메뉴 건너뛰기




Volumn 10, Issue , 2011, Pages 1-95

Learning with support vector machines

Author keywords

classification; data integration; generalization; kernels; learning; optimization; prediction; regression; Support Vector Machine

Indexed keywords

CLASSIFICATION; DATA INTEGRATION; GENERALIZATION; KERNELS; LEARNING; PREDICTION; REGRESSION;

EID: 79951822517     PISSN: 19394608     EISSN: 19394616     Source Type: Book Series    
DOI: 10.2200/S00324ED1V01Y201102AIM010     Document Type: Article
Times cited : (140)

References (103)
  • 1
    • 24044435942 scopus 로고    scopus 로고
    • Reducing multiclass to binary: A unifying approach for margin classifiers
    • 8
    • E. L. Allwein, R. E. Schapire, and Y. Singer. Reducing multiclass to binary: a unifying approach for margin classifiers. Journal of Machine Learning Research, 1:133-141, 2000. http://www.jmlr.org 8
    • (2000) Journal of Machine Learning Research , vol.1 , pp. 133-141
    • Allwein, E.L.1    Schapire, R.E.2    Singer, Y.3
  • 2
    • 0001614864 scopus 로고    scopus 로고
    • The MOSEK interior point optimizer for linear programming: An implementation of the homogeneous algorithm
    • T. Terlaky H. Frenk, C. Roos and S. Zhang, editors, Kluwer Academic Publishers
    • E. D.Anderson and A. D. Anderson. The MOSEK interior point optimizer for linear programming: An implementation of the homogeneous algorithm. InT.Terlaky H. Frenk, C. Roos and S. Zhang, editors, High Performance Optimization, pages 197-232. Kluwer Academic Publishers, 2000. 60
    • (2000) High Performance Optimization , vol.60 , pp. 197-232
    • Anderson, E.D.1    Anderson, A.D.2
  • 3
    • 46249088758 scopus 로고    scopus 로고
    • Consistency of the group lasso and multiple kernel learning
    • F. Bach. Consistency of the group lasso and multiple kernel learning. Journal of Machine Learning Research, 9:1179-1225, 2008. 57
    • (2008) Journal of Machine Learning Research , vol.9 , Issue.1179-1225 , pp. 57
    • Bach, F.1
  • 6
    • 0034296402 scopus 로고    scopus 로고
    • Generalised discriminant analysis using a kernel approach
    • DOI: 10.1162/089976600300014980 28
    • G. Baudat and F. Anouar. Generalised discriminant analysis using a kernel approach. Neural Computation, 12:2385-2404, 2000. DOI: 10.1162/ 089976600300014980 28
    • (2000) Neural Computation , vol.12 , pp. 2385-2404
    • Baudat, G.1    Anouar, F.2
  • 8
    • 0002935122 scopus 로고    scopus 로고
    • Combining support vector and mathematical programming methods for induction
    • MIT Press
    • K. P. Bennett. Combining support vector and mathematical programming methods for induction. In Advances in Kernel Methods, pages 307-326. MIT Press, 1999. 28
    • (1999) Advances in Kernel Methods , vol.28 , pp. 307-326
    • Bennett, K.P.1
  • 10
    • 0032096712 scopus 로고    scopus 로고
    • Optimization problems with perturbation: A guided tour
    • DOI: 10.1137/S0036144596302644 62
    • J. F. Bonnans and A. Shapiro. Optimization problems with perturbation: a guided tour. SIAM Review, 40:202-227, 1998. DOI: 10.1137/S0036144596302644 62
    • (1998) SIAM Review , vol.40 , pp. 202-227
    • Bonnans, J.F.1    Shapiro, A.2
  • 13
    • 0033721433 scopus 로고    scopus 로고
    • Massive data discrimination via linear support vector machines
    • DOI: 10.1080/10556780008805771 28
    • P. S. Bradley andO.L. Mangasarian. Massive data discrimination via linear support vector machines. Optimization Methods and Software, 13:1-10, 2000. DOI: 10.1080/10556780008805771 28
    • (2000) Optimization Methods and Software , vol.13 , pp. 1-10
    • Bradley, P.S.1    Mangasarian, O.L.2
  • 14
    • 27144489164 scopus 로고    scopus 로고
    • A Tutorial on Support Vector Machines for Pattern Recognition
    • DOI 10.1023/A:1009715923555
    • C. Burges.Atutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery, 2:121-167, 1998. DOI: 10.1023/A: 1009715923555 33 (Pubitemid 128126769)
