메뉴 건너뛰기




Volumn 37, Issue 6, 2010, Pages 4058-4065

A neural network ensemble model for on-line monitoring of process mean and variance shifts in correlated processes

Author keywords

Correlated manufacturing process; Pattern recognition; Selective neural network ensemble; Statistical process control

Indexed keywords

ASSIGNABLE CAUSE; AVERAGE RUN LENGTHS; CONVENTIONAL CONTROL; GENERALIZATION PERFORMANCE; IDENTIFICATION MODEL; LEARNING-BASED METHODS; MANUFACTURING PROCESS; NETWORK ENSEMBLE; NEURAL NETWORK ENSEMBLES; ONLINE MONITORING; PROCESS CHANGE; PROCESS MEAN; SIMULATION RESULT; SINGLE NEURAL; VARIANCE SHIFTS;

EID: 77249092144     PISSN: 09574174     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.eswa.2009.11.051     Document Type: Article
Times cited : (41)

References (35)
  • 1
    • 0032188368 scopus 로고    scopus 로고
    • Robustness of forecast-based monitoring schemes
    • Adams B.M., and Tseng I.T. Robustness of forecast-based monitoring schemes. Journal of Quality Technology 30 (1998) 328-339
    • (1998) Journal of Quality Technology , vol.30 , pp. 328-339
    • Adams, B.M.1    Tseng, I.T.2
  • 3
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman L. Bagging predictors. Machine Learning 24 (1996) 123-140
    • (1996) Machine Learning , vol.24 , pp. 123-140
    • Breiman, L.1
  • 4
    • 0030211371 scopus 로고    scopus 로고
    • A neural fuzzy control chart for detecting and classifying process mean shifts
    • Chang S.I., and AW C.A. A neural fuzzy control chart for detecting and classifying process mean shifts. International Journal of Production Research 34 (1996) 2265-2278
    • (1996) International Journal of Production Research , vol.34 , pp. 2265-2278
    • Chang, S.I.1    AW, C.A.2
  • 5
    • 0029196273 scopus 로고
    • A multi-layer neural network model for detecting changes in the process mean
    • Cheng C.S. A multi-layer neural network model for detecting changes in the process mean. Computers and Industrial Engineering 28 (1995) 51-61
    • (1995) Computers and Industrial Engineering , vol.28 , pp. 51-61
    • Cheng, C.S.1
  • 6
    • 0037146388 scopus 로고    scopus 로고
    • Support vector machines for recognizing shifts in correlated and other manufacturing processes
    • Chinnam R.B. Support vector machines for recognizing shifts in correlated and other manufacturing processes. International Journal of Production Research 40 (2002) 4449-4466
    • (2002) International Journal of Production Research , vol.40 , pp. 4449-4466
    • Chinnam, R.B.1
  • 7
    • 0035262745 scopus 로고    scopus 로고
    • Shifts recognition in correlated process data using a neural network
    • Chiu C.C., Chen M.K., and Lee K.M. Shifts recognition in correlated process data using a neural network. International Journal of Systems Science 32 2 (2001) 137-143
    • (2001) International Journal of Systems Science , vol.32 , Issue.2 , pp. 137-143
    • Chiu, C.C.1    Chen, M.K.2    Lee, K.M.3
  • 8
    • 0032022864 scopus 로고    scopus 로고
    • Using radial basis function neural networks to recognize shifts in correlated manufacturing process parameters
    • Cook D.F., and Chiu C.C. Using radial basis function neural networks to recognize shifts in correlated manufacturing process parameters. IIE Transactions 30 (1998) 227-234
    • (1998) IIE Transactions , vol.30 , pp. 227-234
    • Cook, D.F.1    Chiu, C.C.2
  • 9
    • 0035923922 scopus 로고    scopus 로고
    • Utilization of neural networks for the recognition of variance shifts in correlated manufacturing process parameters
