메뉴 건너뛰기




Volumn 62, Issue , 2011, Pages 301-326

Cooperativity, local-nonlocal coupling, and nonnative interactions: Principles of protein folding from coarse-grained models

Author keywords

desolvation; energy landscape; enthalpic barrier; folding funnel; Levinthal paradox; native topology

Indexed keywords

CHAINS; COARSE-GRAINED MODELING;

EID: 79953747234     PISSN: 0066426X     EISSN: None     Source Type: Book Series    
DOI: 10.1146/annurev-physchem-032210-103405     Document Type: Article
Times cited : (182)

References (152)
  • 4
    • 0016696599 scopus 로고
    • Studies on protein folding, unfolding and fluctuations by computer simulation 1. The effect of specific amino acid sequence represented by specific inter-unit interactions
    • Taketomi H, Ueda Y, Ḡo N. 1975. Studies on protein folding, unfolding and fluctuations by computer simulation. 1. The effect of specific amino acid sequence represented by specific inter-unit interactions. Int. J. Pept. Protein Res. 7:445-59.
    • (1975) Int. J. Pept. Protein Res. , vol.7 , pp. 445-459
    • Taketomi, H.1    Ueda, Y.2    Go, N.3
  • 5
    • 0016610491 scopus 로고
    • Computer simulation of protein folding
    • Levitt M, Warshel A. 1975. Computer simulation of protein folding. Nature 253:694-98.
    • (1975) Nature , vol.253 , pp. 694-698
    • Levitt, M.1    Warshel, A.2
  • 6
    • 0022423920 scopus 로고
    • Theory for the folding and stability of globular proteins
    • Dill KA. 1985. Theory for the folding and stability of globular proteins. Biochemistry 24:1501-9.
    • (1985) Biochemistry , vol.24 , pp. 1501-1509
    • Dill, K.A.1
  • 7
    • 0023449962 scopus 로고
    • Spin glasses and the statistical mechanics of protein folding
    • Bryngelson JD, Wolynes PG. 1987. Spin glasses and the statistical mechanics of protein folding. Proc. Natl. Acad. Sci. USA 84:7524-28.
    • (1987) Proc. Natl. Acad. Sci. USA , vol.84 , pp. 7524-7528
    • Bryngelson, J.D.1    Wolynes, P.G.2
  • 8
  • 9
    • 0028947257 scopus 로고
    • Funnels, pathways, and the energy landscape of protein folding: A synthesis
    • Bryngelson JD, Onuchic JN, Socci ND,Wolynes PG. 1995. Funnels, pathways, and the energy landscape of protein folding: a synthesis. Proteins 21:167-95.
    • (1995) Proteins , vol.21 , pp. 167-195
    • Bryngelson, J.D.1    Onuchic, J.N.2    Socci, N.D.3    Wolynes, P.G.4
  • 10
    • 0028929556 scopus 로고
    • Principles of protein folding: A perspective from simple exact models
    • Dill KA, Bromberg S, Yue K, Fiebig KM, Yee DP, et al. 1995. Principles of protein folding: a perspective from simple exact models. Protein Sci. 4:561-602.
    • (1995) Protein Sci , vol.4 , pp. 561-602
    • Dill, K.A.1    Bromberg, S.2    Yue, K.3    Fiebig, K.M.4    Yee, D.P.5
  • 11
    • 1542319916 scopus 로고    scopus 로고
    • Cooperativity Principles in Protein Folding
    • DOI 10.1016/S0076-6879(04)80016-8
    • Chan HS, Shimizu S, Kaya H. 2004. Cooperativity principles in protein folding. Methods Enzymol. 380:350-79. (Pubitemid 38297503)
    • (2004) Methods in Enzymology , vol.380 , pp. 350-379
    • Chan, H.S.1    Shimizu, S.2    Kaya, H.3
  • 13
    • 33646931471 scopus 로고    scopus 로고
    • Protein folding thermodynamics and dynamics: Where physics, chemistry, and biology meet
    • DOI 10.1021/cr040425u
    • Shakhnovich E. 2006. Protein folding thermodynamics and dynamics: where physics, chemistry, and biology meet. Chem. Rev. 106:1559-88. (Pubitemid 43792772)
    • (2006) Chemical Reviews , vol.106 , Issue.5 , pp. 1559-1588
    • Shakhnovich, E.1
  • 14
    • 39149100599 scopus 로고    scopus 로고
    • Coarse-grained models of protein folding: Toy models or predictive tools?
    • Clementi C. 2008. Coarse-grained models of protein folding: toy models or predictive tools? Curr. Opin. Struct. Biol. 18:10-15.
    • (2008) Curr. Opin. Struct. Biol. , vol.18 , pp. 10-15
    • Clementi, C.1
  • 17
    • 63449129633 scopus 로고    scopus 로고
    • Insights from coarse-grained Ḡomodels for protein folding and dynamics
    • Hills RD,Brooks CLIII. 2009. Insights from coarse-grained Ḡomodels for protein folding and dynamics. Int. J. Mol. Sci. 10:889-905.
    • (2009) Int. J. Mol. Sci. , vol.10 , pp. 889-905
    • Hills, R.D.1    Brooks Iii, C.L.2
  • 18
    • 69449098484 scopus 로고    scopus 로고
    • Protein folding simulations: From coarse-grained model to all-atom model
    • Zhang J, Li W, Wang J, Qin M, Wu L, et al. 2009. Protein folding simulations: from coarse-grained model to all-atom model. IUBMB Life 61:627-43.
    • (2009) IUBMB Life , vol.61 , pp. 627-643
    • Zhang, J.1    Li, W.2    Wang, J.3    Qin, M.4    Wu, L.5
  • 20
    • 66849106554 scopus 로고    scopus 로고
    • An expanding arsenal of experimental methods yields an explosion of insights into protein folding mechanisms
    • Bartlett AI, Radford SE. 2009. An expanding arsenal of experimental methods yields an explosion of insights into protein folding mechanisms. Nat. Struct. Mol. Biol. 16:582-88.
    • (2009) Nat. Struct. Mol. Biol. , vol.16 , pp. 582-588
    • Bartlett, A.I.1    Radford, S.E.2
  • 22
    • 67649589198 scopus 로고    scopus 로고
    • Reaching the protein folding speed limit with large, submicrosecond pressure jumps
    • Dumont C, Emilsson T, Gruebele M. 2009. Reaching the protein folding speed limit with large, submicrosecond pressure jumps. Nat. Methods 6:515-19.
    • (2009) Nat. Methods , vol.6 , pp. 515-519
    • Dumont, C.1    Emilsson, T.2    Gruebele, M.3
  • 23
    • 39149087014 scopus 로고    scopus 로고
    • Protein folding studied by single-molecule FRET
    • Schuler B, Eaton WA. 2008. Protein folding studied by single-molecule FRET. Curr. Opin. Struct. Biol. 18:16-26.
    • (2008) Curr. Opin. Struct. Biol. , vol.18 , pp. 16-26
    • Schuler, B.1    Eaton, W.A.2
  • 24
    • 77953231020 scopus 로고    scopus 로고
    • The folding cooperativity of a protein is controlled by its chain topology
    • Shank EA, Cecconi C, Dill JW,Marqusee S, Bustamante C. 2010. The folding cooperativity of a protein is controlled by its chain topology. Nature 465:637-40.
