-
1
-
-
0002508003
-
Multivariate quality control
-
G.N.L. Johnson and S. Kotz, eds. New York: Wiley
-
Alt, F.B., 1985. Multivariate quality control. In: G.N.L. Johnson and S. Kotz, eds. Encyclopedia of statistical sciences. New York: Wiley.
-
(1985)
Encyclopedia of Statistical Sciences
-
-
Alt, F.B.1
-
2
-
-
31244432482
-
Generalized variance chart design with adaptive sample sizes. The bivariate case
-
Aparisi, F., Jabaloyes, J., and Carrió n, A., 2001. Generalized variance chart design with adaptive sample sizes. The bivariate case. Communication in Statistics-Simulation and Computation, 30, 931-948.
-
(2001)
Communication in Statistics-Simulation and Computation
, vol.30
, pp. 931-948
-
-
Aparisi, F.1
Jabaloyes, J.2
Carrión, A.3
-
3
-
-
0028468293
-
Using mutual information for selecting features in supervised neural net learning
-
Battiti, R., 1994. Using mutual information for selecting features in supervised neural net learning. IEEE Transaction on Neural Networks, 5, 537-550.
-
(1994)
IEEE Transaction on Neural Networks
, vol.5
, pp. 537-550
-
-
Battiti, R.1
-
4
-
-
0030211964
-
Bagging predictors
-
Breiman, L., 1996. Bagging predictors. Machine Learning, 24, 123-140.
-
(1996)
Machine Learning
, vol.24
, pp. 123-140
-
-
Breiman, L.1
-
5
-
-
34547828271
-
Multivariate statistical process control charts: An overview
-
Bersimis, S., Psarakis, S., and Panaretos, J., 2007. Multivariate statistical process control charts: an overview. Quality and Reliability Engineering International, 23, 517-543.
-
(2007)
Quality and Reliability Engineering International
, vol.23
, pp. 517-543
-
-
Bersimis, S.1
Psarakis, S.2
Panaretos, J.3
-
6
-
-
1342347390
-
Artificial neural networks for design of manufacturing systems and selection of priority rules
-
Çakar, T. and Cil, I., 2004. Artificial neural networks for design of manufacturing systems and selection of priority rules. International Journal of Computer Integrated Manufacturing, 17 (3), 195-211.
-
(2004)
International Journal of Computer Integrated Manufacturing
, vol.17
, Issue.3
, pp. 195-211
-
-
Çakar, T.1
Cil, I.2
-
7
-
-
0012857111
-
An integrated artificial intelligent computer-aided process planning system
-
Chang, P.T. and Chang, C.H., 2000. An integrated artificial intelligent computer-aided process planning system. International Journal of Computer Integrated Manufacturing, 13 (6), 483-497.
-
(2000)
International Journal of Computer Integrated Manufacturing
, vol.13
, Issue.6
, pp. 483-497
-
-
Chang, P.T.1
Chang, C.H.2
-
10
-
-
44449095096
-
Interpreting the out-ofcontrol signal in multivariate control chart - A comparative study
-
Das, N. and Prakash, V., 2008. Interpreting the out-ofcontrol signal in multivariate control chart - a comparative study. International Journal of Advanced Manufacturing Technology, 37, 966-979.
-
(2008)
International Journal of Advanced Manufacturing Technology
, vol.37
, pp. 966-979
-
-
Das, N.1
Prakash, V.2
-
11
-
-
0002319695
-
Feature-based modelling and neural networks-based CAPP for integrated manufacturing
-
Devireddy, C.R. and Ghosh, K., 1999. Feature-based modelling and neural networks-based CAPP for integrated manufacturing. International Journal of Computer Integrated Manufacturing, 12 (1), 61-74.
-
(1999)
International Journal of Computer Integrated Manufacturing
, vol.12
, Issue.1
, pp. 61-74
-
-
Devireddy, C.R.1
Ghosh, K.2
-
12
-
-
0029535737
-
Particle swarm optimization
-
Piscataway, NJ: IEEE Press
-
Eberhart, C.R. and Kennedy, J., 1995. Particle swarm optimization. In: Proceedings of the IEEE international conference on neural networks, Piscataway, NJ: IEEE Press, 1942-1948.
-
(1995)
Proceedings of the IEEE International Conference on Neural Networks
, pp. 1942-1948
-
-
Eberhart, C.R.1
Kennedy, J.2
-
13
-
-
27944505929
-
Multivariate double sampling jSj charts for controlling process variability
-
Grigoryan, A. and He, D., 2005. Multivariate double sampling jSj charts for controlling process variability. International Journal of Production Research, 43, 715-730.
