메뉴 건너뛰기




Volumn 60, Issue 2, 2011, Pages 269-278

Using neural networks to detect the bivariate process variance shifts pattern

Author keywords

Multivariate control charts; Neural networks; Variance shifts

Indexed keywords

ANALYSIS WINDOWS; BIVARIATE; CONTROL CHARTS; GENERALIZED VARIANCE; MULTIVARIATE CONTROL CHARTS; NETWORK-BASED APPROACH; OUT-OF-CONTROL; PROCESS MEAN; PROCESS VARIANCE; RESEARCH RESULTS; RIGOROUS EVALUATION; RUN LENGTH DISTRIBUTION; SAMPLE SIZES; TRAINING ALGORITHMS; TRAINING EXAMPLE; VARIANCE SHIFTS;

EID: 78951487088     PISSN: 03608352     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.cie.2010.11.009     Document Type: Article
Times cited : (28)

References (25)
  • 1
    • 0002508003 scopus 로고
    • Multivariate quality control
    • F.B. Alt Multivariate quality control S. Kotz, N.L. Johnson, C.R. Read, The encyclopedia of statistical sciences Vol. 6 1985 Wiley New York 110 122
    • (1985) The Encyclopedia of Statistical Sciences , vol.6 , pp. 110-122
    • Alt, F.B.1
  • 4
    • 78951491101 scopus 로고    scopus 로고
    • Neural networks to identify the out-of-control variables when a MEWMA chart is employed
    • Palma De Mallorca Spain
    • F. Aparisi, J. Sanz, and G. Avendaño Neural networks to identify the out-of-control variables when a MEWMA chart is employed Proceedings of the applied simulation and modelling 2007 Palma De Mallorca Spain 29 31
    • (2007) Proceedings of the Applied Simulation and Modelling , pp. 29-31
    • Aparisi, F.1    Sanz, J.2    Avendaño, G.3
  • 5
    • 6344223429 scopus 로고    scopus 로고
    • Artificial neural networks to classify mean shifts from multivariate chart signals
    • L.H. Chen, and T.Y. Wang Artificial neural networks to classify mean shifts from multivariate chart signals Computers & Industrial Engineering 47 2004 195 205
    • (2004) Computers & Industrial Engineering , vol.47 , pp. 195-205
    • Chen, L.H.1    Wang, T.Y.2
  • 6
    • 0029196273 scopus 로고
    • A multi-layer neural network model for detecting changes in the process mean
    • C.S. Cheng A multi-layer neural network model for detecting changes in the process mean Computers & Industrial Engineering 28 1995 51 61
    • (1995) Computers & Industrial Engineering , vol.28 , pp. 51-61
    • Cheng, C.S.1
  • 7
    • 45149101726 scopus 로고    scopus 로고
    • Identifying the source of variance shifts in the multivariate process using neural networks and support vector machines
    • C.S. Cheng, and H.P. Cheng Identifying the source of variance shifts in the multivariate process using neural networks and support vector machines Expert Systems with Applications 35 2008 198 206
    • (2008) Expert Systems with Applications , vol.35 , pp. 198-206
    • Cheng, C.S.1    Cheng, H.P.2
  • 8
    • 27944505929 scopus 로고    scopus 로고
    • Multivariate double sampling |S| charts for controlling process variability
    • A. Grigoryan, and D. He Multivariate double sampling | S | charts for controlling process variability International Journal of Production Research 43 2005 715 730
    • (2005) International Journal of Production Research , vol.43 , pp. 715-730
    • Grigoryan, A.1    He, D.2
  • 9
    • 34047098687 scopus 로고    scopus 로고
    • On-line identification and quantification of mean shifts in bivariate processes using a neural network-based approach
    • R.S. Guh On-line identification and quantification of mean shifts in bivariate processes using a neural network-based approach Quality and Reliability Engineering International 23 2007 367 385
    • (2007) Quality and Reliability Engineering International , vol.23 , pp. 367-385
    • Guh, R.S.1
  • 10
    • 1342265964 scopus 로고    scopus 로고
    • Detecting process mean shift in the presence of autocorrelation: A neural-network based monitoring scheme
    • H.B. Hwarng Detecting process mean shift in the presence of autocorrelation: A neural-network based monitoring scheme International Journal of Production Research 42 2004 573 595
    • (2004) International Journal of Production Research , vol.42 , pp. 573-595
    • Hwarng, H.B.1
  • 11
    • 65249128654 scopus 로고    scopus 로고
    • Toward identifying the source of mean shifts in multivariate SPC: A neural network approach