    • (2010) Nature , vol.465 , pp. 637-640
    • Shank, E.A.1    Cecconi, C.2    Dill, J.W.3    Marqusee, S.4    Bustamante, C.5
  • 25
    • 0037038372 scopus 로고    scopus 로고
    • Absolute comparison of simulated and experimental protein-folding dynamics
    • DOI 10.1038/nature01160
    • Snow CD, Nguyen H, Pande VS, Gruebele M. 2002. Absolute comparison of simulated and experimental protein-folding dynamics. Nature 420:102-6. (Pubitemid 35291448)
    • (2002) Nature , vol.420 , Issue.6911 , pp. 102-106
    • Snow, C.D.1    Nguyen, H.2    Pande, V.S.3    Gruebele, M.4
  • 27
    • 54849428346 scopus 로고    scopus 로고
    • The fast-folding HP35 double mutant has a substantially reduced primary folding free energy barrier
    • Lei H, Deng X, Wang Z, Duan Y. 2008. The fast-folding HP35 double mutant has a substantially reduced primary folding free energy barrier. J. Chem. Phys. 129:155104.
    • (2008) J. Chem. Phys. , vol.129 , pp. 155104
    • Lei, H.1    Deng, X.2    Wang, Z.3    Duan, Y.4
  • 28
    • 56649083699 scopus 로고    scopus 로고
    • Computing the stability diagram of the Trp-cage miniprotein
    • Paschek D, Hempel S, Garća AE. 2008. Computing the stability diagram of the Trp-cage miniprotein. Proc. Natl. Acad. Sci. USA 105:17754-59.
    • (2008) Proc. Natl. Acad. Sci. USA , vol.105 , pp. 17754-17759
    • Paschek, D.1    Hempel, S.2    Garća, A.E.3
  • 29
    • 70349778502 scopus 로고    scopus 로고
    • Common structural transitions in explicit-solvent simulations of villin headpiece folding
    • Freddolino PL, Schulten K. 2009. Common structural transitions in explicit-solvent simulations of villin headpiece folding. Biophys. J. 97:2338-47.
    • (2009) Biophys. J. , vol.97 , pp. 2338-2347
    • Freddolino, P.L.1    Schulten, K.2
  • 30
    • 70450255797 scopus 로고    scopus 로고
    • Constructing the equilibrium ensemble of folding pathways from short off-equilibrium simulations
    • Nóe F, Scḧutte C, Vanden-Eijnden E, Reich L, Weikl TR. 2009. Constructing the equilibrium ensemble of folding pathways from short off-equilibrium simulations. Proc. Natl. Acad. Sci. USA 106:19011-16.
    • (2009) Proc. Natl. Acad. Sci. USA , vol.106 , pp. 19011-19016
    • Nóe, F.1    Scḧutte, C.2    Vanden-Eijnden, E.3    Reich, L.4    Weikl, T.R.5
  • 31
    • 76149136021 scopus 로고    scopus 로고
    • Molecular simulation of ab initio protein folding for a millisecond folded NTL9(1-39)
    • Voelz VA, Bowman GR, Beauchamp K, Pande VS. 2010. Molecular simulation of ab initio protein folding for a millisecond folded NTL9(1-39). J. Am. Chem. Soc. 132:1526-28.
    • (2010) J. Am. Chem. Soc. , vol.132 , pp. 1526-1528
    • Voelz, V.A.1    Bowman, G.R.2    Beauchamp, K.3    Pande, V.S.4
  • 32
    • 77954209324 scopus 로고    scopus 로고
    • Enhanced sampling and applications in protein folding in explicit solvent
    • Zhang C,Ma J. 2010. Enhanced sampling and applications in protein folding in explicit solvent. J. Chem. Phys. 132:244101.
    • (2010) J. Chem. Phys. , vol.132 , pp. 244101
    • Zhang, C.1    Ma, J.2
  • 33
    • 74249119329 scopus 로고    scopus 로고
    • Critical assessment of methods of protein structure prediction: Round VIII
    • Moult J, Fidelis K, Kryshtafovych A, Rost B, Tramontano A. 2009. Critical assessment of methods of protein structure prediction: round VIII. Proteins 77(Suppl. 9):1-4.
    • (2009) Proteins , vol.77 , Issue.SUPPL. 9 , pp. 1-4
    • Moult, J.1    Fidelis, K.2    Kryshtafovych, A.3    Rost, B.4    Tramontano, A.5
  • 34
    • 49449100900 scopus 로고    scopus 로고
    • Problem solved? (sort of )
    • Service RF. 2008. Problem solved? (sort of ). Science 321:784-86.
    • (2008) Science , vol.321 , pp. 784-786
    • Service, R.F.1
  • 35
    • 0034604105 scopus 로고    scopus 로고
    • A surprising simplicity to protein folding
    • DOI 10.1038/35011000
    • Baker D. 2000. A surprising simplicity to protein folding. Nature 405:39-42. (Pubitemid 30321807)
    • (2000) Nature , vol.405 , Issue.6782 , pp. 39-42
    • Baker, D.1
  • 36
    • 62449160383 scopus 로고    scopus 로고
    • What have we learned from the studies of two-state folders, and what are the unanswered questions about two-state protein folding?
    • Barrick D. 2009. What have we learned from the studies of two-state folders, and what are the unanswered questions about two-state protein folding? Phys. Biol. 6:015001.
    • (2009) Phys Biol. , vol.6 , pp. 015001
    • Barrick, D.1
  • 40
    • 0024750637 scopus 로고
    • A lattice statistical mechanics model of the conformational and sequence spaces of proteins
    • Lau KF, Dill KA. 1989. A lattice statistical mechanics model of the conformational and sequence spaces of proteins. Macromolecules 22:3986-97.
    • (1989) Macromolecules , vol.22 , pp. 3986-3997
    • Lau, K.F.1    Dill, K.A.2
  • 41
    • 0001193711 scopus 로고
    • The effects of internal constraints on the configurations of chain molecules
    • Erratum. 1997. J. Chem. Phys. 107 10353
    • Chan HS, Dill KA. 1990. The effects of internal constraints on the configurations of chain molecules. J. Chem. Phys. 92:3118-35. Erratum. 1997. J. Chem. Phys. 107:10353.
    • (1990) J. Chem. Phys. , vol.92 , pp. 3118-3135
    • Chan, H.S.1    Dill, K.A.2
  • 42
    • 0025368288 scopus 로고
    • Metastability of the folded states of globular proteins
    • Honeycutt JD, Thirumalai D. 1990. Metastability of the folded states of globular proteins. Proc. Natl. Acad. Sci. USA 87:3526-29.
    • (1990) Proc. Natl. Acad. Sci. USA , vol.87 , pp. 3526-3529
    • Honeycutt, J.D.1    Thirumalai, D.2
  • 43
    • 0034284366 scopus 로고    scopus 로고
    • Modeling protein density of states: Additive hydrophobic effects are insufficient for calorimetric two-state cooperativity
    • Chan HS. 2000. Modeling protein density of states: Additive hydrophobic effects are insufficient for calorimetric two-state cooperativity. Proteins 40:543-71.
