메뉴 건너뛰기




Volumn 49, Issue 3, 2010, Pages 387-393

Control chart pattern recognition using an optimized neural network and efficient features

Author keywords

Control chart pattern recognition; Learning algorithm; Neural networks; Particle swarm optimization; Wavelet decomposition entropies

Indexed keywords

CLASSIFICATION (OF INFORMATION); CONTROL CHARTS; ENTROPY; EXTRACTION; FEATURE EXTRACTION; FLOWCHARTING; LEARNING ALGORITHMS; MULTILAYER NEURAL NETWORKS; NEURAL NETWORKS; PARTICLE SWARM OPTIMIZATION (PSO); RADIAL BASIS FUNCTION NETWORKS; WAVELET DECOMPOSITION;

EID: 77955656200     PISSN: 00190578     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.isatra.2010.03.007     Document Type: Article
Times cited : (40)

References (26)
  • 2
    • 0029207414 scopus 로고
    • Out-of-control pattern recognition and analysis for quality control charts using lisp-based systems
    • J.A. Swift, and J.H. Mize Out-of-control pattern recognition and analysis for quality control charts using lisp-based systems Computers & Industrial Engineering 28 1995 81 91
    • (1995) Computers & Industrial Engineering , vol.28 , pp. 81-91
    • Swift, J.A.1    Mize, J.H.2
  • 3
    • 4444261828 scopus 로고    scopus 로고
    • A new ANN model and its application in pattern recognition of control charts
    • Le Q, Goal X, Teng L, Zhu M. A new ANN model and its application in pattern recognition of control charts. In: Proc. IEEE. WCICA. 2008. p. 180711.
    • (2008) Proc. IEEE. WCICA. , pp. 1807-1811
    • Le, Q.1    Goal, X.2    Teng, L.3    Zhu, M.4
  • 4
    • 0000974044 scopus 로고
    • Control chart pattern recognition using neural networks
    • D.T. Pham, and E. Oztemel Control chart pattern recognition using neural networks Journal of Systems Engineering 2 1992 256 262
    • (1992) Journal of Systems Engineering , vol.2 , pp. 256-262
    • Pham, D.T.1    Oztemel, E.2
  • 5
    • 55749103079 scopus 로고    scopus 로고
    • A research about pattern recognition of control chart using probability neural network
    • Cheng Z, Ma Y. A research about pattern recognition of control chart using probability neural network. In: Proc. ISECS. 2008. p. 1405.
    • (2008) Proc. ISECS. , pp. 140-145
    • Cheng, Z.1    Ma, Y.2
  • 7
    • 0028392602 scopus 로고
    • Control chart pattern recognition using linear vector quantization networks
    • D.T. Pham, and E. Oztemel Control chart pattern recognition using linear vector quantization networks International Journal of Production Research 32 721729 1994 256 262
    • (1994) International Journal of Production Research , vol.32 , Issue.721-729 , pp. 256-262
    • Pham, D.T.1    Oztemel, E.2
  • 8
    • 0013527549 scopus 로고    scopus 로고
    • Robustness of the neural network based control chart pattern recognition system to non-normality
    • R.-S Guh Robustness of the neural network based control chart pattern recognition system to non-normality International Journal of Quality & Reliability Management 19 2002 97 112
    • (2002) International Journal of Quality & Reliability Management , vol.19 , pp. 97-112
    • Guh, R.-S.1
  • 10
    • 0026898532 scopus 로고
    • Identification of change structure in statistical process control
    • Y. Gou, and K.J. Dooley Identification of change structure in statistical process control International Journal of Production Research 30 1992 1655 1669
    • (1992) International Journal of Production Research , vol.30 , pp. 1655-1669
    • Gou, Y.1    Dooley, K.J.2
  • 12
    • 27744594892 scopus 로고    scopus 로고
    • On-line identification of control chart patterns using self-organized approaches
