메뉴 건너뛰기




Volumn 52, Issue 4, 2007, Pages 502-520

Using recurrent neural networks to detect changes in autocorrelated processes for quality monitoring

Author keywords

ARMA models; Manufacturing; Quality monitoring; Recurrent neural network

Indexed keywords

AUTOCORRELATION; AUTOMATION; MANUFACTURE; PROCESS CONTROL; QUALITY MANAGEMENT; TIME SERIES ANALYSIS;

EID: 34248138917     PISSN: 03608352     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.cie.2007.03.003     Document Type: Article
Times cited : (55)

References (33)
  • 1
    • 0031186526 scopus 로고    scopus 로고
    • An unsupervised learning neural algorithm for identifying process behavior on control charts and a comparison with supervised learning approaches
    • Al-Ghanim A. An unsupervised learning neural algorithm for identifying process behavior on control charts and a comparison with supervised learning approaches. Computers & Industrial Engineering 32 (1997) 627-639
    • (1997) Computers & Industrial Engineering , vol.32 , pp. 627-639
    • Al-Ghanim, A.1
  • 4
    • 4344709594 scopus 로고    scopus 로고
    • Pattern recognition of control chart using artificial neural networks - analyzing the effect of the training parameters
    • Barghash M.A., and Santarisi N.S. Pattern recognition of control chart using artificial neural networks - analyzing the effect of the training parameters. Journal of Intelligent Manufacturing 15 (2004) 635-644
    • (2004) Journal of Intelligent Manufacturing , vol.15 , pp. 635-644
    • Barghash, M.A.1    Santarisi, N.S.2
  • 5
    • 0035186217 scopus 로고    scopus 로고
    • A real-coded genetic algorithm for training recurrent neural networks
    • Blanco A., Delgado M., and Pegalajar M.C. A real-coded genetic algorithm for training recurrent neural networks. Neural Networks 14 (2001) 93-105
    • (2001) Neural Networks , vol.14 , pp. 93-105
    • Blanco, A.1    Delgado, M.2    Pegalajar, M.C.3
  • 7
    • 0030211371 scopus 로고    scopus 로고
    • A neural fuzzy control chart for detecting and classifying process mean shifts
    • Chang S.I., and Aw C.A. A neural fuzzy control chart for detecting and classifying process mean shifts. International Journal of Production Research 34 8 (1996) 2265-2278
    • (1996) International Journal of Production Research , vol.34 , Issue.8 , pp. 2265-2278
    • Chang, S.I.1    Aw, C.A.2
  • 8
    • 0035447137 scopus 로고    scopus 로고
    • A neural network-based procedure for the monitoring of exponential mean
    • Cheng C.-S., and Cheng S.-S. A neural network-based procedure for the monitoring of exponential mean. Computers & Industrial Engineering 40 (2001) 309-321
    • (2001) Computers & Industrial Engineering , vol.40 , pp. 309-321
    • Cheng, C.-S.1    Cheng, S.-S.2
  • 9
    • 0035262745 scopus 로고    scopus 로고
    • Shifts recognition in correlated process data using a neural network
    • Chiu C.-C., Chen M.-K., and Lee K.-M. Shifts recognition in correlated process data using a neural network. International Journal of Systems Science 32 2 (2001) 137-143
    • (2001) International Journal of Systems Science , vol.32 , Issue.2 , pp. 137-143
    • Chiu, C.-C.1    Chen, M.-K.2    Lee, K.-M.3
  • 10
    • 0031037681 scopus 로고    scopus 로고
    • Efficient training of recurrent neural networks with time delays
    • Cohen B., Saad D., and Marom E. Efficient training of recurrent neural networks with time delays. Neural Networks 10 1 (1997) 51-59
    • (1997) Neural Networks , vol.10 , Issue.1 , pp. 51-59
    • Cohen, B.1    Saad, D.2    Marom, E.3
  • 11
    • 0032022864 scopus 로고    scopus 로고
    • Using radial basis function neural networks to recognize shifts in correlated manufacturing process parameters
    • Cook D.F., and Chiu C.-C. Using radial basis function neural networks to recognize shifts in correlated manufacturing process parameters. IIE Transactions 30 (1998) 227-234
