메뉴 건너뛰기




Volumn 36, Issue 1, 2009, Pages 909-921

A neural network ensemble-based model for on-line monitoring and diagnosis of out-of-control signals in multivariate manufacturing processes

Author keywords

Multivariate control chart; Multivariate manufacturing processes; Neural network ensemble; Statistical process control

Indexed keywords

CONTROL SYSTEMS; CONTROL THEORY; CUSTOMER SATISFACTION; IMAGE CLASSIFICATION; INDUSTRIAL ENGINEERING; NETWORK PROTOCOLS; NEURAL NETWORKS; PARTICLE SWARM OPTIMIZATION (PSO); PROCESS ENGINEERING; QUALITY ASSURANCE; QUALITY CONTROL; QUALITY FUNCTION DEPLOYMENT; ROBUSTNESS (CONTROL SYSTEMS); SENSOR NETWORKS; STATISTICAL METHODS; STATISTICAL PROCESS CONTROL; STATISTICS; SURFACE TREATMENT; TOTAL QUALITY MANAGEMENT;

EID: 53849102241     PISSN: 09574174     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.eswa.2007.10.003     Document Type: Article
Times cited : (98)

References (44)
  • 1
    • 0002508003 scopus 로고
    • Multivariate quality control
    • Kotz S., Johnson N.L., and Read C.R. (Eds), Wiley, New York
    • Alt F.B. Multivariate quality control. In: Kotz S., Johnson N.L., and Read C.R. (Eds). The encyclopaedia of statistical science (1984), Wiley, New York 110-122
    • (1984) The encyclopaedia of statistical science , pp. 110-122
    • Alt, F.B.1
  • 2
    • 4344709594 scopus 로고    scopus 로고
    • Pattern recognition of control charts using artificial neural networks-analyzing the effect of the training parameters
    • Barghash M.A., and Santarisi N.S. Pattern recognition of control charts using artificial neural networks-analyzing the effect of the training parameters. Journal of Intelligent Manufacturing 15 (2004) 635-644
    • (2004) Journal of Intelligent Manufacturing , vol.15 , pp. 635-644
    • Barghash, M.A.1    Santarisi, N.S.2
  • 3
    • 0028468293 scopus 로고
    • Using mutual information for selecting features in supervised neural net learning
    • Battiti R. Using mutual information for selecting features in supervised neural net learning. IEEE Transaction on Neural Networks 5 (1994) 537-550
    • (1994) IEEE Transaction on Neural Networks , vol.5 , pp. 537-550
    • Battiti, R.1
  • 5
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman L. Bagging predictors. Machine Learning 24 (1996) 123-140
    • (1996) Machine Learning , vol.24 , pp. 123-140
    • Breiman, L.1
  • 6
    • 0030211371 scopus 로고    scopus 로고
    • A neural fuzzy control chart for detecting and classifying process mean shifts
    • Chang S.I., and AW C.A. A neural fuzzy control chart for detecting and classifying process mean shifts. International Journal of Production Research 34 (1996) 2265-2278
    • (1996) International Journal of Production Research , vol.34 , pp. 2265-2278
    • Chang, S.I.1    AW, C.A.2
  • 8
    • 0029196273 scopus 로고
    • A multi-layer neural network model for detecting changes in the process mean
    • Cheng C.S. A multi-layer neural network model for detecting changes in the process mean. Computers & Industrial Engineering 28 (1995) 51-61
    • (1995) Computers & Industrial Engineering , vol.28 , pp. 51-61
    • Cheng, C.S.1
  • 9
    • 0031100898 scopus 로고    scopus 로고
    • A neural network approach for the analysis of control chart patterns
    • Cheng C.S. A neural network approach for the analysis of control chart patterns. International Journal of Production Research 35 (1997) 667-697
    • (1997) International Journal of Production Research , vol.35 , pp. 667-697
    • Cheng, C.S.1
  • 10
    • 0032022864 scopus 로고    scopus 로고
    • Using radial basis function neural networks to recognize shifts in correlated manufacturing process parameters
    • Cook D.F., and Chiu C.C. Using radial basis function neural networks to recognize shifts in correlated manufacturing process parameters. IIE Transactions 30 (1998) 227-234
    • (1998) IIE Transactions , vol.30 , pp. 227-234
    • Cook, D.F.1    Chiu, C.C.2
  • 11
    • 0035923922 scopus 로고    scopus 로고
    • Utilization of neural networks for the recognition of variance shifts in correlated manufacturing process parameters