    • (2000) Proteins , vol.40 , pp. 543-571
    • Chan, H.S.1
  • 44
    • 0012600709 scopus 로고    scopus 로고
    • Computational methods for protein folding: Scaling a hierarchy of complexities
    • ed. T Jiang, Y Xu, MQ Zhang Cambridge, MA MIT Press
    • Chan HS, Kaya H, Shimizu S. 2002. Computational methods for protein folding: scaling a hierarchy of complexities. In Current Topics in Computational Molecular Biology, ed. T Jiang, Y Xu, MQ Zhang, pp. 403-47. Cambridge, MA: MIT Press.
    • (2002) Current Topics in Computational Molecular Biology , pp. 403-447
    • Chan, H.S.1    Kaya, H.2    Shimizu, S.3
  • 45
    • 0037215268 scopus 로고    scopus 로고
    • The topomer search model: A simple, quantitative theory of two-state protein folding kinetics
    • DOI 10.1110/ps.0220003
    • Makarov DE, Plaxco KW. 2003. The topomer search model: a simple, quantitative theory of two-state protein folding kinetics. Protein Sci. 12:17-26. (Pubitemid 36020130)
    • (2003) Protein Science , vol.12 , Issue.1 , pp. 17-26
    • Makarov, D.E.1    Plaxco, K.W.2
  • 46
    • 19444371858 scopus 로고    scopus 로고
    • A critical assessment of the topomer search model of protein folding using a continuum explicit-chain model with extensive conformational sampling
    • DOI 10.1110/ps.041317705
    • Wallin S, Chan HS. 2005. A critical assessment of the topomer search model of protein folding using a continuum explicit-chain model with extensive conformational sampling. Protein Sci. 14:1643-60. (Pubitemid 41007925)
    • (2005) Protein Science , vol.14 , Issue.6 , pp. 1643-1660
    • Wallin, S.1    Hue, S.C.2
  • 48
    • 0013943915 scopus 로고
    • Validity of the 'two-state'hypothesis for conformational transitions of proteins
    • Lumry R, Biltonen R, Brandts JF. 1966. Validity of the 'two-state' hypothesis for conformational transitions of proteins. Biopolymers 4:917-44.
    • (1966) Biopolymers , vol.4 , pp. 917-944
    • Lumry, R.1    Biltonen, R.2    Brandts, J.F.3
  • 49
    • 0034284060 scopus 로고    scopus 로고
    • Polymer principles of protein calorimetric two-state cooperativity
    • Erratum. 2001. Proteins 43 523
    • Kaya H, Chan HS. 2000. Polymer principles of protein calorimetric two-state cooperativity. Proteins 40:637-61. Erratum. 2001. Proteins 43:523.
    • (2000) Proteins , vol.40 , pp. 637-661
    • Kaya, H.1    Chan, H.S.2
  • 50
    • 0028387381 scopus 로고
    • Finding intermediates in protein folding
    • Baldwin RL. 1994. Finding intermediates in protein folding. Bio Essays 16:207-10.
    • (1994) Bio Essays , vol.16 , pp. 207-210
    • Baldwin, R.L.1
  • 51
    • 0002006297 scopus 로고
    • Are there pathways for protein folding?
    • Levinthal C. 1968. Are there pathways for protein folding? J. Chim. Phys. 65:44-45.
    • (1968) J Chim. Phys. , vol.65 , pp. 44-45
    • Levinthal, C.1
  • 52
    • 0026723063 scopus 로고
    • Protein folding funnels: A kinetic approach to the sequence structure relationship
    • Leopold PE, Montal M, Onuchic JN. 1992. Protein folding funnels: a kinetic approach to the sequence structure relationship. Proc. Natl. Acad. Sci. USA 89:8721-25.
    • (1992) Proc. Natl. Acad. Sci. USA , vol.89 , pp. 8721-8725
    • Leopold, P.E.1    Montal, M.2    Onuchic, J.N.3
  • 53
    • 1842298212 scopus 로고    scopus 로고
    • From levinthal to pathways to funnels
    • DOI 10.1038/nsb0197-10
    • Dill KA, Chan HS. 1997. From Levinthal to pathways to funnels. Nat. Struct. Biol. 4:10-19. (Pubitemid 27020916)
    • (1997) Nature Structural Biology , vol.4 , Issue.1 , pp. 10-19
    • Dill, K.A.1    Chan, H.S.2
  • 54
    • 0042130544 scopus 로고    scopus 로고
    • Simple two-state protein folding kinetics requires near-levinthal thermodynamic cooperativity
    • DOI 10.1002/prot.10506
    • Kaya H, Chan HS. 2003. Simple two-state protein folding kinetics requires near-Levinthal thermodynamic cooperativity. Proteins 52:510-23. (Pubitemid 37034149)
    • (2003) Proteins: Structure, Function and Genetics , vol.52 , Issue.4 , pp. 510-523
    • Kaya, H.1    Chan, H.S.2
  • 56
    • 0024359551 scopus 로고
    • Thermal stabilities of globular proteins
    • Dill KA, Alonso DOV, Hutchinson K. 1989. Thermal stabilities of globular proteins. Biochemistry 28:5439-49. (Pubitemid 19175754)
    • (1989) Biochemistry , vol.28 , Issue.13 , pp. 5439-5449
    • Dill, K.A.1    Alonso, D.O.V.2    Hutchinson, K.3
  • 57
    • 0007463680 scopus 로고    scopus 로고
    • Statistical mechanics of a correlated energy landscape model for protein folding funnels
    • Plotkin SS, Wang J, Wolynes PG. 1997. Statistical mechanics of a correlated energy landscape model for protein folding funnels. J. Chem. Phys. 106:2932-48. (Pubitemid 127617032)
    • (1997) Journal of Chemical Physics , vol.106 , Issue.7 , pp. 2932-2948
    • Plotkin, S.S.1    Wang, J.2    Wolynes, P.G.3
  • 58
    • 54949099933 scopus 로고    scopus 로고
    • Probing possible downhill folding: Native contact topology likely places a significant constraint on the folding cooperativity of proteins with ∼40 residues
    • Badasyan A, Liu Z, Chan HS. 2008. Probing possible downhill folding: native contact topology likely places a significant constraint on the folding cooperativity of proteins with ∼40 residues. J. Mol. Biol. 384:512-30.
    • (2008) J. Mol. Biol. , vol.384 , pp. 512-530
    • Badasyan, A.1    Liu, Z.2    Chan, H.S.3
  • 62
    • 36449000646 scopus 로고
    • Transition states and folding dynamics of proteins and heteropolymers
    • Chan HS, Dill KA. 1994. Transition states and folding dynamics of proteins and heteropolymers. J. Chem. Phys. 100:9238-57.