    • (1998) IIE Transactions , vol.30 , pp. 227-234
    • Cook, D.F.1    Chiu, C.-C.2
  • 12
    • 0035923922 scopus 로고    scopus 로고
    • Utilization of neural networks for the recognition of variance shifts in correlated manufacturing process parameters
    • Cook D.F., Zobel C.W., and Nottingham Q.J. Utilization of neural networks for the recognition of variance shifts in correlated manufacturing process parameters. International Journal of Production Research 39 17 (2001) 3881-3887
    • (2001) International Journal of Production Research , vol.39 , Issue.17 , pp. 3881-3887
    • Cook, D.F.1    Zobel, C.W.2    Nottingham, Q.J.3
  • 13
    • 26444565569 scopus 로고
    • Finding structure in time
    • Elman J.L. Finding structure in time. Cognitive Science 14 (1990) 179-211
    • (1990) Cognitive Science , vol.14 , pp. 179-211
    • Elman, J.L.1
  • 14
    • 0032673229 scopus 로고    scopus 로고
    • A neural network based model for abnormal pattern recognition of control charts
    • Guh R.S., and Hsieh Y.C. A neural network based model for abnormal pattern recognition of control charts. Computers & Industrial Engineering 36 (1999) 97-108
    • (1999) Computers & Industrial Engineering , vol.36 , pp. 97-108
    • Guh, R.S.1    Hsieh, Y.C.2
  • 15
    • 0032686921 scopus 로고    scopus 로고
    • Recognition of control chart concurrent patterns using a neural network approach
    • Guh R.S., and Tannock J.D.T. Recognition of control chart concurrent patterns using a neural network approach. International Journal of Production Research 37 (1999) 1743-1765
    • (1999) International Journal of Production Research , vol.37 , pp. 1743-1765
    • Guh, R.S.1    Tannock, J.D.T.2
  • 17
    • 0027579104 scopus 로고
    • Back-propagation pattern recognizers for X control charts: methodology and performance
    • Hwarng H.B., and Hubele N.F. Back-propagation pattern recognizers for X control charts: methodology and performance. Computers & Industrial Engineering 24 2 (1993) 219-235
    • (1993) Computers & Industrial Engineering , vol.24 , Issue.2 , pp. 219-235
    • Hwarng, H.B.1    Hubele, N.F.2
  • 18
    • 1342265964 scopus 로고    scopus 로고
    • Detecting process mean shift in the presence of autocorrelation: a neural network based monitoring scheme
    • Hwarng H.B. Detecting process mean shift in the presence of autocorrelation: a neural network based monitoring scheme. International Journal of Production Research 42 3 (2004) 573-595
    • (2004) International Journal of Production Research , vol.42 , Issue.3 , pp. 573-595
    • Hwarng, H.B.1
  • 19
    • 27844603392 scopus 로고    scopus 로고
    • Simultaneous identification of mean shift and correlation change in AR(1) processes
    • Hwarng H.B. Simultaneous identification of mean shift and correlation change in AR(1) processes. International Journal of Production Research 43 9 (2005) 1761-1783
    • (2005) International Journal of Production Research , vol.43 , Issue.9 , pp. 1761-1783
    • Hwarng, H.B.1
  • 20
    • 0242269832 scopus 로고    scopus 로고
    • Application of artificial neural network to identify non-random variation patterns on the run chart in automotive assembly process
    • Jang K.-Y., Yang K., and Kang C. Application of artificial neural network to identify non-random variation patterns on the run chart in automotive assembly process. International Journal of Production Research 41 6 (2003) 1239-1254
    • (2003) International Journal of Production Research , vol.41 , Issue.6 , pp. 1239-1254
    • Jang, K.-Y.1    Yang, K.2    Kang, C.3
  • 21
    • 0342854441 scopus 로고    scopus 로고
    • A new SPC monitoring method: the ARMA chart
    • Jiang W., Tsui K.-L., and Woodall W.H. A new SPC monitoring method: the ARMA chart. Technometrics 42 4 (2000) 399-410
    • (2000) Technometrics , vol.42 , Issue.4 , pp. 399-410
    • Jiang, W.1    Tsui, K.-L.2    Woodall, W.H.3
  • 23
    • 1242264850 scopus 로고    scopus 로고