    • Cook D.F., Zobel C.W., and Nottingham Q.J. Utilization of neural networks for the recognition of variance shifts in correlated manufacturing process parameters. International Journal of Production Research 39 (2001) 3881-3887
    • (2001) International Journal of Production Research , vol.39 , pp. 3881-3887
    • Cook, D.F.1    Zobel, C.W.2    Nottingham, Q.J.3
  • 12
    • 0024062307 scopus 로고
    • Multivariate generalizations of cumulative sum quality control schemes
    • Crosier R.B. Multivariate generalizations of cumulative sum quality control schemes. Technometrics 30 (1988) 291-303
    • (1988) Technometrics , vol.30 , pp. 291-303
    • Crosier, R.B.1
  • 14
    • 23144467659 scopus 로고    scopus 로고
    • A hybrid learning-based model for on-line detection and analysis of control chart patterns
    • Guh R.S. A hybrid learning-based model for on-line detection and analysis of control chart patterns. Computers & Industrial Engineering 49 (2005) 35-62
    • (2005) Computers & Industrial Engineering , vol.49 , pp. 35-62
    • Guh, R.S.1
  • 15
    • 34047098687 scopus 로고    scopus 로고
    • On-line identification and quantification of mean shifts in bivariate processes using a neural network-based approach
    • Guh R.S. On-line identification and quantification of mean shifts in bivariate processes using a neural network-based approach. Quality and Reliability Engineering International 23 (2007) 367-385
    • (2007) Quality and Reliability Engineering International , vol.23 , pp. 367-385
    • Guh, R.S.1
  • 18
    • 0032648097 scopus 로고    scopus 로고
    • An integrated neural network approach for simultaneous monitoring of process mean and variance shifts-a comparative study
    • Ho E.S., and Chang S.I. An integrated neural network approach for simultaneous monitoring of process mean and variance shifts-a comparative study. International Journal of Production Research 37 8 (1999) 1881-1901
    • (1999) International Journal of Production Research , vol.37 , Issue.8 , pp. 1881-1901
    • Ho, E.S.1    Chang, S.I.2
  • 19
    • 0002199780 scopus 로고
    • Multivariate quality control-illustrated by the air testing of sample bombsights
    • Eisenhart C., Hastay M.W., and Wallis W.A. (Eds), McGraw-Hill, New York
    • Hotelling H. Multivariate quality control-illustrated by the air testing of sample bombsights. In: Eisenhart C., Hastay M.W., and Wallis W.A. (Eds). Techniques of statistical analysis (1947), McGraw-Hill, New York 11-184
    • (1947) Techniques of statistical analysis , pp. 11-184
    • Hotelling, H.1
  • 20
    • 0029341659 scopus 로고
    • Detecting process non-randoms through a fast and cumulative learning ART-based pattern recognizer
    • Hwarng H.B., and Chong C.W. Detecting process non-randoms through a fast and cumulative learning ART-based pattern recognizer. International Journal of Production Research 33 (1995) 1817-1833
    • (1995) International Journal of Production Research , vol.33 , pp. 1817-1833
    • Hwarng, H.B.1    Chong, C.W.2
  • 21
    • 1342265964 scopus 로고    scopus 로고
    • Detecting process mean shift in the presence of autocorrelation: A neural-network based monitoring scheme
    • Hwarng H.B. Detecting process mean shift in the presence of autocorrelation: A neural-network based monitoring scheme. International Journal of Production Research 42 (2004) 573-595
    • (2004) International Journal of Production Research , vol.42 , pp. 573-595
    • Hwarng, H.B.1
  • 26
    • 77955331694 scopus 로고
    • A multivariate exponentially weighted moving average control chart
    • Lowry C.A., Woodall W.H., Champ C.W., and Rigdon S.E. A multivariate exponentially weighted moving average control chart. Technometrics 34 (1992) 46-53
    • (1992) Technometrics , vol.34 , pp. 46-53
    • Lowry, C.A.1    Woodall, W.H.2    Champ, C.W.3    Rigdon, S.E.4
  • 29
    • 28844486614 scopus 로고    scopus 로고
    • Fault diagnosis in multivariate control charts. Using artificial neural networks
    • Niaki S.T.A., and Abbasi B. Fault diagnosis in multivariate control charts. Using artificial neural networks. International Quality and Reliability Engineering 21 (2005) 825-840
