메뉴 건너뛰기




Volumn 188, Issue 1, 2007, Pages 262-270

Monitoring high-yields processes with defects count in nonconforming items by artificial neural network

Author keywords

Artificial neural network; Generalized Poisson model; High yields processes; Statistical process control

Indexed keywords

NEURAL NETWORKS; POISSON DISTRIBUTION; STATISTICAL PROCESS CONTROL;

EID: 34247593467     PISSN: 00963003     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.amc.2006.09.114     Document Type: Article
Times cited : (11)

References (20)
  • 1
    • 0032623763 scopus 로고    scopus 로고
    • Improved p charts to monitor process quality
    • Acosta-Mejia C. Improved p charts to monitor process quality. IIE Transactions 31 (1999) 509-516
    • (1999) IIE Transactions , vol.31 , pp. 509-516
    • Acosta-Mejia, C.1
  • 3
    • 0031100898 scopus 로고    scopus 로고
    • A neural network approach for analysis of control chart patterns
    • Cheng C.S. A neural network approach for analysis of control chart patterns. International Journal of Production Research 35 (1997) 667-697
    • (1997) International Journal of Production Research , vol.35 , pp. 667-697
    • Cheng, C.S.1
  • 4
    • 0030146180 scopus 로고    scopus 로고
    • Process monitoring in integrated circuit fabrication using both yield and spatial statistics
    • Collica R.S., Ramirez J.G., and Taam W. Process monitoring in integrated circuit fabrication using both yield and spatial statistics. Quality and Reliability Engineering International 12 (1996) 195-202
    • (1996) Quality and Reliability Engineering International , vol.12 , pp. 195-202
    • Collica, R.S.1    Ramirez, J.G.2    Taam, W.3
  • 8
    • 0023312888 scopus 로고
    • A control chart for very high yield processes
    • Goh T.N. A control chart for very high yield processes. Quality Assurance 13 (1987) 18-22
    • (1987) Quality Assurance , vol.13 , pp. 18-22
    • Goh, T.N.1
  • 9
    • 0032673229 scopus 로고    scopus 로고
    • A neural network based model for abnormal pattern recognition of control charts
    • Guh R.S., and Hsieh Y.C. A neural network based model for abnormal pattern recognition of control charts. Computer & Industrial Engineering (1999) 97-108
    • (1999) Computer & Industrial Engineering , pp. 97-108
    • Guh, R.S.1    Hsieh, Y.C.2
  • 11
    • 34247589550 scopus 로고    scopus 로고
    • B. He, M. Xie, T.N. Goh, L. Tsui, Control charts based on generalized Poisson model for count data, Technical Report, Logistics Institute of Georgia Tech. and Logistics Institute-Asia Pacific, National University of Singapore, 2002.
  • 13
    • 0026821975 scopus 로고
    • Zero-inflated regression with an application to defects in manufacturing
    • Lambert D. Zero-inflated regression with an application to defects in manufacturing. Technometrics 34 (1992) 1-14
    • (1992) Technometrics , vol.34 , pp. 1-14
    • Lambert, D.1
  • 14
    • 0028468202 scopus 로고
    • A control chart for parts-per-million nonconforming items
    • Nelson L.S. A control chart for parts-per-million nonconforming items. Journal of Quality Technology 26 (1994) 239-240
    • (1994) Journal of Quality Technology , vol.26 , pp. 239-240
    • Nelson, L.S.1
  • 17
    • 0031117909 scopus 로고    scopus 로고
    • Control charts based on attribute data: bibliography and review
    • Woodall W.H. Control charts based on attribute data: bibliography and review. Journal of Quality Technology 29 (1997) 172-183
    • (1997) Journal of Quality Technology , vol.29 , pp. 172-183
    • Woodall, W.H.1
  • 19
    • 0026895450 scopus 로고
    • Some procedures for decision making in controlling high yield processes
    • Xie M., and Goh T.N. Some procedures for decision making in controlling high yield processes. Quality and Reliability Engineering International 8 (1995) 355-360
    • (1995) Quality and Reliability Engineering International , vol.8 , pp. 355-360
    • Xie, M.1    Goh, T.N.2
  • 20


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.