    • R.S. Guh, and Y.R. Shiue On-line identification of control chart patterns using self-organized approaches International Journal of Production Research 43 2005 1225 1254
    • (2005) International Journal of Production Research , vol.43 , pp. 1225-1254
    • Guh, R.S.1    Shiue, Y.R.2
  • 13
    • 8644263044 scopus 로고    scopus 로고
    • Adaptive resonance theory-based neural algorithms for manufacturing process quality control
    • M. Pacella, Q. Semeraro, and A. Anglani Adaptive resonance theory-based neural algorithms for manufacturing process quality control International Journal of Production Research 42 2004 4581 4607
    • (2004) International Journal of Production Research , vol.42 , pp. 4581-4607
    • Pacella, M.1    Semeraro, Q.2    Anglani, A.3
  • 14
    • 34547699508 scopus 로고    scopus 로고
    • Identification of control chart patterns using wavelet filtering and robust fuzzy clustering
    • C.H. Wang, and W. Kuo Identification of control chart patterns using wavelet filtering and robust fuzzy clustering Journal of Intelligent Manufacturing 18 2007 343 350
    • (2007) Journal of Intelligent Manufacturing , vol.18 , pp. 343-350
    • Wang, C.H.1    Kuo, W.2
  • 16
    • 0031187738 scopus 로고    scopus 로고
    • Automated unnatural pattern recognition on control charts using correlation analysis techniques
    • A.M. Al-Ghanim, and L.C. Ludeman Automated unnatural pattern recognition on control charts using correlation analysis techniques Computers & Industrial Engineering 32 1997 679 690
    • (1997) Computers & Industrial Engineering , vol.32 , pp. 679-690
    • Al-Ghanim, A.M.1    Ludeman, L.C.2
  • 17
    • 14044261162 scopus 로고    scopus 로고
    • A control chart pattern recognition scheme using a statistical correlation coefficient method
    • J.H. Yang, and M.S. Yang A control chart pattern recognition scheme using a statistical correlation coefficient method Computers and Industrial Engineering 48 2005 205 221
    • (2005) Computers and Industrial Engineering , vol.48 , pp. 205-221
    • Yang, J.H.1    Yang, M.S.2
  • 21
    • 84943274699 scopus 로고
    • A direct adaptive method for faster backpropagation learning: The rprop algorithm
    • Riedmiller M, Braun H. A direct adaptive method for faster backpropagation learning: the rprop algorithm. In: Proc. I CN N. 1993. p. 58691.
    • (1993) Proc. i CN N. , pp. 586-591
    • Riedmiller, M.1    Braun, H.2
  • 22
    • 0025490985 scopus 로고
    • Networks for approximation and learning
    • Poggio T, Girosi F. Networks for approximation and learning. In: Proc. IEEE, vol. 78. 1990. p. 148197.
    • (1990) Proc. IEEE , vol.78 , pp. 1481-1497
    • Poggio, T.1    Girosi, F.2
  • 23
    • 60849135856 scopus 로고
    • Radial basis function networks in nonlinear signal processing applications
    • Kassam SA, Cha I. Radial basis function networks in nonlinear signal processing applications. In: Proc. ACSSC. 1993. p. 9237.
    • (1993) Proc. ACSSC. , pp. 923-927
    • Kassam, S.A.1    Cha, I.2
  • 24
    • 0032123243 scopus 로고    scopus 로고
    • An efficient MDLbased construction of RBF networks
    • A. Leonardis, and H. Bischof An efficient MDLbased construction of RBF networks Neural Network 11 1998 963 973
    • (1998) Neural Network , vol.11 , pp. 963-973
    • Leonardis, A.1    Bischof, H.2
  • 26
    • 0002149938 scopus 로고    scopus 로고
    • A modified particle swarm optimizer
    • Shi Y, Eberhart RC. A modified particle swarm optimizer. In: Proc. IJCNN. 1999. p. 6973.
    • (1999) Proc. IJCNN , pp. 69-73
    • Shi, Y.1    Eberhart, R.C.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.