    • Manufacturing quality control by means of a Fuzzy ART network trained on natural process data
    • Pacella M., Semeraro Q., and Anglani A. Manufacturing quality control by means of a Fuzzy ART network trained on natural process data. Engineering Applications of Artificial Intelligence 17 1 (2004) 83-96
    • (2004) Engineering Applications of Artificial Intelligence , vol.17 , Issue.1 , pp. 83-96
    • Pacella, M.1    Semeraro, Q.2    Anglani, A.3
  • 24
    • 8644263044 scopus 로고    scopus 로고
    • Adaptive resonance theory-based neural algorithms for manufacturing process quality control
    • Pacella M., Semeraro Q., and Anglani A. Adaptive resonance theory-based neural algorithms for manufacturing process quality control. International Journal of Production Research 40 21 (2004) 4581-4607
    • (2004) International Journal of Production Research , vol.40 , Issue.21 , pp. 4581-4607
    • Pacella, M.1    Semeraro, Q.2    Anglani, A.3
  • 25
    • 0030082425 scopus 로고    scopus 로고
    • Training of Elman networks and dynamic system modelling
    • Pham D.T., and Liu X. Training of Elman networks and dynamic system modelling. International Journal of Systems Science 27 2 (1996) 221-226
    • (1996) International Journal of Systems Science , vol.27 , Issue.2 , pp. 221-226
    • Pham, D.T.1    Liu, X.2
  • 26
    • 0000313624 scopus 로고
    • A comparison of neural networks to SPC charts
    • Pugh G.A. A comparison of neural networks to SPC charts. Computers & Industrial Engineering 21 (1991) 253-255
    • (1991) Computers & Industrial Engineering , vol.21 , pp. 253-255
    • Pugh, G.A.1
  • 27
    • 0011329049 scopus 로고
    • Discussion (of "Some statistical process control methods for autocorrelated data" by D.C. Montogomery and C.M. Mastrangelo)
    • Ryan T.P. Discussion (of "Some statistical process control methods for autocorrelated data" by D.C. Montogomery and C.M. Mastrangelo). Journal of Quality Technology 23 3 (1991) 200-202
    • (1991) Journal of Quality Technology , vol.23 , Issue.3 , pp. 200-202
    • Ryan, T.P.1
  • 28
    • 34248171078 scopus 로고
    • Time series models in statistical process control: considerations of applicability
    • Stone R., and Taylor M. Time series models in statistical process control: considerations of applicability. The Statistician 44 2 (1995) 227-234
    • (1995) The Statistician , vol.44 , Issue.2 , pp. 227-234
    • Stone, R.1    Taylor, M.2
  • 29
    • 0031171247 scopus 로고    scopus 로고
    • Discrete time recurrent neural network architectures: A unifying review
    • Tsoi A.C., and Back A. Discrete time recurrent neural network architectures: A unifying review. Neurocomputing 15 (1997) 183-223
    • (1997) Neurocomputing , vol.15 , pp. 183-223
    • Tsoi, A.C.1    Back, A.2
  • 30
    • 84952149041 scopus 로고
    • Run-length distribution of special cause control charts of correlation processes
    • Wardell D.G., Moskowitz H., and Plante R.D. Run-length distribution of special cause control charts of correlation processes. Technometrics 36 1 (1994) 3-17
    • (1994) Technometrics , vol.36 , Issue.1 , pp. 3-17
    • Wardell, D.G.1    Moskowitz, H.2    Plante, R.D.3
  • 31
    • 0000687972 scopus 로고    scopus 로고
    • Detection capability of residual control chart for stationary process data
    • Zhang N.F. Detection capability of residual control chart for stationary process data. Journal of Applied Statistics 24 4 (1997) 475-492
    • (1997) Journal of Applied Statistics , vol.24 , Issue.4 , pp. 475-492
    • Zhang, N.F.1
  • 32
    • 0032001756 scopus 로고    scopus 로고
    • A statistical control chart for stationary process data
    • Zhang N.F. A statistical control chart for stationary process data. Technometrics 40 1 (1998) 24-38
    • (1998) Technometrics , vol.40 , Issue.1 , pp. 24-38
    • Zhang, N.F.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.