10.1016/0360-8352(91)90097-P.
    • Pugh GA,. A comparison of neural networks to SPC charts. Computers and Industrial Engineering 1991; 21: 253-255. DOI: 10.1016/0360-8352(91)90097-P.
    • (1991) Computers and Industrial Engineering , vol.21 , pp. 253-255
    • Pugh, G.A.1
  • 16
    • 0028377883 scopus 로고
    • X-Bar and R control charts interpretation using neural networks
    • DOI: 10.1080/00207549408956935.
    • Smith EA,. X-Bar and R control charts interpretation using neural networks. International Journal of Production Research 1994; 32: 309-320. DOI: 10.1080/00207549408956935.
    • (1994) International Journal of Production Research , vol.32 , pp. 309-320
    • Smith, E.A.1
  • 17
    • 84947466307 scopus 로고
    • A neural network approach to quality control charts
    • In, Torremolinos Spain, (Lecture Notes in Computer Science, 930), Mira J. Sandoval F. (eds.). Springer: Berlin.
    • Stutzle T,. A neural network approach to quality control charts. In Proceedings of the International Workshop on Artificial Neural Networks (IWANN'95), Torremolinos Spain, (Lecture Notes in Computer Science, vol. 930), Mira J, Sandoval F, (eds.). Springer: Berlin, 1995; 1135-1141.
    • (1995) Proceedings of the International Workshop on Artificial Neural Networks (IWANN'95) , pp. 1135-1141
    • Stutzle, T.1
  • 18
    • 0029196273 scopus 로고
    • A multi-layer neural network model for detecting changes in the process mean
    • DOI: 10.1016/0360-8352(94)00024-H.
    • Cheng CS,. A multi-layer neural network model for detecting changes in the process mean. Computers and Industrial Engineering 1995; 28: 51-61. DOI: 10.1016/0360-8352(94)00024-H.
    • (1995) Computers and Industrial Engineering , vol.28 , pp. 51-61
    • Cheng, C.S.1
  • 19
    • 0032648097 scopus 로고    scopus 로고
    • An Integrated neural network approach for simultaneous monitoring of process mean and variance shifts-A comparative study
    • DOI: 10.1080/002075499191049.
    • Ho ES, Chang SI,. An Integrated neural network approach for simultaneous monitoring of process mean and variance shifts-A comparative study. International Journal of Production Research 1999; 37: 1881-1901. DOI: 10.1080/002075499191049.
    • (1999) International Journal of Production Research , vol.37 , pp. 1881-1901
    • Ho, E.S.1    Chang, S.I.2
  • 20
    • 0344210953 scopus 로고    scopus 로고
    • The determination and of mean and/or variance shifts with artificial neural networks
    • DOI: 10.1080/002075499191049.
    • Dedeakayogullari I, Burnak N,. The determination and of mean and/or variance shifts with artificial neural networks. International Journal of Production Research 1999; 37: 2191-2200. DOI: 10.1080/002075499191049.
    • (1999) International Journal of Production Research , vol.37 , pp. 2191-2200
    • Dedeakayogullari, I.1    Burnak, N.2
  • 21
    • 0033131670 scopus 로고    scopus 로고
    • A two-stage neural network approach for process variance change detection and classification
    • DOI: 10.1080/002075499191148.
    • Chang SI, Ho ES,. A two-stage neural network approach for process variance change detection and classification. International Journal of Production Research 1999; 37: 1581-1599. DOI: 10.1080/002075499191148.
    • (1999) International Journal of Production Research , vol.37 , pp. 1581-1599
    • Chang, S.I.1    Ho, E.S.2
  • 22
    • 78650177338 scopus 로고    scopus 로고
    • A neural network-based control scheme for monitoring start-up processes and short runs
    • DOI: 10.1007/s00170-010-2672-9.
    • Garjani M, Nooorossana R, Saghaei A,. A neural network-based control scheme for monitoring start-up processes and short runs. International Journal of Advanced Manufacturing Technology 2010; 51: 1023-1032. DOI: 10.1007/s00170-010-2672-9.
    • (2010) International Journal of Advanced Manufacturing Technology , vol.51 , pp. 1023-1032
    • Garjani, M.1    Nooorossana, R.2    Saghaei, A.3
  • 23
  • 25
    • 0027579104 scopus 로고
    • Back-propagation pattern recognizers for X-bar control charts: Methodology and performance
    • DOI: 10.1016/0360-8352(95)00043-Z.
    • Hwarng HB, Hubele FN,. Back-propagation pattern recognizers for X-bar control charts: Methodology and performance. Computers and Industrial Engineering 1993; 24 (2): 219-235. DOI: 10.1016/0360-8352(95)00043-Z.
    • (1993) Computers and Industrial Engineering , vol.24 , Issue.2 , pp. 219-235
    • Hwarng, H.B.1    Hubele, F.N.2
  • 26
    • 0010906320 scopus 로고
    • Back propagation artificial neural networks for the analysis of quality control charts
    • DOI: 10.1016/0360-8352(93)90305-H.