    • (1994) J. Chem. Phys. , vol.100 , pp. 9238-9257
    • Chan, H.S.1    Dill, K.A.2
  • 63
    • 27744500841 scopus 로고    scopus 로고
    • Solvation and desolvation effects in protein folding: Native flexibility, kinetic cooperativity and enthalpic barriers under isostability conditions
    • DOI 10.1088/1478-3975/2/4/S01, PII S1478397505042937
    • Liu Z, Chan HS. 2005. Solvation and desolvation effects in protein folding: native flexibility, kinetic cooperativity, and enthalpic barriers under isostability conditions. Phys. Biol. 2:S75-85. (Pubitemid 41609433)
    • (2005) Physical Biology , vol.2 , Issue.4
    • Liu, Z.1    Chan, H.S.2
  • 64
    • 0032502839 scopus 로고    scopus 로고
    • Contact order, transition state placement and the refolding rates of single domain proteins
    • DOI 10.1006/jmbi.1998.1645
    • Plaxco KW, Simons KT, Baker D. 1998. Contact order, transition state placement and the refolding rates of single domain proteins. J. Mol. Biol. 277:985-94. (Pubitemid 28195995)
    • (1998) Journal of Molecular Biology , vol.277 , Issue.4 , pp. 985-994
    • Plaxco, K.W.1    Simons, K.T.2    Baker, D.3
  • 65
    • 0032559928 scopus 로고    scopus 로고
    • Matching speed and locality
    • DOI 10.1038/33808
    • Chan HS. 1998. Protein folding: matching speed and locality. Nature 392:761-63. (Pubitemid 28225302)
    • (1998) Nature , vol.392 , Issue.6678 , pp. 761-763
    • Chan, H.S.1
  • 66
    • 18344391877 scopus 로고    scopus 로고
    • Protein structures and optimal folding from a geometrical variational principle
    • Micheletti C, Banavar JR, Maritan A, Seno F. 1999. Protein structures and optimal folding from a geometrical variational principle. Phys. Rev. Lett. 82:3372-75. (Pubitemid 129689268)
    • (1999) Physical Review Letters , vol.82 , Issue.16 , pp. 3372-3375
    • Micheletti, C.1    Banavar, J.R.2    Maritan, A.3    Seno, F.4
  • 67
    • 0034685604 scopus 로고    scopus 로고
    • Topological and energetic factors: What determines the structural details of the transition state ensemble and "en-route" intermediates for protein folding? An investigation for small globular proteins
    • Clementi C, Nymeyer H, Onuchic JN. 2000. Topological and energetic factors: What determines the structural details of the transition state ensemble and "en-route"intermediates for protein folding? An investigation for small globular proteins. J. Mol. Biol. 298:937-53.
    • (2000) J. Mol. Biol. , vol.298 , pp. 937-953
    • Clementi, C.1    Nymeyer, H.2    Onuchic, J.N.3
  • 68
    • 0034743155 scopus 로고    scopus 로고
    • From folding theories to folding proteins: A review and assessment of simulation studies of protein folding and unfolding
    • Shea JE, Brooks CL III. 2001. From folding theories to folding proteins: a review and assessment of simulation studies of protein folding and unfolding. Annu. Rev. Phys. Chem. 52:499-535.
    • (2001) Annu. Rev. Phys. Chem. , vol.52 , pp. 499-535
    • Shea, J.E.1    Brooks Iii, C.L.2
  • 69
    • 0035850732 scopus 로고    scopus 로고
    • Roles of native topology and chain-length scaling in protein folding: A simulation study with a Ḡo-like model
    • DOI 10.1006/jmbi.2001.5037
    • Koga N, Takada S. 2001. Roles of native topology and chain-length scaling in protein folding: a simulation study with a Ḡo-like model. J. Mol. Biol. 313:171-80. (Pubitemid 33001173)
    • (2001) Journal of Molecular Biology , vol.313 , Issue.1 , pp. 171-180
    • Koga, N.1    Takada, S.2
  • 70
    • 0037459035 scopus 로고    scopus 로고
    • Solvation effects and driving forces for protein thermodynamic and kinetic cooperativity: How adequate is native-centric topological modeling?
    • DOI 10.1016/S0022-2836(02)01434-1
    • Kaya H, Chan HS. 2003. Solvation effects and driving forces for protein thermodynamic and kinetic cooperativity: How adequate is native-centric topological modeling? J. Mol. Biol. 326:911-31. Corrigendum. 2004. J. Mol. Biol. 337:1069-70. (Pubitemid 36279329)
    • (2003) Journal of Molecular Biology , vol.326 , Issue.3 , pp. 911-931
    • Kaya, H.1    Chan, H.S.2
  • 71
    • 3142782241 scopus 로고    scopus 로고
    • Quantifying the roughness on the free energy landscape: Entropic bottlenecks and protein folding rates
    • DOI 10.1021/ja049510+
    • Chavez LL, Onuchic JN, Clementi C. 2004. Quantifying the roughness on the free energy landscape: entropic bottlenecks and protein folding rates. J. Am. Chem. Soc. 126:8426-32. (Pubitemid 38917965)
    • (2004) Journal of the American Chemical Society , vol.126 , Issue.27 , pp. 8426-8432
    • Chavez, L.L.1    Onuchic, J.N.2    Clementi, C.3
  • 72
    • 33645294148 scopus 로고    scopus 로고
    • Conformational entropic barriers in topology-dependent protein folding: Perspectives from a simple native-centric polymer model
    • Corrigendum. 2009. J. Phys. Condens. Matter 21 329801
    • Wallin S, Chan HS. 2006. Conformational entropic barriers in topology-dependent protein folding: perspectives from a simple native-centric polymer model. J. Phys. Condens. Matter 18:S307-28. Corrigendum. 2009. J. Phys. Condens. Matter 21:329801.
    • (2006) J. Phys. Condens. Matter , vol.18
    • Wallin, S.1    Chan, H.S.2
  • 73
    • 0030984109 scopus 로고    scopus 로고
    • Protein folding kinetics exhibit an arrhenius temperature dependence when corrected for the temperature dependence of protein stability
    • DOI 10.1073/pnas.94.20.10636
    • Scalley ML, Baker D. 1997. Protein folding kinetics exhibit an Arrhenius temperature dependence when corrected for the temperature dependence of protein stability. Proc. Natl. Acad. Sci. USA 94:10636-40. (Pubitemid 27430786)
    • (1997) Proceedings of the National Academy of Sciences of the United States of America , vol.94 , Issue.20 , pp. 10636-10640
    • Scalley, M.L.1    Baker, D.2
  • 74
    • 0031444104 scopus 로고    scopus 로고
    • Folding dynamics of the src SH3 domain
    • DOI 10.1021/bi971786p
    • Grantcharova VP, Baker D. 1997. Folding dynamics of the src SH3 domain. Biochemistry 36:15685-92. (Pubitemid 28027367)
    • (1997) Biochemistry , vol.36 , Issue.50 , pp. 15685-15692
    • Grantcharova, V.P.1    Baker, D.2
  • 75
    • 0033535839 scopus 로고    scopus 로고
    • Cytochrome b562 folding triggered by electron transfer: Approaching the speed limit for formation of a four-helix-bundle protein
    • Wittung-Stafshede P, Lee JC, Winkler JR, Gray HB. 1999. Cytochrome b562 folding triggered by electron transfer: approaching the speed limit for formation of a four-helix-bundle protein. Proc. Natl. Acad. Sci. USA 96:6587-90.