    • Cook D.F., Zobel C.W., and Nottingham Q.J. Utilization of neural networks for the recognition of variance shifts in correlated manufacturing process parameters. International Journal of Production Research 39 (2001) 3881-3887
    • (2001) International Journal of Production Research , vol.39 , pp. 3881-3887
    • Cook, D.F.1    Zobel, C.W.2    Nottingham, Q.J.3
  • 12
    • 23144467659 scopus 로고    scopus 로고
    • A hybrid learning-based model for on-line detection and analysis of control chart patterns
    • Guh R.S. A hybrid learning-based model for on-line detection and analysis of control chart patterns. Computers and Industrial Engineering 49 (2005) 35-62
    • (2005) Computers and Industrial Engineering , vol.49 , pp. 35-62
    • Guh, R.S.1
  • 14
    • 0032648097 scopus 로고    scopus 로고
    • An integrated neural network approach for simultaneous monitoring of process mean and variance shifts - A comparative study
    • Ho E.S., and Chang S.I. An integrated neural network approach for simultaneous monitoring of process mean and variance shifts - A comparative study. International Journal of Production Research 37 8 (1999) 1881-1901
    • (1999) International Journal of Production Research , vol.37 , Issue.8 , pp. 1881-1901
    • Ho, E.S.1    Chang, S.I.2
  • 15
    • 1342265964 scopus 로고    scopus 로고
    • Detecting process mean shift in the presence of autocorrelation: a neural-network based monitoring scheme
    • Hwarng H.B. Detecting process mean shift in the presence of autocorrelation: a neural-network based monitoring scheme. International Journal of Production Research 42 (2004) 573-595
    • (2004) International Journal of Production Research , vol.42 , pp. 573-595
    • Hwarng, H.B.1
  • 16
    • 27844603392 scopus 로고    scopus 로고
    • Simultaneous identification of mean shift and correlation change in AR(1) processes
    • Hwarng H.B. Simultaneous identification of mean shift and correlation change in AR(1) processes. International Journal of Production Research 43 (2005) 1761-1783
    • (2005) International Journal of Production Research , vol.43 , pp. 1761-1783
    • Hwarng, H.B.1
  • 18
    • 85054435084 scopus 로고
    • Neural network ensembles, cross validation, and active learning
    • MA: MIT Press
    • Krogh, A., & Vedelsby, J. (1995). Neural network ensembles, cross validation, and active learning. In Advances in neural information proc1 systems (Vol. 71, pp. 231-238). MA: MIT Press.
    • (1995) Advances in neural information proc1 systems , vol.71 , pp. 231-238
    • Krogh, A.1    Vedelsby, J.2
  • 19
    • 0003654061 scopus 로고
    • Working paper. College Station, TX 77843: Department of Statistics, Texas A&M University
    • Longnecker, M. T., & Ryan, T. P. (1993). Charting correlated process data. Working paper. College Station, TX 77843: Department of Statistics, Texas A&M University.
    • (1993) Charting correlated process data
    • Longnecker, M.T.1    Ryan, T.P.2
  • 22
    • 0000926506 scopus 로고
    • When networks disagree: Ensemble method for neural networks
    • Mammone R.J. (Ed), Chapman and Hall, New York
    • Perrone M.P., and Cooper L.N. When networks disagree: Ensemble method for neural networks. In: Mammone R.J. (Ed). Artificial neural networks for speed and vision (1993), Chapman and Hall, New York 126-142
    • (1993) Artificial neural networks for speed and vision , pp. 126-142
    • Perrone, M.P.1    Cooper, L.N.2
  • 23
    • 0024943235 scopus 로고
    • Synthetic neural networks for process control
    • Pugh G.A. Synthetic neural networks for process control. Computers and Industrial Engineering 17 (1989) 25-26
    • (1989) Computers and Industrial Engineering , vol.17 , pp. 25-26