    • Velasco R, Rowe RM,. Back propagation artificial neural networks for the analysis of quality control charts. Computers and Industrial Engineering 1993; 25: 397-400. DOI: 10.1016/0360-8352(93)90305-H.
    • (1993) Computers and Industrial Engineering , vol.25 , pp. 397-400
    • Velasco, R.1    Rowe, R.M.2
  • 27
    • 0031673765 scopus 로고    scopus 로고
    • Fault detection and diagnosis using statistical control charts and artificial neural networks
    • DOI: 10.1016/S0954-1810(96)00039-8.
    • Leger RP, Garland WJ, Phoehlman WFS,. Fault detection and diagnosis using statistical control charts and artificial neural networks. Artificial Intelligence in Engineering 1996; 12: 35-47. DOI: 10.1016/S0954-1810(96)00039-8.
    • (1996) Artificial Intelligence in Engineering , vol.12 , pp. 35-47
    • Leger, R.P.1    Garland, W.J.2    Phoehlman, W.F.S.3
  • 28
    • 0032184563 scopus 로고    scopus 로고
    • A neural network applied to pattern recognition in statistical process control
    • PII S0360835298000576
    • Anagun AS,. A neural network applied to pattern recognition in statistical process control. Computers and Industrial Engineering 1998; 35: 185-188. DOI: 10.1016/S0360-8352(98)00057-6. (Pubitemid 128457116)
    • (1998) Computers and Industrial Engineering , vol.35 , Issue.1-4 , pp. 185-188
    • Anagun, A.S.1
  • 30
    • 0033349137 scopus 로고    scopus 로고
    • On-line control chart pattern detection and discrimination - A neural network approach
    • DOI 10.1016/S0954-1810(99)00022-9
    • Guh RS, Zorriassatine F, Tannock JDT, O'Brien C,. On-line control chart pattern detection and discrimination-A neural network approach. Artificial Intelligence in Engineering 1999; 13: 413-425. DOI: 10.1016/S0954-1810(99)00022- 9. (Pubitemid 30509691)
    • (1999) Artificial Intelligence in Engineering , vol.13 , Issue.4 , pp. 413-425
    • Guh, R.-S.1    Zorriassatine, F.2    Tannock, J.D.T.3    O'Brien, C.4
  • 31
    • 0035889166 scopus 로고    scopus 로고
    • Control chart pattern recognition using back propagation artificial neural networks
    • DOI 10.1080/00207540110061616
    • Perry MB, Spoerre JK, Velasco T,. Control chart pattern recognition using back propagation artificial neural networks. International Journal of Production Research 2001; 39: 3399-3418. DOI: 10.1080/00207540110061616. (Pubitemid 35165521)
    • (2001) International Journal of Production Research , vol.39 , Issue.15 , pp. 3399-3418
    • Perry, M.B.1    Spoerre, J.K.2    Velasco, T.3
  • 32
    • 0013527549 scopus 로고    scopus 로고
    • Robustness of the neural network based control chart pattern recognition system to non-normality
    • Guh RS,. Robustness of the neural network based control chart pattern recognition system to non-normality. International Journal of Quality and Reliability Management 2002; 19: 97-112.
    • (2002) International Journal of Quality and Reliability Management , vol.19 , pp. 97-112
    • Guh, R.S.1
  • 33
    • 4344709594 scopus 로고    scopus 로고
    • Pattern recognition of control charts using artificial neural networks-Analyzing the effect of the training parameters
    • DOI: 10.1023/B:JIMS.0000037713.74607.00.
    • Barghash AM, Santarisi SN,. Pattern recognition of control charts using artificial neural networks-Analyzing the effect of the training parameters. Journal of Intelligent Manufacturing 2004; 15: 635-644. DOI: 10.1023/B:JIMS.0000037713.74607.00.
    • (2004) Journal of Intelligent Manufacturing , vol.15 , pp. 635-644
    • Barghash, A.M.1    Santarisi, S.N.2
  • 34
    • 33751166591 scopus 로고    scopus 로고
    • Feature based recognition of control chart patterns
    • DOI: 10.1080/002075497194967.
    • Gauri SK, Chakraborty S,. Feature based recognition of control chart patterns. Computers and Industrial Engineering 2006; 51: 726-742. DOI: 10.1080/002075497194967.
    • (2006) Computers and Industrial Engineering , vol.51 , pp. 726-742
    • Gauri, S.K.1    Chakraborty, S.2
  • 35
    • 36048944428 scopus 로고    scopus 로고
    • A study on the various features for effective control chart pattern recognition
    • DOI 10.1007/s00170-006-0591-6
    • Gauri SK, Chakraborty S,. A study on the various features for effective control chart pattern recognition. International Journal of Advanced Manufacturing Technology 2007; 34: 385-398. DOI: 10.1007/s00170-006-0591-6. (Pubitemid 350092350)
    • (2007) International Journal of Advanced Manufacturing Technology , vol.34 , Issue.3-4 , pp. 385-398
    • Gauri, S.K.1    Chakraborty, S.2
  • 36
    • 67349201688 scopus 로고    scopus 로고
    • Recognition of control chart patterns using improved selection of features
    • DOI: 10.1016/j.cie.2008.10.006.
