메뉴 건너뛰기




Volumn 47, Issue 2-3, 2004, Pages 195-205

Artificial neural networks to classify mean shifts from multivariate χ2 chart signals

Author keywords

Artificial neural networks; Control chart; Multivariate 2 chart

Indexed keywords

MONITORING; MULTIVARIABLE CONTROL SYSTEMS; PROCESS CONTROL; SIGNAL PROCESSING; STATISTICAL METHODS;

EID: 6344223429     PISSN: 03608352     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.cie.2004.07.002     Document Type: Article
Times cited : (74)

References (36)
  • 1
    • 0030211371 scopus 로고    scopus 로고
    • A neural fuzzy control chart for detecting and classifying process shifts
    • Chang, S. I., & AW, C. A. (1996). A neural fuzzy control chart for detecting and classifying process shifts. International Journal of Production Research, 34, 2265-2278.
    • (1996) International Journal of Production Research , vol.34 , pp. 2265-2278
    • Chang, S.I.1    Aw, C.A.2
  • 2
    • 0033131670 scopus 로고    scopus 로고
    • A two-stage network approach for process variance change detection and classification
    • Chang, S. I., & Ho, E. S. (1999). A two-stage network approach for process variance change detection and classification. International Journal of Production Research, 37, 1581-1599.
    • (1999) International Journal of Production Research , vol.37 , pp. 1581-1599
    • Chang, S.I.1    Ho, E.S.2
  • 3
    • 0029196273 scopus 로고
    • A multi-layer neural network model for detecting changes in the process mean
    • Cheng, C. S. (1995). A multi-layer neural network model for detecting changes in the process mean. Computers and Industrial Engineering, 28, 51-61.
    • (1995) Computers and Industrial Engineering , vol.28 , pp. 51-61
    • Cheng, C.S.1
  • 4
    • 0035447137 scopus 로고    scopus 로고
    • A neural network-based procedure for the monitoring of exponential mean
    • Cheng, C. S., & Cheng, S. S. (2001). A neural network-based procedure for the monitoring of exponential mean. Computers and Industrial Engineering, 40, 309-321.
    • (2001) Computers and Industrial Engineering , vol.40 , pp. 309-321
    • Cheng, C.S.1    Cheng, S.S.2
  • 6
    • 0024062307 scopus 로고
    • Multivariate generalizations of cumulative sum quality control schemes
    • Crosier, R. B. (1988). Multivariate generalizations of cumulative sum quality control schemes. Technometrics, 30, 291-303.
    • (1988) Technometrics , vol.30 , pp. 291-303
    • Crosier, R.B.1
  • 7
    • 0032673229 scopus 로고    scopus 로고
    • A neural network based model for abnormal pattern recognition of control charts
    • Guh, R. S., & Hsieh, Y. C. (1999). A neural network based model for abnormal pattern recognition of control charts. Computers and Industrial Engineering, 36, 97-108.
    • (1999) Computers and Industrial Engineering , vol.36 , pp. 97-108
    • Guh, R.S.1    Hsieh, Y.C.2
  • 9
    • 0026898532 scopus 로고
    • Identification of change structure in statistical process control
    • Guo, Y., & Dooley, K. J. (1992). Identification of change structure in statistical process control. International Journal of Production Research, 30, 1655-1669.
    • (1992) International Journal of Production Research , vol.30 , pp. 1655-1669
    • Guo, Y.1    Dooley, K.J.2
  • 12
    • 0025964567 scopus 로고
    • Back-propagation algorithm which varies the number of hidden units
    • Hirose, Y., Yamashita, K., & Hijiya, S. (1991). Back-propagation algorithm which varies the number of hidden units. Neural Networks, 4, 61-66.
    • (1991) Neural Networks , vol.4 , pp. 61-66
    • Hirose, Y.1    Yamashita, K.2    Hijiya, S.3
  • 13
    • 0032648097 scopus 로고    scopus 로고
    • A integrated neural network approach for simultaneous monitoring of process mean and variance shifts-a comparative study
    • Ho, E. S., & Chang, S. I. (1999). A integrated neural network approach for simultaneous monitoring of process mean and variance shifts-a comparative study. International Journal of Production Research, 37, 1881-1901.