    • (1998) Data Mining and Knowledge Discovery , vol.2 , Issue.2 , pp. 121-168
    • Burges, C.J.C.1
  • 18
    • 0036161011 scopus 로고    scopus 로고
    • Choosing multiple parameters for support vector machines
    • DOI 10.1023/A:1012450327387
    • O. Chapelle, V. Vapnik, O. Bousquet, and S. Mukerjhee. Choosing multiple parameters for SVM. Machine Learning, 46:131-159, 2002. DOI: 10.1023/A:1012450327387 62 (Pubitemid 34129966)
    • (2002) Machine Learning , vol.46 , Issue.1-3 , pp. 131-159
    • Chapelle, O.1    Vapnik, V.2    Bousquet, O.3    Mukherjee, S.4
  • 19
    • 34249753618 scopus 로고
    • Support vector networks
    • DOI: 10.1023/A:1022627411411 14
    • C. Cortes and V. Vapnik. Support vector networks. Machine Learning, 20:273-297, 1995. DOI: 10.1023/A:1022627411411 14
    • (1995) Machine Learning , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 22
    • 43349094032 scopus 로고    scopus 로고
    • Probabilistic multi-class multi-kernel learning: On protein fold recognition and remote homology detection
    • DOI 10.1093/bioinformatics/btn112
    • T. Damoulas and M. Girolami. Probabilistic multi-class multi-kernel learning: on protein fold recognition and remote homology detection. Bioinformatics, 24:1264-1270, 2008. DOI: 10.1093/bioinformatics/btn112 64 (Pubitemid 351659623)
    • (2008) Bioinformatics , vol.24 , Issue.10 , pp. 1264-1270
    • Damoulas, T.1    Girolami, M.A.2
  • 23
    • 0000406788 scopus 로고
    • Solving multiclass learning problems via error-correcting output codes
    • DOI: 10.1613/jair.105 8
    • T. G. Dietterich and G. Bakiri. Solving multiclass learning problems via error-correcting output codes. Journal of Artificial Intelligence, 2:263-286, 1995. DOI: 10.1613/jair.105 8
    • (1995) Journal of Artificial Intelligence , vol.2 , pp. 263-286
    • Dietterich, T.G.1    Bakiri, G.2
  • 24
    • 26444573178 scopus 로고    scopus 로고
    • Which is the best multiclass SVM method? An empirical study
    • Multiple Classifier Systems: 6th International Workshop, MCS 2005. Proceedings
    • K.-B.Duan and S. S. Keerthi.Which is the bestmulticlassSVMmethod? an empirical study. Lecture Notes in Computer Science, 3541:278-285, 2006. DOI: 10.1007/11494683-28 8 (Pubitemid 41422626)
    • (2005) Lecture Notes in Computer Science , vol.3541 , pp. 278-285
    • Duan, K.-B.1    Keerthi, S.S.2
  • 25
    • 9444266406 scopus 로고    scopus 로고
    • On Graph Kernels: Hardness Results and Efficient Alternatives
    • Learning Theory and Kernel Machines
    • T. Gartner, P. Flach, and S. Wrobel. On graph kernels: Hardness results and efficient alternatives. In Proceedings Annual Conference Computational Learning Theory (COLT), pages 129-143. Springer, 2003. 56 (Pubitemid 37053200)
    • (2003) Lecture Notes in Computer Science , Issue.2777 , pp. 129-143
    • Gartner, T.1    Flach, P.2    Wrobel, S.3
  • 28
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable and feature selection
    • 21
    • I. Guyon and A. Elisseeff. An introduction to variable and feature selection. Journal of Machine Learning Research, 3:1157-1182, 2003. http://www.jmlr.org 21
    • (2003) Journal of Machine Learning Research , vol.3 , pp. 1157-1182
    • Guyon, I.1    Elisseeff, A.2
  • 29
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • DOI 10.1023/A:1012487302797
    • I. Guyon, J. Weston, S. Barnhill, andV.Vapnik. Gene selection for cancer classification using support vector machines. Machine Learning, 46:389-422, 2002. DOI: 10.1023/A:1012487302797 21 (Pubitemid 34129977)
    • (2002) Machine Learning , vol.46 , Issue.1-3 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.3    Vapnik, V.4
  • 31
    • 0032355984 scopus 로고    scopus 로고
    • Classification by pairwise coupling
    • DOI: 10.1214/aos/1028144844 8