    • Gauri SK, Chakraborty S,. Recognition of control chart patterns using improved selection of features. Computers and Industrial Engineering 2009; 56: 1577-1588. DOI: 10.1016/j.cie.2008.10.006.
    • (2009) Computers and Industrial Engineering , vol.56 , pp. 1577-1588
    • Gauri, S.K.1    Chakraborty, S.2
  • 37
    • 34250880786 scopus 로고    scopus 로고
    • A hybrid system for SPC concurrent pattern recognition
    • DOI 10.1016/j.aei.2007.03.002, PII S1474034607000225, Applications Eligible for Data Mining
    • Chen Z, Lu S, Lam S,. A hybrid system for SPC concurrent pattern recognition. Advanced Engineering Informatics 2007; 21: 303-310. DOI: 10.1016/j.aei.2007.03.002. (Pubitemid 46991420)
    • (2007) Advanced Engineering Informatics , vol.21 , Issue.3 , pp. 303-310
    • Chen, Z.1    Lu, S.2    Lam, S.3
  • 38
    • 34247593467 scopus 로고    scopus 로고
    • Monitoring high-yields processes with defects count in nonconforming items by artificial neural network
    • DOI 10.1016/j.amc.2006.09.114, PII S0096300306013488
    • Abbasi B, Niaki STA,. Monitoring high yields processes with defects count in nonconforming items by artificial neural network. Applied Mathematics and Computation 2007; 188: 262-270. DOI: 10.1016/j.amc.2006.09.114. (Pubitemid 46686720)
    • (2007) Applied Mathematics and Computation , vol.188 , Issue.1 , pp. 262-270
    • Abbasi, B.1    Akhavan Niaki, S.T.2
  • 39
    • 43449099456 scopus 로고    scopus 로고
    • Improved recognition of control chart patterns using artificial neural networks
    • DOI 10.1007/s00170-006-0925-4
    • Gauri SK, Chakraborty S,. Improved recognition of control chart patterns using artificial neural networks. International Journal of Advanced Manufacturing Technology 2008; 36: 1191-1201. DOI: 10.1007/s00170-006-0925-4. (Pubitemid 351665585)
    • (2008) International Journal of Advanced Manufacturing Technology , vol.36 , Issue.11-12 , pp. 1191-1201
    • Gauri, S.K.1    Chakraborty, S.2
  • 40
    • 70450233892 scopus 로고    scopus 로고
    • Recognizing control chart patterns with neural network and numerical fitting
    • DOI: 10.1007/s10845-008-0152-y.
    • Jiang P, Liu D, Zeng Z,. Recognizing control chart patterns with neural network and numerical fitting. Journal of Intelligent Manufacturing 2009; 20: 625-635. DOI: 10.1007/s10845-008-0152-y.
    • (2009) Journal of Intelligent Manufacturing , vol.20 , pp. 625-635
    • Jiang, P.1    Liu, D.2    Zeng, Z.3
  • 41
    • 77955656200 scopus 로고    scopus 로고
    • Control chart pattern recognition using an optimized neural network and efficient features
    • DOI: 10.1016/j.isatra.2010.03.007.
    • Ebrahimzadeh A, Ranaee V,. Control chart pattern recognition using an optimized neural network and efficient features. ISA Transactions 2010; 49: 387-393. DOI: 10.1016/j.isatra.2010.03.007.
    • (2010) ISA Transactions , vol.49 , pp. 387-393
    • Ebrahimzadeh, A.1    Ranaee, V.2
  • 42
    • 77950593813 scopus 로고    scopus 로고
    • Simultaneous process mean and variance monitoring using artificial neural networks
    • DOI: 10.1016/j.cie.2010.02.004.
    • Guh RS,. Simultaneous process mean and variance monitoring using artificial neural networks. Computers and Industrial Engineering 2010; 58: 739-753. DOI: 10.1016/j.cie.2010.02.004.
    • (2010) Computers and Industrial Engineering , vol.58 , pp. 739-753
    • Guh, R.S.1
  • 43
    • 79960001855 scopus 로고    scopus 로고
    • Issues in development of artificial neural network-based control chart pattern recognition schemes
    • Masood B, Hassan A,. Issues in development of artificial neural network-based control chart pattern recognition schemes. European Journal of Scientific research 2010; 39: 336-355.
    • (2010) European Journal of Scientific Research , vol.39 , pp. 336-355
    • Masood, B.1    Hassan, A.2
  • 45
    • 0026108817 scopus 로고
    • Statistical process control procedures for correlated observations
    • DOI: 10.1002/cjce.5450690106.
