메뉴 건너뛰기




Volumn 23, Issue 6, 2010, Pages 529-542

An integrated system for on-line intelligent monitoring and identifying process variability and its application

Author keywords

Control charts; Integrated system; Neural network; Process variability

Indexed keywords

CONTROL CHARTS; FLOWCHARTING; INTEGRATED CONTROL; MULTIVARIANT ANALYSIS; NEURAL NETWORKS; PARTICLE SWARM OPTIMIZATION (PSO); SIMULATED ANNEALING; SYSTEMS ENGINEERING;

EID: 77952905251     PISSN: 0951192X     EISSN: 13623052     Source Type: Journal    
DOI: 10.1080/09511921003667730     Document Type: Article
Times cited : (22)

References (39)
  • 1
    • 0002508003 scopus 로고
    • Multivariate quality control
    • G.N.L. Johnson and S. Kotz, eds. New York: Wiley
    • Alt, F.B., 1985. Multivariate quality control. In: G.N.L. Johnson and S. Kotz, eds. Encyclopedia of statistical sciences. New York: Wiley.
    • (1985) Encyclopedia of Statistical Sciences
    • Alt, F.B.1
  • 3
    • 0028468293 scopus 로고
    • Using mutual information for selecting features in supervised neural net learning
    • Battiti, R., 1994. Using mutual information for selecting features in supervised neural net learning. IEEE Transaction on Neural Networks, 5, 537-550.
    • (1994) IEEE Transaction on Neural Networks , vol.5 , pp. 537-550
    • Battiti, R.1
  • 4
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman, L., 1996. Bagging predictors. Machine Learning, 24, 123-140.
    • (1996) Machine Learning , vol.24 , pp. 123-140
    • Breiman, L.1
  • 6
    • 1342347390 scopus 로고    scopus 로고
    • Artificial neural networks for design of manufacturing systems and selection of priority rules
    • Çakar, T. and Cil, I., 2004. Artificial neural networks for design of manufacturing systems and selection of priority rules. International Journal of Computer Integrated Manufacturing, 17 (3), 195-211.
    • (2004) International Journal of Computer Integrated Manufacturing , vol.17 , Issue.3 , pp. 195-211
    • Çakar, T.1    Cil, I.2
  • 10
    • 44449095096 scopus 로고    scopus 로고
    • Interpreting the out-ofcontrol signal in multivariate control chart - A comparative study
    • Das, N. and Prakash, V., 2008. Interpreting the out-ofcontrol signal in multivariate control chart - a comparative study. International Journal of Advanced Manufacturing Technology, 37, 966-979.
    • (2008) International Journal of Advanced Manufacturing Technology , vol.37 , pp. 966-979
    • Das, N.1    Prakash, V.2
  • 11
  • 13
    • 27944505929 scopus 로고    scopus 로고
    • Multivariate double sampling jSj charts for controlling process variability
    • Grigoryan, A. and He, D., 2005. Multivariate double sampling jSj charts for controlling process variability. International Journal of Production Research, 43, 715-730.
    • (2005) International Journal of Production Research , vol.43 , pp. 715-730
    • Grigoryan, A.1    He, D.2
  • 14
    • 34047098687 scopus 로고    scopus 로고
    • On-line identification and quantification of mean shifts in bivariate processes using a neural networkbased approach
    • Guh, R.S., 2007. On-line identification and quantification of mean shifts in bivariate processes using a neural networkbased approach. Quality and Reliability Engineering International, 23, 367-385.
    • (2007) Quality and Reliability Engineering International , vol.23 , pp. 367-385
    • Guh, R.S.1
  • 15
    • 34547847454 scopus 로고
    • Testing variability in multivariate quality control: A conditional entropy measure approach
    • Guerrero, J.L., 1995. Testing variability in multivariate quality control: A conditional entropy measure approach. Information Sciences, 86, 179-202.
    • (1995) Information Sciences , vol.86 , pp. 179-202
    • Guerrero, J.L.1
  • 16
    • 0029728458 scopus 로고    scopus 로고
    • Face recognition using hybrid classifier systems
    • Washington, DC. Los Alamitos, CA: IEEE Computer Society Press
    • Gutta, S. and Wechsler, H., 1996. Face recognition using hybrid classifier systems. In: Proceedings of the ICNN-96, Washington, DC. Los Alamitos, CA: IEEE Computer Society Press, 1017-1022.
    • (1996) Proceedings of the ICNN-96 , pp. 1017-1022
    • Gutta, S.1    Wechsler, H.2
  • 18
    • 0242333136 scopus 로고    scopus 로고
    • Improved SPC chart pattern recognition using statistical features
    • Hassan, A., et al., 2003. Improved SPC chart pattern recognition using statistical features. International Journal of Production Research, 41 (7), 1687-11603
    • (2003) International Journal of Production Research , vol.41 , Issue.7 , pp. 1687-11603
    • Hassan, A.1
  • 19
    • 0023451116 scopus 로고
    • A note on multivariate CUSUM procedures
    • Healy, J.D., 1987. A note on multivariate CUSUM procedures. Technometrics, 29, 409-412.
    • (1987) Technometrics , vol.29 , pp. 409-412
    • Healy, J.D.1
  • 22
    • 0003324692 scopus 로고    scopus 로고
    • A neural network based fuzzy learning controller and its experimental application to milling
    • Liu, Y., Zuo, L., and Cheng, T., 2000b. A neural network based fuzzy learning controller and its experimental application to milling. International Journal of Computer Integrated Manufacturing, 13 (5), 461-466.