    • (1999) Proc. Natl. Acad. Sci. USA , vol.96 , pp. 6587-6590
    • Wittung-Stafshede, P.1    Lee, J.C.2    Winkler, J.R.3    Gray, H.B.4
  • 76
    • 0032799756 scopus 로고    scopus 로고
    • Folding pathway of FKBP12 and characterisation of the transition state
    • DOI 10.1006/jmbi.1999.2941
    • Main ERG, Fulton KF, Jackson SE. 1999. Folding pathway of FKBP12 and characterisation of the transition state. J. Mol. Biol. 291:429-44. (Pubitemid 29381437)
    • (1999) Journal of Molecular Biology , vol.291 , Issue.2 , pp. 429-444
    • Main, E.R.G.1    Fulton, K.F.2    Jackson, S.E.3
  • 77
    • 0034671177 scopus 로고    scopus 로고
    • The SH3-fold family: Experimental evidence and prediction of variations in the folding pathways
    • DOI 10.1006/jmbi.2000.4234
    • Guerois R, Serrano L. 2000. The SH3-fold family: experimental evidence and prediction of variations in the folding pathways. J. Mol. Biol. 304:967-82. (Pubitemid 32047094)
    • (2000) Journal of Molecular Biology , vol.304 , Issue.5 , pp. 967-982
    • Guerois, R.1    Serrano, L.2
  • 79
    • 1842637575 scopus 로고    scopus 로고
    • Folding of a three-helix bundle at the folding speed limit
    • Wang T, Zhu Y, Gai F. 2004. Folding of a three-helix bundle at the folding speed limit. J. Phys. Chem. B 108:3694-97.
    • (2004) J. Phys. Chem. B , vol.108 , pp. 3694-3697
    • Wang, T.1    Zhu, Y.2    Gai, F.3
  • 81
    • 43949124462 scopus 로고    scopus 로고
    • Folding of the αiI-spectrin SH3 domain under physiological salt conditions
    • Petzold K, Ohman A, Backman L. 2008. Folding of the αII-spectrin SH3 domain under physiological salt conditions. Arch. Biochem. Biophys. 474:39-47.
    • (2008) Arch. Biochem. Biophys. , vol.474 , pp. 39-47
    • Petzold, K.1    Ohman, A.2    Backman, L.3
  • 82
    • 0037423710 scopus 로고    scopus 로고
    • Cooperativity, smooth energy landscapes and the origins of topology-dependent protein folding rates
    • DOI 10.1016/S0022-2836(02)01356-6
    • Jewett AI, Pande VS, Plaxco KW. 2003. Cooperativity, smooth energy landscapes and the origins of topology-dependent protein folding rates. J. Mol. Biol. 326:247-53. (Pubitemid 36279372)
    • (2003) Journal of Molecular Biology , vol.326 , Issue.1 , pp. 247-253
    • Jewett, A.I.1    Pande, V.S.2    Plaxco, K.W.3
  • 83
    • 0042631521 scopus 로고    scopus 로고
    • Contact order dependent protein folding rates: Kinetic consequences of a cooperative interplay between favorable nonlocal interactions and local conformational preferences
    • DOI 10.1002/prot.10478
    • Kaya H, Chan HS. 2003. Contact order dependent protein folding rates: kinetic consequences of a cooperative interplay between favorable nonlocal interactions and local conformations preferences. Proteins 52:524-33. (Pubitemid 37034150)
    • (2003) Proteins: Structure, Function and Genetics , vol.52 , Issue.4 , pp. 524-533
    • Kaya, H.1    Chan, H.S.2
  • 85
    • 77749324277 scopus 로고    scopus 로고
    • Cooperativity and protein folding rates
    • Portman JJ. 2010. Cooperativity and protein folding rates. Curr. Opin. Struct. Biol. 20:11-15.
    • (2010) Curr. Opin. Struct. Biol. , vol.20 , pp. 11-15
    • Portman, J.J.1
  • 86
    • 36749120002 scopus 로고
    • Theory of hydrophobic effect
    • Pratt LR, Chandler D. 1977. Theory of hydrophobic effect. J. Chem. Phys. 67:3683-704.
    • (1977) J. Chem. Phys. , vol.67 , pp. 3683-3704
    • Pratt, L.R.1    Chandler, D.2
  • 88
    • 77951977004 scopus 로고    scopus 로고
    • Protein kinetic stability
    • Sanchez-Ruiz JM. 2010. Protein kinetic stability. Biophys. Chem. 148:1-15.
    • (2010) Biophys. Chem. , vol.148 , pp. 1-15
    • Sanchez-Ruiz, J.M.1
  • 90
    • 34249892163 scopus 로고    scopus 로고
    • Hydrophobic Potential of Mean Force as a Solvation Function for Protein Structure Prediction
    • DOI 10.1016/j.str.2007.05.004, PII S0969212607001840
    • Lin MS, Fawzi NL, Head-Gordon T. 2007. Hydrophobic potential of mean force as a solvation function for protein structure prediction. Structure 15:727-40. (Pubitemid 46874085)
    • (2007) Structure , vol.15 , Issue.6 , pp. 727-740
    • Lin, M.S.1    Fawzi, N.L.2    Head-Gordon, T.3
  • 92
    • 65649148275 scopus 로고    scopus 로고
    • Desolvation barrier effects are a likely contributor to the remarkable diversity in the folding rates of small proteins
    • Ferguson A, Liu Z, Chan HS. 2009. Desolvation barrier effects are a likely contributor to the remarkable diversity in the folding rates of small proteins. J. Mol. Biol. 389:619-36.
    • (2009) J. Mol. Biol. , vol.389 , pp. 619-636
    • Ferguson, A.1    Liu, Z.2    Chan, H.S.3
  • 93
    • 79953743235 scopus 로고    scopus 로고
    • Corrigendum. 2010. J. Mol. Biol. 401:153
    • - 2009. J. Mol. Biol. 392:242. Corrigendum. 2010. J. Mol. Biol. 401:153.
    • (2009) J. Mol. Biol. , vol.392 , pp. 242
  • 94
    • 48249086517 scopus 로고    scopus 로고
    • Kinetic barriers and the role of topology in protein and RNA folding
    • Sosnick TR. 2008. Kinetic barriers and the role of topology in protein and RNA folding. Protein Sci. 17:1308-18.
    • (2008) Protein Sci , vol.17 , pp. 1308-1318
    • Sosnick, T.R.1
  • 95
    • 33748248896 scopus 로고    scopus 로고
    • Using massively parallel simulation and Markovian models to study protein folding: Examining the dynamics of the villin headpiece
    • Jayachandran G, Vishal V, Pande VS. 2006. Using massively parallel simulation and Markovian models to study protein folding: examining the dynamics of the villin headpiece. J. Chem. Phys. 124:164902.