    • Harris TJ, Ross WH,. Statistical process control procedures for correlated observations. The Canadian Journal of Chemical Engineering 1991; 69: 48-57. DOI: 10.1002/cjce.5450690106.
    • (1991) The Canadian Journal of Chemical Engineering , vol.69 , pp. 48-57
    • Harris, T.J.1    Ross, W.H.2
  • 46
  • 48
    • 0344667562 scopus 로고    scopus 로고
    • CSPC: A monitoring procedure for state dependent processes
    • Ben-Gal I, Morag G, Shmilovici A,. CSPC: A monitoring procedure for state dependent processes. Technometrics 2003; 45: 293-311.
    • (2003) Technometrics , vol.45 , pp. 293-311
    • Ben-Gal, I.1    Morag, G.2    Shmilovici, A.3
  • 49
    • 37249093099 scopus 로고    scopus 로고
    • The funnel experiment: The Markov-based SPC approach
    • DOI 10.1002/qre.852
    • Singer G, Ben-Gal I,. The funnel experiment: The Markov-based SPC approach. Quality and Reliability Engineering International 2007; 23: 899-913. DOI: 10.1002/qre.852. (Pubitemid 350280913)
    • (2007) Quality and Reliability Engineering International , vol.23 , Issue.8 , pp. 899-913
    • Singer, G.1    Ben-Gal, I.2
  • 50
    • 0032022864 scopus 로고    scopus 로고
    • Using basis function networks to recognize shifts in correlated process parameters
    • Cook DF, Chiu CC,. Using radial basis function neural networks to recognize shifts in correlated manufacturing process parameters. IIE Transaction 1998; 30: 227-234. DOI: 10.1023/A:1007426519770. (Pubitemid 128728199)
    • (1998) IIE Transactions (Institute of Industrial Engineers) , vol.30 , Issue.3 , pp. 227-234
    • Cook, D.F.1
  • 53
    • 0035262745 scopus 로고    scopus 로고
    • Shifts recognition in correlated process data using a neural network
    • DOI: 10.1080/00207720120528.
    • Chiu CC, Chen MK, Lee KM,. Shifts recognition in correlated process data using a neural network. International Journal of System Science 2001; 32: 137-143. DOI: 10.1080/00207720120528.
    • (2001) International Journal of System Science , vol.32 , pp. 137-143
    • Chiu, C.C.1    Chen, M.K.2    Lee, K.M.3
  • 54
    • 1342265964 scopus 로고    scopus 로고
    • Detecting process mean shift in the presence of autocorrelation: A neural-network based monitoring scheme
    • DOI: 10.1080/0020754032000123614.
    • Hwarng HB,. Detecting process mean shift in the presence of autocorrelation: A neural-network based monitoring scheme. International Journal of Production Research 2004; 42: 573-595. DOI: 10.1080/0020754032000123614.
    • (2004) International Journal of Production Research , vol.42 , pp. 573-595
    • Hwarng, H.B.1
  • 55
    • 84952149041 scopus 로고
    • Run-length distribution of special cause control charts of correlation processes
    • Wardell DG, Moskowitz H, Plante RD,. Run-length distribution of special cause control charts of correlation processes. Technometrics 1994; 36: 3-17.
    • (1994) Technometrics , vol.36 , pp. 3-17
    • Wardell, D.G.1    Moskowitz, H.2    Plante, R.D.3
  • 56
    • 0032001756 scopus 로고    scopus 로고
    • A statistical control chart for stationary process data
    • Zhang NF,. A statistical control chart for stationary process data. Technometrics 1998; 40: 24-38. (Pubitemid 128619911)
    • (1998) Technometrics , vol.40 , Issue.1 , pp. 24-38
    • Zhang, N.F.1
  • 57
    • 0342854441 scopus 로고    scopus 로고
    • New SPC monitoring method: The ARMA chart
    • Jiang W, Tsui KL, Woodall WH,. A new SPC monitoring method: The ARMA chart. Technometrics 2000; 42: 399-410. (Pubitemid 32024184)
    • (2000) Technometrics , vol.42 , Issue.4 , pp. 399-410
    • Jiang, W.1    Woodall, W.H.2    Tsui, K.-L.3
  • 58
    • 27844603392 scopus 로고    scopus 로고
    • Simultaneous identification of mean shift and correlation change in AR(1) model
    • DOI: 10.1080/00207540512331311822.
    • Hwarng HB,. Simultaneous identification of mean shift and correlation change in AR(1) model. International Journal of Production Research 2005; 43: 1761-1783. DOI: 10.1080/00207540512331311822.
    • (2005) International Journal of Production Research , vol.43 , pp. 1761-1783
    • Hwarng, H.B.1
  • 59
    • 1342308552 scopus 로고    scopus 로고
    • An augmented neural network classification approach to detecting mean shifts in correlated manufacturing process parameters
    • DOI: 10.1080/00207540310001602856.