    • (2000) International Journal of Computer Integrated Manufacturing , vol.13 , Issue.5 , pp. 461-466
    • Liu, Y.1    Zuo, L.2    Cheng, T.3
  • 24
    • 0037382121 scopus 로고    scopus 로고
    • Application of evolutionary neural network method in predicting pollutant levels in downtown area of Hong Kong
    • Lu, W.Z., Fan, H.Y., and Lo, S.M., 2003. Application of evolutionary neural network method in predicting pollutant levels in downtown area of Hong Kong. Neurocomputing, 51, 387-400.
    • (2003) Neurocomputing , vol.51 , pp. 387-400
    • Lu, W.Z.1    Fan, H.Y.2    Lo, S.M.3
  • 27
    • 28844486614 scopus 로고    scopus 로고
    • Fault diagnosis in multivariate control charts using artificial neural networks
    • Niaki, S.T. and Akhavan, A.B., 2005. Fault diagnosis in multivariate control charts using artificial neural networks. Quality and Reliability Engineering International, 21, 825-840.
    • (2005) Quality and Reliability Engineering International , vol.21 , pp. 825-840
    • Niaki, S.T.1    Akhavan, A.B.2
  • 29
    • 0000926506 scopus 로고
    • When networks disagree: Ensemble method for neural networks
    • R.J. Mammone, ed. New York: Chapman & Hill
    • Perrone, M.P. and Cooper, L., 1993. When networks disagree: Ensemble method for neural networks. In: R.J. Mammone, ed. Artificial neural networks for speed and vision. New York: Chapman & Hill, 126-142.
    • (1993) Artificial Neural Networks for Speed and Vision , pp. 126-142
    • Perrone, M.P.1    Cooper, L.2
  • 30
    • 0025448521 scopus 로고
    • The strength of weak learnability
    • Schapire, R.E., 1990. The strength of weak learnability. Machine Learning, 5, 197-227.
    • (1990) Machine Learning , vol.5 , pp. 197-227
    • Schapire, R.E.1
  • 31
    • 33748567166 scopus 로고    scopus 로고
    • Generally weighted moving average control chart for monitoring process variability
    • Sheu, S.H. and Tai, S.H., 2006. Generally weighted moving average control chart for monitoring process variability. International Journal of Advanced Manufacturing Technology, 30, 452-458.
    • (2006) International Journal of Advanced Manufacturing Technology , vol.30 , pp. 452-458
    • Sheu, S.H.1    Tai, S.H.2
  • 32
    • 67349089249 scopus 로고    scopus 로고
    • Monitoring process mean and variability with generally weighted moving average control charts
    • Sheu, S.-H., et al., 2009. Monitoring process mean and variability with generally weighted moving average control charts. Computers & Industrial Engineering, 57, 401-407.
    • (2009) Computers & Industrial Engineering , vol.57 , pp. 401-407
    • Sheu, S.-H.1
  • 33
    • 0028377883 scopus 로고
    • X-Bar and R control chart interpretation using neural computing
    • Smith, A.E., 1994. X-Bar and R control chart interpretation using neural computing. International Journal of Production Research, 32, 309-320.
    • (1994) International Journal of Production Research , vol.32 , pp. 309-320
    • Smith, A.E.1
  • 34
    • 0034209832 scopus 로고    scopus 로고
    • Change-point detection of mean vector or covariance matrix shifts using multivariate individual observations
    • Sullivan, J.H. and Woodall, W.H., 2000. Change-point detection of mean vector or covariance matrix shifts using multivariate individual observations. IIE Transactions, 32, 537-549.
    • (2000) IIE Transactions , vol.32 , pp. 537-549
    • Sullivan, J.H.1    Woodall, W.H.2
  • 36
    • 29744453097 scopus 로고    scopus 로고
    • Application of a kin selection based simulated annealing algorithm to solve a complex scheduling problem
    • Tiwari, M.K., Mukherjee, A., and Shankar, R., 2005. Application of a kin selection based simulated annealing algorithm to solve a complex scheduling problem. International Journal of Computer Integrated Manufacturing, 18 (8), 671-685.
    • (2005) International Journal of Computer Integrated Manufacturing , vol.18 , Issue.8 , pp. 671-685
    • Tiwari, M.K.1    Mukherjee, A.2    Shankar, R.3
  • 37
    • 0036610685 scopus 로고    scopus 로고
    • Mean shifts detection and classification in multivariate process: A neural-fuzzy approach
    • Wang, T.Y. and Chen, L.H., 2002. Mean shifts detection and classification in multivariate process: A neural-fuzzy approach. Journal of Intelligent Manufacturing, 13 (3), 211-221.
    • (2002) Journal of Intelligent Manufacturing , vol.13 , Issue.3 , pp. 211-221
    • Wang, T.Y.1    Chen, L.H.2
  • 38
    • 0001648555 scopus 로고    scopus 로고
    • Research issues and ideas in statistical process control
    • Woodall, W.H. and Montgomery, D.C., 1999. Research issues and ideas in statistical process control. Journal of Quality Technology, 31 (4), 376-386.
    • (1999) Journal of Quality Technology , vol.31 , Issue.4 , pp. 376-386
    • Woodall, W.H.1    Montgomery, D.C.2
  • 39
    • 0036567392 scopus 로고    scopus 로고
    • Assembling neural networks: Many could be better than all
    • Zhou, Z.H., Wu, J.X., and Tang, W., 2002. Assembling neural networks: many could be better than all. Artificial Intelligence, 137, 239-263.
    • (2002) Artificial Intelligence , vol.137 , pp. 239-263
    • Zhou, Z.H.1    Wu, J.X.2    Tang, W.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.