    • (1999) International Journal of Production Research , vol.37 , pp. 1881-1901
    • Ho, E.S.1    Chang, S.I.2
  • 14
    • 85032752004 scopus 로고
    • Progress in supervised neural networks: What's new since Lippmann
    • Hush, D. R., & Horne, B. G. (1993). Progress in supervised neural networks: what's new since Lippmann. IEEE Signal Processing Magazine, 10, 8-39.
    • (1993) IEEE Signal Processing Magazine , vol.10 , pp. 8-39
    • Hush, D.R.1    Horne, B.G.2
  • 15
    • 1342265964 scopus 로고    scopus 로고
    • Detecting process mean shift in the presence of autocorrelation: A neural-network based monitoring scheme
    • Hwarng, H. B. (2004). Detecting process mean shift in the presence of autocorrelation: a neural-network based monitoring scheme. International Journal of Production Research, 42, 573-595.
    • (2004) International Journal of Production Research , vol.42 , pp. 573-595
    • Hwarng, H.B.1
  • 16
    • 0027589082 scopus 로고
    • X-bar control chart pattern identification through efficient off-line neural network training
    • Hwarng, H. B., & Hubele, N. F. (1993). X-bar control chart pattern identification through efficient off-line neural network training. IIE Transactions, 25, 27-40.
    • (1993) IIE Transactions , vol.25 , pp. 27-40
    • Hwarng, H.B.1    Hubele, N.F.2
  • 19
    • 0026627415 scopus 로고
    • Kolmogorov's theorem and multilayer neural networks
    • Kurkova, V. (1992). Kolmogorov's theorem and multilayer neural networks. Neural Networks, 5, 501-506.
    • (1992) Neural Networks , vol.5 , pp. 501-506
    • Kurkova, V.1
  • 20
    • 0029517963 scopus 로고
    • A review of multivariate control charts
    • Lowry, C. A., & Montgomery, D. C. (1995). A review of multivariate control charts. IIE Transactions, 27, 800-810.
    • (1995) IIE Transactions , vol.27 , pp. 800-810
    • Lowry, C.A.1    Montgomery, D.C.2
  • 21
    • 77955331694 scopus 로고
    • A multivariate exponentially weighted moving average control chart
    • Lowry, C. A., & Woodall, H. W. (1992). A multivariate exponentially weighted moving average control chart. Technometrics, 34, 46-53.
    • (1992) Technometrics , vol.34 , pp. 46-53
    • Lowry, C.A.1    Woodall, H.W.2
  • 27
    • 0035889166 scopus 로고    scopus 로고
    • Control chart pattern recognition using back propagation artificial neural networks
    • Perry, M. B., Spoerre, J. K., & Velasco, T. (2001). Control chart pattern recognition using back propagation artificial neural networks. International Journal of Production Research, 39, 3399-3418.
    • (2001) International Journal of Production Research , vol.39 , pp. 3399-3418
    • Perry, M.B.1    Spoerre, J.K.2    Velasco, T.3
  • 28
    • 0028392602 scopus 로고
    • Control chart pattern recognition using learning vector quantization networks
    • Pham, D. T., & Oztemel, E. (1994). Control chart pattern recognition using learning vector quantization networks. International Journal of Production Research, 23, 721-729.
    • (1994) International Journal of Production Research , vol.23 , pp. 721-729
    • Pham, D.T.1    Oztemel, E.2
  • 33
    • 0026017007 scopus 로고
    • Creating artificial neural networks that generalize
    • Sietsma, J., & Dow, R. J. F. (1991). Creating artificial neural networks that generalize. Neural Networks, 4, 67-79.
    • (1991) Neural Networks , vol.4 , pp. 67-79
    • Sietsma, J.1    Dow, R.J.F.2
  • 34
    • 0030128050 scopus 로고    scopus 로고
    • Multivariate quality control using finite intersection tests
    • Timm, N. H. (1996). Multivariate quality control using finite intersection tests. Journal of Quality Technology, 28, 233-243.
    • (1996) Journal of Quality Technology , vol.28 , pp. 233-243
    • Timm, N.H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.