    • Zobel WC, Cook DF, Nottingham QN,. An augmented neural network classification approach to detecting mean shifts in correlated manufacturing process parameters. International Journal of Production Research 2004; 42: 741-758. DOI: 10.1080/00207540310001602856.
    • (2004) International Journal of Production Research , vol.42 , pp. 741-758
    • Zobel, W.C.1    Cook, D.F.2    Nottingham, Q.N.3
  • 60
    • 34248138917 scopus 로고    scopus 로고
    • Using recurrent neural networks to detect changes in autocorrelated processes for quality monitoring
    • DOI 10.1016/j.cie.2007.03.003, PII S0360835207000587
    • Pacella M, Semerano Q,. Using recurrent neural networks to detect changes in autocorrelated processes for quality monitoring. Computers and Industrial Engineering 2007; 52: 502-520. DOI: 10.1016/j.cie.2007.03.003. (Pubitemid 46719710)
    • (2007) Computers and Industrial Engineering , vol.52 , Issue.4 , pp. 502-520
    • Pacella, M.1    Semeraro, Q.2
  • 61
    • 26444565569 scopus 로고
    • Finding structure in time
    • Elman JL,. Finding structure in time. Cognitive Science 1990; 14: 179-211.
    • (1990) Cognitive Science , vol.14 , pp. 179-211
    • Elman, J.L.1
  • 62
    • 33746791172 scopus 로고    scopus 로고
    • Environmental statistical process control using an augmented neural network classification approach
    • DOI 10.1016/j.ejor.2005.04.035, PII S0377221705004340
    • Cook DF, Zobel CW, Wolfe ML,. Environmental statistical process control using an augmented neural network classification approach. European Journal of Operational Research 2006; 174: 1631-1642. DOI: 10.1016/j.ejor.2005.04.035. (Pubitemid 44176280)
    • (2006) European Journal of Operational Research , vol.174 , Issue.3 , pp. 1631-1642
    • Cook, D.F.1    Zobel, C.W.2    Wolfe, M.L.3
  • 63
    • 34249067480 scopus 로고    scopus 로고
    • Artificial neural networks in applying MCUSUM residuals charts for AR(1) processes
    • DOI 10.1016/j.amc.2006.12.081, PII S009630030601784X
    • Arkat J, Niaki STA, Abbasi B,. Artificial neural networks in applying MCUSUM residual charts for AR(1) processes. Applied Mathematics and Computation 2007; 189: 1889-1901. DOI: 10.1016/j.amc.2006.12.081. (Pubitemid 46802797)
    • (2007) Applied Mathematics and Computation , vol.189 , Issue.2 , pp. 1889-1901
    • Arkat, J.1    Niaki, S.T.A.2    Abbasi, B.3
  • 64
    • 0023451116 scopus 로고
    • A note on multivariate CUSUM procedures
    • Healy JD,. A note on multivariate CUSUM procedures. Technometrics 1987; 29: 409-412.
    • (1987) Technometrics , vol.29 , pp. 409-412
    • Healy, J.D.1
  • 65
    • 36249008457 scopus 로고    scopus 로고
    • Integrated Application of SPC/EPC/ICA and neural networks
    • DOI: 10.1080/00207540600943969.
    • Lu CJ, Wu CM, Keng CJ, Chiu CC,. Integrated Application of SPC/EPC/ICA and neural networks. International Journal of Production Research 2008; 46: 873-893. DOI: 10.1080/00207540600943969.
    • (2008) International Journal of Production Research , vol.46 , pp. 873-893
    • Lu, C.J.1    Wu, C.M.2    Keng, C.J.3    Chiu, C.C.4
  • 66
    • 77249092144 scopus 로고    scopus 로고
    • A neural network ensemble model for on-line monitoring of process mean and variance shifts in correlated processes
    • DOI: 10.1016/j.eswa.2009.11.051.
    • Wu B, Yu J,. A neural network ensemble model for on-line monitoring of process mean and variance shifts in correlated processes. Expert Systems with Applications 2010; 37: 4058-4065. DOI: 10.1016/j.eswa.2009.11.051.
    • (2010) Expert Systems with Applications , vol.37 , pp. 4058-4065
    • Wu, B.1    Yu, J.2
  • 67
    • 0029517963 scopus 로고
    • A review of multivariate control charts
    • Lowry CA, Montgomery DC,. A review of multivariate control charts. IIE Transactions 1995; 27: 800-810.