-
(2005)
International Journal of Production Research
, vol.43
, pp. 715-730
-
-
Grigoryan, A.1
He, D.2
-
14
-
-
34047098687
-
On-line identification and quantification of mean shifts in bivariate processes using a neural networkbased approach
-
Guh, R.S., 2007. On-line identification and quantification of mean shifts in bivariate processes using a neural networkbased approach. Quality and Reliability Engineering International, 23, 367-385.
-
(2007)
Quality and Reliability Engineering International
, vol.23
, pp. 367-385
-
-
Guh, R.S.1
-
15
-
-
34547847454
-
Testing variability in multivariate quality control: A conditional entropy measure approach
-
Guerrero, J.L., 1995. Testing variability in multivariate quality control: A conditional entropy measure approach. Information Sciences, 86, 179-202.
-
(1995)
Information Sciences
, vol.86
, pp. 179-202
-
-
Guerrero, J.L.1
-
16
-
-
0029728458
-
Face recognition using hybrid classifier systems
-
Washington, DC. Los Alamitos, CA: IEEE Computer Society Press
-
Gutta, S. and Wechsler, H., 1996. Face recognition using hybrid classifier systems. In: Proceedings of the ICNN-96, Washington, DC. Los Alamitos, CA: IEEE Computer Society Press, 1017-1022.
-
(1996)
Proceedings of the ICNN-96
, pp. 1017-1022
-
-
Gutta, S.1
Wechsler, H.2
-
18
-
-
0242333136
-
Improved SPC chart pattern recognition using statistical features
-
Hassan, A., et al., 2003. Improved SPC chart pattern recognition using statistical features. International Journal of Production Research, 41 (7), 1687-11603
-
(2003)
International Journal of Production Research
, vol.41
, Issue.7
, pp. 1687-11603
-
-
Hassan, A.1
-
19
-
-
0023451116
-
A note on multivariate CUSUM procedures
-
Healy, J.D., 1987. A note on multivariate CUSUM procedures. Technometrics, 29, 409-412.
-
(1987)
Technometrics
, vol.29
, pp. 409-412
-
-
Healy, J.D.1
-
21
-
-
0034315099
-
Evolutionary ensemble with negative correlation learning
-
Liu, Y., Yao, X., and Tetsuya, H.C., 2000a. Evolutionary ensemble with negative correlation learning. IEEE Transaction on Evolutionary Computation, 4 (4), 380-387.
-
(2000)
IEEE Transaction on Evolutionary Computation
, vol.4
, Issue.4
, pp. 380-387
-
-
Liu, Y.1
Yao, X.2
Tetsuya, H.C.3
-
22
-
-
0003324692
-
A neural network based fuzzy learning controller and its experimental application to milling
-
Liu, Y., Zuo, L., and Cheng, T., 2000b. A neural network based fuzzy learning controller and its experimental application to milling. International Journal of Computer Integrated Manufacturing, 13 (5), 461-466.
-
(2000)
International Journal of Computer Integrated Manufacturing
, vol.13
, Issue.5
, pp. 461-466
-
-
Liu, Y.1
Zuo, L.2
Cheng, T.3
-
23
-
-
0346276741
-
Analysis of variations in a multivariate process using neural networks
-
Low, C.Y., Hsu, C.M., and Yu, F.J., 2003. Analysis of variations in a multivariate process using neural networks. International Journal of Advanced Manufacturing Technology, 22, 911-921.
-
(2003)
International Journal of Advanced Manufacturing Technology
, vol.22
, pp. 911-921
-
-
Low, C.Y.1
Hsu, C.M.2
Yu, F.J.3
-
24
-
-
0037382121
-
Application of evolutionary neural network method in predicting pollutant levels in downtown area of Hong Kong
-
Lu, W.Z., Fan, H.Y., and Lo, S.M., 2003. Application of evolutionary neural network method in predicting pollutant levels in downtown area of Hong Kong. Neurocomputing, 51, 387-400.
-
(2003)
Neurocomputing
, vol.51
, pp. 387-400
-
-
Lu, W.Z.1
Fan, H.Y.2
Lo, S.M.3
-
25
-
-
3142666177
-
An ensemble of neural networks for weather forecasting
-
Maqsood, I., Khan, M.R., and Abraham, A., 2004. An ensemble of neural networks for weather forecasting. Neural Computing and Application, 13, 112-122.
-
(2004)
Neural Computing and Application
, vol.13
, pp. 112-122
-
-
Maqsood, I.1
Khan, M.R.2
Abraham, A.3
-
27
-
-
28844486614
-
Fault diagnosis in multivariate control charts using artificial neural networks
-
Niaki, S.T. and Akhavan, A.B., 2005. Fault diagnosis in multivariate control charts using artificial neural networks. Quality and Reliability Engineering International, 21, 825-840.