    • (2006) J. Chem. Phys. , vol.124 , pp. 164902
    • Jayachandran, G.1    Vishal, V.2    Pande, V.S.3
  • 96
    • 0034310589 scopus 로고    scopus 로고
    • Energetic components of cooperative protein folding
    • DOI 10.1103/PhysRevLett.85.4823
    • Kaya H, Chan HS. 2000. Energetic components of cooperative protein folding. Phys. Rev. Lett. 85:4823-26. (Pubitemid 32070431)
    • (2000) Physical Review Letters , vol.85 , Issue.22 , pp. 4823-4826
    • Kaya, H.1    Chan, H.S.2
  • 97
    • 0032972986 scopus 로고    scopus 로고
    • Is protein folding hierarchic? I. Local structure and peptide folding
    • DOI 10.1016/S0968-0004(98)01346-2, PII S0968000498013462
    • Baldwin RL, Rose GD. 1999. Is protein folding hierarchic? I. Local structure and peptide folding. Trends Biochem. Sci. 24:26-33. (Pubitemid 29074460)
    • (1999) Trends in Biochemical Sciences , vol.24 , Issue.1 , pp. 26-33
    • Baldwin, R.L.1    Rose, G.D.2
  • 98
    • 0025370815 scopus 로고
    • Dominant forces in protein folding
    • DOI 10.1021/bi00483a001
    • Dill KA. 1990. Dominant forces in protein folding. Biochemistry 29:7133-55. (Pubitemid 20230041)
    • (1990) Biochemistry , vol.29 , Issue.31 , pp. 7133-7155
    • Dill, K.A.1
  • 99
    • 0026327183 scopus 로고
    • Molecular basis of co-operativity in protein folding
    • Freire E, Murphy KP. 1991. Molecular basis of co-operativity in protein folding. J. Mol. Biol. 222:687-98.
    • (1991) J. Mol. Biol. , vol.222 , pp. 687-698
    • Freire, E.1    Murphy, K.P.2
  • 100
  • 102
    • 0029643523 scopus 로고
    • Protein folding intermediates: Native-state hydrogen exchange
    • Bai Y, Sosnick TR,Mayne L, Englander SW. 1995. Protein folding intermediates: native-state hydrogen exchange. Science 269:192-97.
    • (1995) Science , vol.269 , pp. 192-197
    • Bai, Y.1    Sosnick, T.R.2    Mayne, L.3    Englander, S.W.4
  • 103
    • 10844267966 scopus 로고    scopus 로고
    • Explicit-chain model of native-state hydrogen exchange: Implications for event ordering and cooperativity in protein folding
    • DOI 10.1002/prot.20286
    • Kaya H, Chan HS. 2005. Explicit-chain model of native-state hydrogen exchange: implications for event ordering and cooperativity in protein folding. Proteins 58:31-44. (Pubitemid 39665614)
    • (2005) Proteins: Structure, Function and Genetics , vol.58 , Issue.1 , pp. 31-44
    • Kaya, H.1    Chan, H.S.2
  • 104
    • 67749106309 scopus 로고    scopus 로고
    • Theory for protein folding cooperativity: Helix bundles
    • Ghosh K, Dill KA. 2009. Theory for protein folding cooperativity: helix bundles. J. Am. Chem. Soc. 131:2306-12.
    • (2009) J. Am. Chem. Soc. , vol.131 , pp. 2306-2312
    • Ghosh, K.1    Dill, K.A.2
  • 105
    • 1342268048 scopus 로고    scopus 로고
    • Cooperativity in two-state protein folding kinetics
    • DOI 10.1110/ps.03403604
    • Weikl TR, Palassini M, Dill KA. 2004. Cooperativity in two-state protein folding kinetics. Protein Sci. 13:822-29. (Pubitemid 38252578)
    • (2004) Protein Science , vol.13 , Issue.3 , pp. 822-829
    • Weikl, T.R.1    Palassini, M.2    Dill, K.A.3
  • 107
    • 0034581629 scopus 로고    scopus 로고
    • Barriers in protein folding reactions
    • DOI 10.1016/S0065-3233(00)53004-6
    • Bilsel O, Matthews CR. 2000. Barriers in protein folding reactions. Adv. Protein Chem. 53:153-207. (Pubitemid 34194294)
    • (2000) Advances in Protein Chemistry , vol.53 , pp. 153-207
    • Bilsel, O.1    Matthews, C.R.2
  • 108
    • 0021525532 scopus 로고
    • Characterization of the transition state of lysozyme unfolding I. Effect of protein-solvent interactions on the transition state
    • Segawa SI, Sugihara M. 1984. Characterization of the transition state of lysozyme unfolding. I. Effect of protein-solvent interactions on the transition state. Biopolymers 23:2473-88.
    • (1984) Biopolymers , vol.23 , pp. 2473-2488
    • Segawa, S.I.1    Sugihara, M.2
  • 109
    • 0026342150 scopus 로고
    • Folding of chymotrypsin inhibitor 2. 2 Influence of proline isomerization on the folding kinetics and thermodynamic characterization of the transition state of folding
    • Jackson SE, Fersht AR. 1991. Folding of chymotrypsin inhibitor 2. 2. Influence of proline isomerization on the folding kinetics and thermodynamic characterization of the transition state of folding. Biochemistry 30:10436-43.
    • (1991) Biochemistry , vol.30 , pp. 10436-10443
    • Jackson, S.E.1    Fersht, A.R.2
  • 110
    • 0028981210 scopus 로고
    • Negative activation enthalpies in the kinetics of protein folding
    • Oliveberg M, Tan YJ, Fersht AR. 1995. Negative activation enthalpies in the kinetics of protein folding. Proc. Natl. Acad. Sci. USA 92:8926-29.
    • (1995) Proc. Natl. Acad. Sci. USA , vol.92 , pp. 8926-8929
    • Oliveberg, M.1    Tan, Y.J.2    Fersht, A.R.3
  • 111
    • 30144440755 scopus 로고    scopus 로고
    • Energy barriers, cooperativity, and hidden intermediates in the folding of small proteins
    • DOI 10.1016/j.bbrc.2005.12.093, PII S0006291X05028378
    • Bai Y. 2006. Energy barriers, cooperativity, and hidden intermediates in the folding of small proteins. Biochem. Biophys. Res. Commun. 340:976-83. (Pubitemid 43053923)
    • (2006) Biochemical and Biophysical Research Communications , vol.340 , Issue.3 , pp. 976-983
    • Bai, Y.1
  • 112
    • 19444384541 scopus 로고    scopus 로고
    • Desolvation is a likely origin of robust enthalpic barriers to protein folding
    • DOI 10.1016/j.jmb.2005.03.084, PII S0022283605003852
    • Liu Z, Chan HS. 2005. Desolvation is a likely origin of robust enthalpic barriers to protein folding. J. Mol. Biol. 349:872-89. (Pubitemid 40725960)
    • (2005) Journal of Molecular Biology , vol.349 , Issue.4 , pp. 872-889
    • Liu, Z.1    Hue, S.C.2
  • 113
    • 11844285690 scopus 로고    scopus 로고
    • Temperature dependence of three-body hydrophobic interactions: Potential of mean force, enthalpy, entropy, heat capacity, and nonadditivity
    • DOI 10.1021/ja040165y
    • Moghaddam MS, Shimizu S, Chan HS. 2005. Temperature dependence of three-body hydrophobic interactions: potential of mean force, enthalpy, entropy, heat capacity, and nonadditivity. J. Am. Chem. Soc. 127:303-16. Correction. 2005. J. Am. Chem. Soc. 127:2363. (Pubitemid 40094393)
    • (2005) Journal of the American Chemical Society , vol.127 , Issue.1 , pp. 303-316
    • Moghaddam, M.S.1    Shimizu, S.2    Hue, S.C.3
  • 117
    • 0345306764 scopus 로고    scopus 로고
    • Design of a Novel Globular Protein Fold with Atomic-Level Accuracy
    • DOI 10.1126/science.1089427
    • Kuhlman B, Dantas G, Ireton GC, Varani G, Stoddard BL, Baker D. 2003. Design of a novel globular protein fold with atomic-level accuracy. Science 302:1364-68. (Pubitemid 37452172)
    • (2003) Science , vol.302 , Issue.5649 , pp. 1364-1368
    • Kuhlman, B.1    Dantas, G.2    Ireton, G.C.3    Varani, G.4    Stoddard, B.L.5    Baker, D.6
  • 118
    • 61549141060 scopus 로고    scopus 로고
    • Native topology of the designed protein Top7 is not conducive to cooperative folding
    • Zhang Z, Chan HS. 2009. Native topology of the designed protein Top7 is not conducive to cooperative folding. Biophys. J. 96:L25-27.