    • Pugh, G.A.1
  • 25
    • 0025448521 scopus 로고
    • The strength of weak learnability
    • Schapire R.E. The strength of weak learnability. Machine Learning 5 (1990) 197-227
    • (1990) Machine Learning , vol.5 , pp. 197-227
    • Schapire, R.E.1
  • 27
    • 0028377883 scopus 로고
    • X-bar and R control chart interpretation using neural computing
    • Smith A.E. X-bar and R control chart interpretation using neural computing. International Journal of Production Research 32 (1994) 309-320
    • (1994) International Journal of Production Research , vol.32 , pp. 309-320
    • Smith, A.E.1
  • 28
    • 0038076657 scopus 로고    scopus 로고
    • The MathWorks Company , The MathWorks Inc
    • The MathWorks Company (2004). Neural network toolbox. The MathWorks Inc.
    • (2004) Neural network toolbox
  • 29
    • 0032091429 scopus 로고    scopus 로고
    • The development and evaluation of CUSUM-based control charts for an AR(1) process
    • Timmer D.H., Pignateillo J.J.R., and Longnecker. The development and evaluation of CUSUM-based control charts for an AR(1) process. IIE Transaction 30 (1998) 525-534
    • (1998) IIE Transaction , vol.30 , pp. 525-534
    • Timmer, D.H.1    Pignateillo, J.J.R.2    Longnecker3
  • 30
    • 0001759355 scopus 로고
    • Control charts in the presence of data correlation
    • Wardell D.G., Moskowitz H., and Plante R.D. Control charts in the presence of data correlation. Management Science 38 (1992) 1084-1105
    • (1992) Management Science , vol.38 , pp. 1084-1105
    • Wardell, D.G.1    Moskowitz, H.2    Plante, R.D.3
  • 31
    • 84952149041 scopus 로고
    • Run-length distribution of special cause control charts of correlation processes
    • Wardell D.G., Moskowitz H., and Plante R.D. Run-length distribution of special cause control charts of correlation processes. Technometrics 36 1 (1994) 3-17
    • (1994) Technometrics , vol.36 , Issue.1 , pp. 3-17
    • Wardell, D.G.1    Moskowitz, H.2    Plante, R.D.3
  • 32
    • 0038253690 scopus 로고    scopus 로고
    • Joint estimation: SPC method for short-run autocorrelated data
    • Wright C.M., Booth D.E., and Hu M.Y. Joint estimation: SPC method for short-run autocorrelated data. Journal of Quality Technology 33 (2001) 365-378
    • (2001) Journal of Quality Technology , vol.33 , pp. 365-378
    • Wright, C.M.1    Booth, D.E.2    Hu, M.Y.3
  • 33
    • 0036567392 scopus 로고    scopus 로고
    • Ensembling neural networks: Many could be better than all
    • Zhou Z.H., Wu J.X., and Tang W. Ensembling neural networks: Many could be better than all. Artificial Intelligence 137 (2002) 239-263
    • (2002) Artificial Intelligence , vol.137 , pp. 239-263
    • Zhou, Z.H.1    Wu, J.X.2    Tang, W.3
  • 34
    • 0032001756 scopus 로고    scopus 로고
    • A statistical control chart for stationary process data
    • Zhang N.F. A statistical control chart for stationary process data. Technometrics 40 (1998) 24-38
    • (1998) Technometrics , vol.40 , pp. 24-38
    • Zhang, N.F.1
  • 35
    • 1342308552 scopus 로고    scopus 로고
    • An augmented neural network classification approach to detecting mean shifts in correlated manufacturing process parameters
    • Zobel C.W., Cook D.F., and Nottingham Q.J. An augmented neural network classification approach to detecting mean shifts in correlated manufacturing process parameters. International Journal of Production Research 42 4 (2004) 741-758
    • (2004) International Journal of Production Research , vol.42 , Issue.4 , pp. 741-758
    • Zobel, C.W.1    Cook, D.F.2    Nottingham, Q.J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.