    • H.B. Hwarng Toward identifying the source of mean shifts in multivariate SPC: A neural network approach International Journal of Production Research 46 2008 5531 5559
    • (2008) International Journal of Production Research , vol.46 , pp. 5531-5559
    • Hwarng, H.B.1
  • 12
    • 0024137490 scopus 로고
    • Increased rates of convergence through learning rate adaptation
    • R. Jacobs Increased rates of convergence through learning rate adaptation Neural Networks 1 1988 295 307
    • (1988) Neural Networks , vol.1 , pp. 295-307
    • Jacobs, R.1
  • 14
    • 0020165826 scopus 로고
    • Fast initial response for CUSUM quality control schemes
    • J.M. Lucas, and R.B. Crosier Fast initial response for CUSUM quality control schemes Technometrics 24 1982 199 205
    • (1982) Technometrics , vol.24 , pp. 199-205
    • Lucas, J.M.1    Crosier, R.B.2
  • 17
    • 28844486614 scopus 로고    scopus 로고
    • Fault diagnosis in multivariate control charts using artificial neural networks
    • S.T.A. Niaki, and B. Abbasi Fault diagnosis in multivariate control charts using artificial neural networks Quality and Reliability Engineering International 21 2005 825 840
    • (2005) Quality and Reliability Engineering International , vol.21 , pp. 825-840
    • Niaki, S.T.A.1    Abbasi, B.2
  • 18
    • 56349153543 scopus 로고    scopus 로고
    • Designing a multivariate-multistage quality control system using artificial neural networks
    • S.T.A. Niaki, and M. Davoodi Designing a multivariate-multistage quality control system using artificial neural networks International Journal of Production Research 47 2009 251 271
    • (2009) International Journal of Production Research , vol.47 , pp. 251-271
    • Niaki, S.T.A.1    Davoodi, M.2
  • 19
    • 0000646059 scopus 로고
    • Learning internal representations by error propagation
    • D.E. Rumelhart, G.E. Hinton, and R.J. Williams Learning internal representations by error propagation D.E. Rumelhart, J.L. McClelland, Parallel distributed processing Vol. 1 1986 MIT Press Cambridge, MA 318 362
    • (1986) Parallel Distributed Processing , vol.1 , pp. 318-362
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 21
    • 0036610685 scopus 로고    scopus 로고
    • Mean shifts detection and classification in multivariate process: A neural-fuzzy approach
    • T.Y. Wang, and L.H. Chen Mean shifts detection and classification in multivariate process: A neural-fuzzy approach Journal of Intelligent Manufacturing 13 2002 211 221
    • (2002) Journal of Intelligent Manufacturing , vol.13 , pp. 211-221
    • Wang, T.Y.1    Chen, L.H.2
  • 22
    • 53849102241 scopus 로고    scopus 로고
    • A neural network ensemble-based model for on-line monitoring and diagnosis of out-of-control signals in multivariate manufacturing processes
    • J.B. Yu, and L.F. Xi A neural network ensemble-based model for on-line monitoring and diagnosis of out-of-control signals in multivariate manufacturing processes Expert Systems with Applications 36 2009 909 921
    • (2009) Expert Systems with Applications , vol.36 , pp. 909-921
    • Yu, J.B.1    Xi, L.F.2
  • 23
    • 58249092619 scopus 로고    scopus 로고
    • Identifying source(s) of out-of-control signals in multivariate manufacturing process using selective neural network ensemble
    • J.B. Yu, L.F. Xi, and X. Zhou Identifying source(s) of out-of-control signals in multivariate manufacturing process using selective neural network ensemble Engineering Applications of Artificial Intelligence 22 2009 141 152
    • (2009) Engineering Applications of Artificial Intelligence , vol.22 , pp. 141-152
    • Yu, J.B.1    Xi, L.F.2    Zhou, X.3
  • 25
    • 0037349382 scopus 로고    scopus 로고
    • Using novelty detection to identify abnormalities causes by mean shifts in bivariate processes
    • F. Zorriassatine, J.D.T. Tannock, and C. O'Brien Using novelty detection to identify abnormalities causes by mean shifts in bivariate processes Computers & Industrial Engineering 44 2003 385 408
    • (2003) Computers & Industrial Engineering , vol.44 , pp. 385-408
    • Zorriassatine, F.1    Tannock, J.D.T.2    O'Brien, C.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.