-
(2005)
Quality and Reliability Engineering International
, vol.21
, pp. 825-840
-
-
Niaki, S.T.1
Akhavan, A.B.2
-
28
-
-
33746218071
-
An interactive approach to solve the operation sequencing problem using simulated annealing
-
Pandey, V., Tiwari, M.K., and Kumar, S., 2006. An interactive approach to solve the operation sequencing problem using simulated annealing. International Journal of Advanced Manufacturing Technology, 29, 1212-1231.
-
(2006)
International Journal of Advanced Manufacturing Technology
, vol.29
, pp. 1212-1231
-
-
Pandey, V.1
Tiwari, M.K.2
Kumar, S.3
-
29
-
-
0000926506
-
When networks disagree: Ensemble method for neural networks
-
R.J. Mammone, ed. New York: Chapman & Hill
-
Perrone, M.P. and Cooper, L., 1993. When networks disagree: Ensemble method for neural networks. In: R.J. Mammone, ed. Artificial neural networks for speed and vision. New York: Chapman & Hill, 126-142.
-
(1993)
Artificial Neural Networks for Speed and Vision
, pp. 126-142
-
-
Perrone, M.P.1
Cooper, L.2
-
30
-
-
0025448521
-
The strength of weak learnability
-
Schapire, R.E., 1990. The strength of weak learnability. Machine Learning, 5, 197-227.
-
(1990)
Machine Learning
, vol.5
, pp. 197-227
-
-
Schapire, R.E.1
-
31
-
-
33748567166
-
Generally weighted moving average control chart for monitoring process variability
-
Sheu, S.H. and Tai, S.H., 2006. Generally weighted moving average control chart for monitoring process variability. International Journal of Advanced Manufacturing Technology, 30, 452-458.
-
(2006)
International Journal of Advanced Manufacturing Technology
, vol.30
, pp. 452-458
-
-
Sheu, S.H.1
Tai, S.H.2
-
32
-
-
67349089249
-
Monitoring process mean and variability with generally weighted moving average control charts
-
Sheu, S.-H., et al., 2009. Monitoring process mean and variability with generally weighted moving average control charts. Computers & Industrial Engineering, 57, 401-407.
-
(2009)
Computers & Industrial Engineering
, vol.57
, pp. 401-407
-
-
Sheu, S.-H.1
-
33
-
-
0028377883
-
X-Bar and R control chart interpretation using neural computing
-
Smith, A.E., 1994. X-Bar and R control chart interpretation using neural computing. International Journal of Production Research, 32, 309-320.
-
(1994)
International Journal of Production Research
, vol.32
, pp. 309-320
-
-
Smith, A.E.1
-
34
-
-
0034209832
-
Change-point detection of mean vector or covariance matrix shifts using multivariate individual observations
-
Sullivan, J.H. and Woodall, W.H., 2000. Change-point detection of mean vector or covariance matrix shifts using multivariate individual observations. IIE Transactions, 32, 537-549.
-
(2000)
IIE Transactions
, vol.32
, pp. 537-549
-
-
Sullivan, J.H.1
Woodall, W.H.2
-
36
-
-
29744453097
-
Application of a kin selection based simulated annealing algorithm to solve a complex scheduling problem
-
Tiwari, M.K., Mukherjee, A., and Shankar, R., 2005. Application of a kin selection based simulated annealing algorithm to solve a complex scheduling problem. International Journal of Computer Integrated Manufacturing, 18 (8), 671-685.
-
(2005)
International Journal of Computer Integrated Manufacturing
, vol.18
, Issue.8
, pp. 671-685
-
-
Tiwari, M.K.1
Mukherjee, A.2
Shankar, R.3
-
37
-
-
0036610685
-
Mean shifts detection and classification in multivariate process: A neural-fuzzy approach
-
Wang, T.Y. and Chen, L.H., 2002. Mean shifts detection and classification in multivariate process: A neural-fuzzy approach. Journal of Intelligent Manufacturing, 13 (3), 211-221.
-
(2002)
Journal of Intelligent Manufacturing
, vol.13
, Issue.3
, pp. 211-221
-
-
Wang, T.Y.1
Chen, L.H.2
-
38
-
-
0001648555
-
Research issues and ideas in statistical process control
-
Woodall, W.H. and Montgomery, D.C., 1999. Research issues and ideas in statistical process control. Journal of Quality Technology, 31 (4), 376-386.
-
(1999)
Journal of Quality Technology
, vol.31
, Issue.4
, pp. 376-386
-
-
Woodall, W.H.1
Montgomery, D.C.2
-
39
-
-
0036567392
-
Assembling neural networks: Many could be better than all
-
Zhou, Z.H., Wu, J.X., and Tang, W., 2002. Assembling neural networks: many could be better than all. Artificial Intelligence, 137, 239-263.
-
(2002)
Artificial Intelligence
, vol.137
, pp. 239-263
-
-
Zhou, Z.H.1
Wu, J.X.2
Tang, W.3
|