    • (2009) Biophys. J. , vol.96
    • Zhang, Z.1    Chan, H.S.2
  • 119
    • 33749027499 scopus 로고    scopus 로고
    • Criteria for Downhill protein folding: Calorimetry, chevron plot, kinetic relaxation, and single-molecule radius of gyration in chain models with subdued degrees of cooperativity
    • DOI 10.1002/prot.21066
    • Knott M, Chan HS. 2006. Criteria for downhill protein folding: calorimetry, chevron plot, kinetic relaxation, and single-molecule radius of gyration in chain models with subdued degrees of cooperativity. Proteins 65:373-91. (Pubitemid 44454111)
    • (2006) Proteins: Structure, Function and Genetics , vol.65 , Issue.2 , pp. 373-391
    • Knott, M.1    Chan, H.S.2
  • 120
    • 36049028001 scopus 로고    scopus 로고
    • Influence of the native topology on the folding barrier for small proteins
    • Prieto L, Rey A. 2007. Influence of the native topology on the folding barrier for small proteins. J. Chem. Phys. 127:175101.
    • (2007) J. Chem. Phys. , vol.127 , pp. 175101
    • Prieto, L.1    Rey, A.2
  • 121
    • 33846901901 scopus 로고    scopus 로고
    • Intermediates: Ubiquitous species on folding energy landscapes?
    • DOI 10.1016/j.sbi.2007.01.003, PII S0959440X07000048, Foldinf and Binding / Protein-Nucleic Interactions
    • Brockwell DJ, Radford SE. 2007. Intermediates: ubiquitous species on folding energy landscapes? Curr. Opin. Struct. Biol. 17:30-37. (Pubitemid 46240814)
    • (2007) Current Opinion in Structural Biology , vol.17 , Issue.1 , pp. 30-37
    • Brockwell, D.J.1    Radford, S.E.2
  • 122
    • 48249138078 scopus 로고    scopus 로고
    • Theoretical and experimental demonstration of the importance of specific nonnative interactions in protein folding
    • Zarrine-Afsar A, Wallin S, Neculai AM, Neudecker P, Howell PL, et al. 2008. Theoretical and experimental demonstration of the importance of specific nonnative interactions in protein folding. Proc. Natl. Acad. Sci. USA 105:9999-10004.
    • (2008) Proc. Natl. Acad. Sci. USA , vol.105 , pp. 9999-10004
    • Zarrine-Afsar, A.1    Wallin, S.2    Neculai, A.M.3    Neudecker, P.4    Howell, P.L.5
  • 123
    • 70349422120 scopus 로고    scopus 로고
    • Nonnative electrostatic interactions can modulate protein folding: Molecular dynamics with a grain of salt
    • Azia A, Levy Y. 2009. Nonnative electrostatic interactions can modulate protein folding: molecular dynamics with a grain of salt. J. Mol. Biol. 393:527-42.
    • (2009) J. Mol. Biol. , vol.393 , pp. 527-542
    • Azia, A.1    Levy, Y.2
  • 124
    • 77649264931 scopus 로고    scopus 로고
    • Competition between native topology and nonnative interactions in simple and complex folding kinetics of natural and designed proteins
    • Zhang Z, Chan HS. 2010. Competition between native topology and nonnative interactions in simple and complex folding kinetics of natural and designed proteins. Proc. Natl. Acad. Sci. USA 107:2920-25.
    • (2010) Proc. Natl. Acad. Sci. USA , vol.107 , pp. 2920-2925
    • Zhang, Z.1    Chan, H.S.2
  • 125
    • 0037470575 scopus 로고    scopus 로고
    • Rapid cooperative two-state folding of a miniature α-β protein and design of a thermostable variant
    • DOI 10.1016/S0022-2836(03)00028-7
    • Horng JC, Moroz V, Raleigh DP. 2003. Rapid cooperative two-state folding of a miniature α-βprotein and design of a thermostable variant. J. Mol. Biol. 326:1261-70. (Pubitemid 36263396)
    • (2003) Journal of Molecular Biology , vol.326 , Issue.4 , pp. 1261-1270
    • Horng, J.-C.1    Moroz, V.2    Raleigh, D.P.3
  • 127
    • 36549032188 scopus 로고    scopus 로고
    • Knotted and topologically complex proteins as models for studying folding and stability
    • DOI 10.1016/j.cbpa.2007.10.002, PII S136759310700141X, Model Systems/Bioplymers
    • Yeates TO, Norcross TS, King NP. 2007. Knotted and topologically complex proteins as models for studying folding and stability. Curr. Opin. Chem. Biol. 11:595-603. (Pubitemid 350180574)
    • (2007) Current Opinion in Chemical Biology , vol.11 , Issue.6 , pp. 595-603
    • Yeates, T.O.1    Norcross, T.S.2    King, N.P.3
  • 128
    • 77949803585 scopus 로고    scopus 로고
    • The folding of knotted proteins: Insights from lattice simulations
    • Fásca PFN, Travasso RDM, Charters T, Nunes A, Cieplak M. 2010. The folding of knotted proteins: insights from lattice simulations. Phys. Biol. 7:16009.
    • (2010) Phys. Biol. , vol.7 , pp. 16009
    • Pfn, F.1    Rdm, T.2    Charters, T.3    Nunes, A.4    Cieplak, M.5
  • 130
  • 131
    • 77952415889 scopus 로고    scopus 로고
    • Experimental detection of knotted conformations in denatured proteins
    • Mallam AL,Rogers JM, Jackson SE. 2010. Experimental detection of knotted conformations in denatured proteins. Proc. Natl. Acad. Sci. USA 107:8189-94.