    • (1995) IIE Transactions , vol.27 , pp. 800-810
    • Lowry, C.A.1    Montgomery, D.C.2
  • 68
    • 34547828271 scopus 로고    scopus 로고
    • Multivariate statistical process control charts: An overview
    • DOI 10.1002/qre.829
    • Bersimis S, Psarakis S, Panaretos J,. Multivariate statistical process control charts: An overview. Quality and Reliability Engineering International 2007; 23: 517-543. DOI: 10.1002/qre.829. (Pubitemid 47245685)
    • (2007) Quality and Reliability Engineering International , vol.23 , Issue.5 , pp. 517-543
    • Bersimis, S.1    Psarakis, S.2    Panaretos, J.3
  • 70
    • 77955331694 scopus 로고
    • A multivariate exponentially weighed moving average control chart
    • Lowry CA, Woodall HW,. A multivariate exponentially weighed moving average control chart. Technometrics 1992; 34: 46-53.
    • (1992) Technometrics , vol.34 , pp. 46-53
    • Lowry, C.A.1    Woodall, H.W.2
  • 71
    • 0024062307 scopus 로고
    • Multivariate generalizations of cumulative sum quality control schemes
    • Crosier RB,. Multivariate generalizations of cumulative sum quality control schemes. Technometrics 1988; 30: 291-303.
    • (1988) Technometrics , vol.30 , pp. 291-303
    • Crosier, R.B.1
  • 72
    • 0000420111 scopus 로고
    • 2 multivariate quality control procedure
    • 2 multivariate quality control procedure. The Statistician 1987; 36: 571-583.
    • (1987) The Statistician , vol.36 , pp. 571-583
    • Murphy, B.J.1
  • 75
    • 84883491234 scopus 로고
    • Identification of out of control quality characteristics in a multivariate manufacturing environment
    • DOI: 10.1080/03610929108830667.
    • Doganaksoy N, Faltin FW, Tucker WT,. Identification of out of control quality characteristics in a multivariate manufacturing environment. Communications in Statistics-Theory and Methods 1991; 20: 2775-2790. DOI: 10.1080/03610929108830667.
    • (1991) Communications in Statistics-Theory and Methods , vol.20 , pp. 2775-2790
    • Doganaksoy, N.1    Faltin, F.W.2    Tucker, W.T.3
  • 76
    • 0036610685 scopus 로고    scopus 로고
    • Mean shifts detection and classification in multivariate process: A neural-fuzzy approach
    • DOI: 10.1023/A:1015738906895.
    • Wang TY, Chen LH,. Mean shifts detection and classification in multivariate process: A neural-fuzzy approach. Journal of Intelligence Manufacturing 2001; 13: 211-221. DOI: 10.1023/A:1015738906895.
    • (2001) Journal of Intelligence Manufacturing , vol.13 , pp. 211-221
    • Wang, T.Y.1    Chen, L.H.2
  • 77
    • 6344223429 scopus 로고    scopus 로고
    • Artificial neural networks to classify mean shifts from multivariate chart signals
    • DOI: 10.1016/j.cie.2004.07.002.
    • Chen LH, Wang TY,. Artificial neural networks to classify mean shifts from multivariate chart signals. Computers and Industrial Engineering 2004; 47: 195-205. DOI: 10.1016/j.cie.2004.07.002.
    • (2004) Computers and Industrial Engineering , vol.47 , pp. 195-205
    • Chen, L.H.1    Wang, T.Y.2
  • 78
    • 0346276741 scopus 로고    scopus 로고
    • Analysis of variations in a multi-variate process using neural networks
    • DOI: 10.1007/s00170-003-1631-0.
    • Low C, Hsu C, Yu F,. Analysis of variations in a multi-variate process using neural networks. International Journal of Advanced Manufacturing Technology 2003; 22: 911-921. DOI: 10.1007/s00170-003-1631-0.
    • (2003) International Journal of Advanced Manufacturing Technology , vol.22 , pp. 911-921
    • Low, C.1    Hsu, C.2    Yu, F.3
  • 79
    • 0002508003 scopus 로고
    • Multivariate quality control
    • In, Kotz S. Johnson N.L. Read C.R. (eds.). Wiley: New York.
    • Alt FB,. Multivariate quality control. In The Encyclopedia of Statistical Sciences, vol. 6, Kotz S, Johnson NL, Read CR, (eds.). Wiley: New York, 1985; 110-122.
    • (1985) The Encyclopedia of Statistical Sciences , vol.6 , pp. 110-122
    • Alt, F.B.1
  • 80
    • 0037349382 scopus 로고    scopus 로고
    • Using novelty detection to identify abnormalities caused by mean shifts in bivariate processes
    • DOI: 10.1016/S0360-8352(02)00215-2.
    • Zorriassatine F, Tannock JDT, O'Brien C,. Using novelty detection to identify abnormalities caused by mean shifts in bivariate processes. Computers and Industrial Engineering 2003; 44: 385-408. DOI: 10.1016/S0360-8352(02)00215- 2.