    • (2005) International Quality and Reliability Engineering , vol.21 , pp. 825-840
    • Niaki, S.T.A.1    Abbasi, B.2
  • 30
    • 0000974044 scopus 로고
    • Control chart pattern recognition using neural networks
    • Pham D.T., and Oztemel E. Control chart pattern recognition using neural networks. Journal of Systems Engineering 2 (1992) 256-262
    • (1992) Journal of Systems Engineering , vol.2 , pp. 256-262
    • Pham, D.T.1    Oztemel, E.2
  • 31
    • 0028392602 scopus 로고
    • Control chart pattern recognition using learning vector quantization networks
    • Pham D.T., and Oztemel E. Control chart pattern recognition using learning vector quantization networks. International Journal of Production Research 32 (1994) 721-729
    • (1994) International Journal of Production Research , vol.32 , pp. 721-729
    • Pham, D.T.1    Oztemel, E.2
  • 33
    • 0009412095 scopus 로고
    • Tighter process control with neural networks
    • Plummer J. Tighter process control with neural networks. AI Expert 8 (1993) 49-55
    • (1993) AI Expert , vol.8 , pp. 49-55
    • Plummer, J.1
  • 35
    • 0024943235 scopus 로고
    • Synthetic neural networks for process control
    • Pugh G.A. Synthetic neural networks for process control. Computers & Industrial Engineering 17 (1989) 25-26
    • (1989) Computers & Industrial Engineering , vol.17 , pp. 25-26
    • Pugh, G.A.1
  • 36
    • 0025448521 scopus 로고
    • The strength of weak learnability
    • Schapire R.E. The strength of weak learnability. Machine Learning 5 (1990) 197-227
    • (1990) Machine Learning , vol.5 , pp. 197-227
    • Schapire, R.E.1
  • 37
    • 0028377883 scopus 로고
    • X-bar and R control chart interpretation using neural computing
    • Smith A.E. X-bar and R control chart interpretation using neural computing. International Journal of Production Research 32 (1994) 309-320
    • (1994) International Journal of Production Research , vol.32 , pp. 309-320
    • Smith, A.E.1
  • 39
    • 33751510941 scopus 로고    scopus 로고
    • An integrated approach for process monitoring using wavelet analysis and competitive neural network
    • Wang C.H., Kuo W., and Qi H.R. An integrated approach for process monitoring using wavelet analysis and competitive neural network. International Journal of Production Research 45 (2007) 227-244
    • (2007) International Journal of Production Research , vol.45 , pp. 227-244
    • Wang, C.H.1    Kuo, W.2    Qi, H.R.3
  • 40
    • 0036610685 scopus 로고    scopus 로고
    • Mean shifts detection and classification in multivariate process: A neural-fuzzy approach
    • Wang T.Y., and Chen L.H. Mean shifts detection and classification in multivariate process: A neural-fuzzy approach. Journal of Intelligent Manufacturing 13 (2002) 211-221
    • (2002) Journal of Intelligent Manufacturing , vol.13 , pp. 211-221
    • Wang, T.Y.1    Chen, L.H.2
  • 41
    • 0022111936 scopus 로고
    • Multivariate CUSUM quality-control procedures
    • Woodall W.H., and Ncube M.M. Multivariate CUSUM quality-control procedures. Technometrics 27 (1985) 285-292
    • (1985) Technometrics , vol.27 , pp. 285-292
    • Woodall, W.H.1    Ncube, M.M.2
  • 42
    • 0036567392 scopus 로고    scopus 로고
    • Ensembling neural networks: many could be better than all
    • Zhou Z.H., Wu J.X., and Tang W. Ensembling neural networks: many could be better than all. Artificial Intelligence 137 (2002) 239-263
    • (2002) Artificial Intelligence , vol.137 , pp. 239-263
    • Zhou, Z.H.1    Wu, J.X.2    Tang, W.3
  • 44
    • 0037349382 scopus 로고    scopus 로고
    • Using novelty detection to identify abnormalities caused by mean shifts in bivariate processes
    • Zorriassatine F., Tannock J.D.T., and Brien C.O. Using novelty detection to identify abnormalities caused by mean shifts in bivariate processes. Computers & Industrial Engineering 44 (2003) 385-408
    • (2003) Computers & Industrial Engineering , vol.44 , pp. 385-408
    • Zorriassatine, F.1    Tannock, J.D.T.2    Brien, C.O.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.