    • (2010) Proc. Natl. Acad. Sci. USA , vol.107 , pp. 8189-8194
    • Mallam, A.L.1    Rogers, J.M.2    Jackson, S.E.3
  • 132
    • 34047180474 scopus 로고    scopus 로고
    • The Folding Mechanics of a Knotted Protein
    • DOI 10.1016/j.jmb.2007.02.035, PII S0022283607002161
    • Wallin S, Zeldovich KB, Shakhnovich EI. 2007. The folding mechanics of a knotted protein. J. Mol. Biol. 368:884-93. (Pubitemid 46527616)
    • (2007) Journal of Molecular Biology , vol.368 , Issue.3 , pp. 884-893
    • Wallin, S.1    Zeldovich, K.B.2    Shakhnovich, E.I.3
  • 135
    • 33846362515 scopus 로고    scopus 로고
    • A Comparison of the Folding of Two Knotted Proteins: YbeA and YibK
    • DOI 10.1016/j.jmb.2006.11.014, PII S0022283606015439
    • Mallam AL, Jackson SE. 2007. A comparison of the folding of two knotted proteins: Ybe A and Yib K. J. Mol. Biol. 366:650-65. (Pubitemid 46136200)
    • (2007) Journal of Molecular Biology , vol.366 , Issue.2 , pp. 650-665
    • Mallam, A.L.1    Jackson, S.E.2
  • 136
  • 137
    • 33846913510 scopus 로고    scopus 로고
    • Atomic-level characterization of disordered protein ensembles
    • DOI 10.1016/j.sbi.2007.01.009, PII S0959440X07000103, Foldinf and Binding / Protein-Nucleic Interactions
    • Mittag T, Forman-Kay JD. 2007. Atomic-level characterization of disordered protein ensembles. Curr. Opin. Struct. Biol. 17:3-14. (Pubitemid 46240819)
    • (2007) Current Opinion in Structural Biology , vol.17 , Issue.1 , pp. 3-14
    • Mittag, T.1    Forman-Kay, J.D.2
  • 138
    • 0029662315 scopus 로고    scopus 로고
    • Structural studies of p21Waf1/Cip1/Sdi1 in the free and Cdk2-bound state: Conformational disorder mediates binding diversity
    • Kriwacki RW, Hengst L, Tennant L, Reed SI,Wright PE. 1996. Structural studies of p21Waf1/Cip1/Sdi1 in the free and Cdk2-bound state: conformational disorder mediates binding diversity. Proc. Natl. Acad. Sci. USA 93:11504-9.
    • (1996) Proc. Natl. Acad. Sci. USA , vol.93 , pp. 11504-11509
    • Kriwacki, R.W.1    Hengst, L.2    Tennant, L.3    Reed, S.I.4    Wright, P.E.5
  • 140
    • 33646350033 scopus 로고    scopus 로고
    • Dominant kinetic paths on biomolecular binding-folding energy landscape
    • Wang J, Zhang K, Lu H, Wang E. 2006. Dominant kinetic paths on biomolecular binding-folding energy landscape. Phys. Rev. Lett. 96:168101.
    • (2006) Phys. Rev. Lett. , vol.96 , pp. 168101
    • Wang, J.1    Zhang, K.2    Lu, H.3    Wang, E.4
  • 144
    • 58149147308 scopus 로고    scopus 로고
    • Disordered flanks prevent peptide aggregation
    • Abeln S, Frenkel D. 2008. Disordered flanks prevent peptide aggregation. PLoS Comput. Biol. 4:e1000241.
    • (2008) PLoS Comput. Biol. , vol.4
    • Abeln, S.1    Frenkel, D.2
  • 145
    • 47749110305 scopus 로고    scopus 로고
    • Natively unfolded protein stability as a coil-to-globule transition in charge/hydropathy space
    • DOI 10.1021/ja802124e
    • Ashbaugh HS, Hatch HW. 2008. Natively unfolded protein stability as a coil-to-globule transition in charge/hydropathy space. J. Am. Chem. Soc. 130:9536-42. (Pubitemid 352031165)
    • (2008) Journal of the American Chemical Society , vol.130 , Issue.29 , pp. 9536-9542
    • Ashbaugh, H.S.1    Hatch, H.W.2
  • 146
    • 77952335311 scopus 로고    scopus 로고
    • Net charge per residue modulates conformational ensembles of intrinsically disordered proteins
    • Mao AH, Crick SL, Vitalis A, Chicoine CL, Pappu RV. 2010. Net charge per residue modulates conformational ensembles of intrinsically disordered proteins. Proc. Natl. Acad. Sci. USA 107:8183-88.
    • (2010) Proc. Natl. Acad. Sci. USA , vol.107 , pp. 8183-8188
    • Mao, A.H.1    Crick, S.L.2    Vitalis, A.3    Chicoine, C.L.4    Pappu, R.V.5
  • 147
    • 13444301037 scopus 로고    scopus 로고
    • A survey of flexible protein binding mechanisms and their transition states using native topology based energy landscapes
    • DOI 10.1016/j.jmb.2004.12.021
    • Levy Y, Cho SS, Onuchic JN, Wolynes PG. 2005. A survey of flexible protein binding mechanisms and their transition states using native topology based energy landscapes. J. Mol. Biol. 346:1121-45. (Pubitemid 40215534)
    • (2005) Journal of Molecular Biology , vol.346 , Issue.4 , pp. 1121-1145
    • Levy, Y.1    Cho, S.S.2    Onuchic, J.N.3    Wolynes, P.G.4
  • 148
    • 33746607765 scopus 로고    scopus 로고
    • Single-molecule dynamics reveals cooperative binding-folding in protein recognition
    • Wang J, Lu Q, Lu HP. 2006. Single-molecule dynamics reveals cooperative binding-folding in protein recognition. PLoS Comput. Biol. 2:842-52.
    • (2006) PLoS Comput. Biol. , vol.2 , pp. 842-852
    • Wang, J.1    Lu, Q.2    Lu, H.P.3
  • 150
    • 70350012289 scopus 로고    scopus 로고
    • Kinetic advantage of intrinsically disordered proteins in coupled folding-binding process: A critical assessment of the "fly- casting"mechanism
    • Huang Y, Liu Z. 2009. Kinetic advantage of intrinsically disordered proteins in coupled folding-binding process: a critical assessment of the "fly-casting" mechanism. J. Mol. Biol. 393:1143-59.
    • (2009) J. Mol. Biol. , vol.393 , pp. 1143-1159
    • Huang, Y.1    Liu, Z.2
  • 151
    • 78349244006 scopus 로고    scopus 로고
    • Smoothing molecular interactions: The "kinetic buffer" effect of intrinsically disordered proteins
    • Huang Y, Liu Z. 2010. Smoothing molecular interactions: the "kinetic buffer" effect of intrinsically disordered proteins. Proteins 78:3251-59.
    • (2010) Proteins , vol.78 , pp. 3251-3259
    • Huang, Y.1    Liu, Z.2
  • 152
    • 41649116075 scopus 로고    scopus 로고
    • A structural model of latent evolutionary potentials underlying neutral networks in proteins
    • Wroe R, Chan HS, Bornberg-Bauer E. 2007. A structural model of latent evolutionary potentials underlying neutral networks in proteins. HFSP J. 1:79-87
    • (2007) HFSP J. , vol.1 , pp. 79-87
    • Wroe, R.1    Chan, H.S.2    Bornberg-Bauer, E.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.