    • (2003) Computers and Industrial Engineering , vol.44 , pp. 385-408
    • Zorriassatine, F.1    Tannock, J.D.T.2    O'Brien, C.3
  • 81
    • 28844486614 scopus 로고    scopus 로고
    • Fault diagnosis in multivariate control charts using artificial neural networks
    • DOI 10.1002/qre.689
    • Niaki STA, Abbasi B,. Fault diagnosis in multivariate control charts using artificial neural networks. Quality and Reliability Engineering International 2005; 21: 825-840. DOI: 10.1002/qre.689. (Pubitemid 41766868)
    • (2005) Quality and Reliability Engineering International , vol.21 , Issue.8 , pp. 825-840
    • Niaki, S.T.A.1    Abbasi, B.2
  • 84
    • 34047098687 scopus 로고    scopus 로고
    • On-line identification and quantification of mean shifts in bivariate processes using a neural network-based approach
    • DOI: 10.1002/qre.796.
    • Guh RS,. On-line identification and quantification of mean shifts in bivariate processes using a neural network-based approach. Quality and Reliability Engineering International 2007; 23: 367-385. DOI: 10.1002/qre.796.
    • (2007) Quality and Reliability Engineering International , vol.23 , pp. 367-385
    • Guh, R.S.1
  • 85
    • 41849120766 scopus 로고    scopus 로고
    • Detection and classification mean-shifts in multi-attribute processes by artificial neural networks
    • DOI 10.1080/00207540601039809, PII 772296145
    • Niaki STA, Abbasi B,. Detection and classification mean-shifts in multi-attribute processes by artificial neural networks. International Journal of Production Research 2008; 46: 2945-2963. DOI: 10.1080/00207540601039809. (Pubitemid 351499528)
    • (2008) International Journal of Production Research , vol.46 , Issue.11 , pp. 2945-2963
    • Niaki, S.T.A.1    Abbasi, B.2
  • 86
    • 80053560404 scopus 로고    scopus 로고
    • A hybrid method of artificial neural networks and simulated annealing in monitoring auto-correlated multi-attribute processes
    • DOI: 10.1007/s00170-011-3199-4.
    • Niaki STA, Nasaji SA,. A hybrid method of artificial neural networks and simulated annealing in monitoring auto-correlated multi-attribute processes. International Journal of Advanced Manufacturing Technology. DOI: 10.1007/s00170-011-3199-4.
    • International Journal of Advanced Manufacturing Technology
    • Niaki, S.T.A.1    Nasaji, S.A.2
  • 87
  • 88
    • 45149101726 scopus 로고    scopus 로고
    • Identifying the source of variance shifts in the multivariate process using neural networks and support vector machines
    • DOI: 10.1016/j.eswa.2007.06.002.
    • Cheng CS, Cheng HP,. Identifying the source of variance shifts in the multivariate process using neural networks and support vector machines. Expert Systems with Applications 2008; 35: 198-206. DOI: 10.1016/j.eswa.2007.06.002.
    • (2008) Expert Systems with Applications , vol.35 , pp. 198-206
    • Cheng, C.S.1    Cheng, H.P.2
  • 89
    • 65249128654 scopus 로고    scopus 로고
    • Toward identifying the source of mean shifts in multivariate SPC: A neural network approach
    • DOI: 10.1080/00207540701241883.
    • Hwarng HB,. Toward identifying the source of mean shifts in multivariate SPC: A neural network approach. International Journal of Production Research 2008; 46: 5531-5559. DOI: 10.1080/00207540701241883.
    • (2008) International Journal of Production Research , vol.46 , pp. 5531-5559
    • Hwarng, H.B.1
  • 90
    • 74549129443 scopus 로고    scopus 로고
    • Shift detection and source identification in multivariate autocorrelated processes
    • DOI: 10.1080/00207540802431326.
    • Hwarng HB, Wang Y,. Shift detection and source identification in multivariate autocorrelated processes. International Journal of Production Research 2010; 48: 835-859. DOI: 10.1080/00207540802431326.
    • (2010) International Journal of Production Research , vol.48 , pp. 835-859
    • Hwarng, H.B.1    Wang, Y.2
  • 91
    • 53849102241 scopus 로고    scopus 로고
    • A neural network ensemble-based model for on-line monitoring and diagnosis of out-of-control signals in multivariate manufacturing processes
    • DOI: 10.1016/j.eswa.2007.10.003.
    • Yu JB, Xi LF,. A neural network ensemble-based model for on-line monitoring and diagnosis of out-of-control signals in multivariate manufacturing processes. Expert Systems with Applications 2009; 36: 909-921. DOI: 10.1016/j.eswa.2007.10.003.
    • (2009) Expert Systems with Applications , vol.36 , pp. 909-921
    • Yu, J.B.1    Xi, L.F.2
  • 92
    • 58249092619 scopus 로고    scopus 로고
    • Identifying source(s) of out-of-control signals in multivariate manufacturing process using selective neural network ensemble
    • DOI: 10.1016/j.engappai.2008.05.009.
    • Yu JB, Xi LF, Zhou X,. Identifying source(s) of out-of-control signals in multivariate manufacturing process using selective neural network ensemble. Engineering Applications of Artificial Intelligence 2009; 22: 141-152. DOI: 10.1016/j.engappai.2008.05.009.
    • (2009) Engineering Applications of Artificial Intelligence , vol.22 , pp. 141-152
    • Yu, J.B.1    Xi, L.F.2    Zhou, X.3
  • 93
    • 56349153543 scopus 로고    scopus 로고
    • Designing a multivariate-multistage quality control system using artificial neural networks
    • DOI: 10.1080/00207540701504348.
    • Niaki STA, Davoodi M,. Designing a multivariate-multistage quality control system using artificial neural networks. International Journal of Production Research 2009; 47: 251-271. DOI: 10.1080/00207540701504348.
    • (2009) International Journal of Production Research , vol.47 , pp. 251-271
    • Niaki, S.T.A.1    Davoodi, M.2
  • 94
    • 77952905251 scopus 로고    scopus 로고
    • An integrated system for on-line intelligent monitoring and identifying process variability and its application
    • DOI: 10.1080/09511921003667730.
    • Du S, Lv J, Xi L,. An integrated system for on-line intelligent monitoring and identifying process variability and its application. International Journal of Computer Integrated Manufacturing 2010; 23: 529-542. DOI: 10.1080/09511921003667730.
    • (2010) International Journal of Computer Integrated Manufacturing , vol.23 , pp. 529-542
    • Du, S.1    Lv, J.2    Xi, L.3
  • 95
    • 71749085820 scopus 로고    scopus 로고
    • A proposed framework for control chart pattern recognition in multivariate process using artificial neural networks
    • DOI: 10.1016/j.eswa.2009.05.092.
    • El-Midany TT, El-BAz MA, Abd-Elwahed MS,. A proposed framework for control chart pattern recognition in multivariate process using artificial neural networks. Expert Systems with Applications 2010; 37: 1035-1042. DOI: 10.1016/j.eswa.2009.05.092.
    • (2010) Expert Systems with Applications , vol.37 , pp. 1035-1042
    • El-Midany, T.T.1    El-Baz, M.A.2    Abd-Elwahed, M.S.3
  • 96
    • 84990014267 scopus 로고    scopus 로고
    • Change point detection with multivariate control charts by artificial neural network International
    • DOI: 10.1007/s00170-009-2193-6.
    • Ahmadzadeh F,. Change point detection with multivariate control charts by artificial neural network International. Journal of Advanced Manufacturing Technology 2010. DOI: 10.1007/s00170-009-2193-6.
    • (2010) Journal of Advanced Manufacturing Technology
    • Ahmadzadeh, F.1
  • 97
    • 78951487088 scopus 로고    scopus 로고
    • Using neural networks to detect the bivariate process variance shifts pattern
    • DOI: 10.1016/j.cie.2010.11.009.
    • Cheng CS, Cheng HP,. Using neural networks to detect the bivariate process variance shifts pattern. Computers and Industrial Engineering 2010. DOI: 10.1016/j.cie.2010.11.009.
    • (2010) Computers and Industrial Engineering
    • Cheng, C.S.1    Cheng, H.P.2
  • 98
    • 31244432482 scopus 로고    scopus 로고
    • Generalized variance chart design with adaptive sample sizes. The bivariate case
    • DOI: 10.1081/SAC-100107789.
    • Aparisi F, Jabaloyes J, Carrion A,. Generalized variance chart design with adaptive sample sizes. The bivariate case. Communications in Statistics Theory and Methods 2001; 30: 931-948. DOI: 10.1081/SAC-100107789.
    • (2001) Communications in Statistics Theory and Methods , vol.30 , pp. 931-948
    • Aparisi, F.1    Jabaloyes, J.2    Carrion, A.3
  • 99
    • 27944505929 scopus 로고    scopus 로고
    • Multivariate double sampling |S| charts for controlling process variability
    • DOI 10.1080/00207540410001716525
    • Grigoryan A, He D,. Multivariate double sampling |S| charts for controlling process variability. International Journal of Production Research 2005; 43: 715-730. DOI: 10.1080/00207540410001716525. (Pubitemid 41663567)
    • (2005) International Journal of Production Research , vol.43 , Issue.4 , pp. 715-730
    • Grigoryan, A.1    He, D.2
  • 100
    • 79751538432 scopus 로고    scopus 로고
    • An integrating approach to root cause analysis of a bivariate mean vector with a linear trend disturbance
    • DOI: 10.1007/s00170-010-2728-x.
    • Atashgar K, Noorossana R,. An integrating approach to root cause analysis of a bivariate mean vector with a linear trend disturbance. International Journal of Advanced Manufacturing Technology 2011; 52: 407-420. DOI: 10.1007/s00170-010-2728-x.
    • (2011) International Journal of Advanced Manufacturing Technology , vol.52 , pp. 407-420
    • Atashgar, K.1    Noorossana, R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.