    • T. Hastie and R. Tibshirani. Classification by pairwise coupling. The Annals of Statistics, 26:451-471, 1998. DOI: 10.1214/aos/1028144844 8
    • (1998) The Annals of Statistics , vol.26 , pp. 451-471
    • Hastie, T.1    Tibshirani, R.2
  • 33
    • 0027657329 scopus 로고
    • Semi-infinite programming: Theory, methods and applications
    • DOI: 10.1137/1035089 62
    • R. Hettich and K. O. Kortanek. Semi-infinite programming: Theory, methods and applications. SIAM Review, 3:380-429, 1993. DOI: 10.1137/1035089 62, 67
    • (1993) SIAM Review , vol.3 , Issue.380-429 , pp. 67
    • Hettich, R.1    Kortanek, K.O.2
  • 34
    • 84942484786 scopus 로고
    • Ridge regression: Biased estimation for nonorthogonal problems
    • DOI: 10.2307/1267352 40
    • A. E. Hoerl and R. Kennard. Ridge regression: biased estimation for nonorthogonal problems. Technometrics, 12:55-67, 1970. DOI: 10.2307/1267352 40
    • (1970) Technometrics , vol.12 , pp. 55-67
    • Hoerl, A.E.1    Kennard, R.2
  • 37
    • 0000545946 scopus 로고    scopus 로고
    • Improvements to Platt's SMO algorithm for SVM classifier design
    • DOI 10.1162/089976601300014493
    • S. Keerthi, S. Shevade, C. Bhattacharyya, and K. Murthy. Improvements to platt's SMO algorithm for SVM classifier design. Neural Computation, 13:637-649, 2001. DOI: 10.1162/089976601300014493 17 (Pubitemid 33595014)
    • (2001) Neural Computation , vol.13 , Issue.3 , pp. 637-649
    • Keerthi, S.S.1    Shevade, S.K.2    Bhattacharyya, C.3    Murthy, K.R.K.4
  • 41
    • 8844263749 scopus 로고    scopus 로고
    • A statistical framework for genomic data fusion
    • DOI 10.1093/bioinformatics/bth294
    • G. R. G. Lanckriet,T. De Bie,N.Cristianini, M. I. Jordan, andW.S.Noble. A statistical framework for genomic data fusion. Bioinformatics, 2004b. DOI: 10.1093/bioinformatics/bth294 64 (Pubitemid 39530149)
    • (2004) Bioinformatics , vol.20 , Issue.16 , pp. 2626-2635
    • Lanckriet, G.R.G.1    De Bie, T.2    Cristianini, N.3    Jordan, M.I.4    Noble, S.5
  • 43
    • 0040165092 scopus 로고    scopus 로고
    • Practical aspects of moreau-yosida regularization : TTheoretical preliminaries
    • DOI: 10.1137/S1052623494267127 62
    • C. Lemaréchal and C. Sagastizabal. Practical aspects of moreau-yosida regularization : theoretical preliminaries. SIAM Journal of Optimization, 7:867-895, 1997. DOI: 10.1137/S1052623494267127 62
    • (1997) SIAM Journal of Optimization , vol.7 , pp. 867-895
    • Lemaréchal, C.1    Sagastizabal, C.2
  • 44
    • 9444285762 scopus 로고    scopus 로고
    • Fast Kernels for Inexact String Matching
    • Learning Theory and Kernel Machines
    • C. Leslie and R. Kuang. Fast kernels for inexact string matching. Lecture Notes in Computer Science, 2777:114-128, 2003. DOI: 10.1007/978-3-540-45167-9- 10 53 (Pubitemid 37053199)
    • (2003) Lecture Notes in Computer Science , Issue.2777 , pp. 114-128
    • Leslie, C.1    Kuang, R.2
  • 49
    • 0000963583 scopus 로고
    • Linear and nonlinear separation of patterns by linear programming
    • DOI: 10.1287/opre.13.3.444 28
    • O. L. Mangasarian. Linear and nonlinear separation of patterns by linear programming. Operations Research, 13:444-452, 1965. DOI: 10.1287/opre.13.3.444 28
    • (1965) Operations Research , vol.13 , pp. 444-452
    • Mangasarian, O.L.1
  • 55
    • 0041995203 scopus 로고    scopus 로고
    • A generalized kernel approach to dissimilarity based classification
    • 47
    • E. Pekalska, P. Paclik, and R. P.W. Duin. A generalized kernel approach to dissimilarity based classification. Journal of Machine Learning Research, 2:175-211, 2002. http://www.jmlr.org 47
    • (2002) Journal of Machine Learning Research , vol.2 , pp. 175-211
    • Pekalska, E.1    Paclik, P.2    Duin, R.P.W.3
  • 56
    • 0003120218 scopus 로고    scopus 로고
    • Fast training of SVMs using sequential minimal optimization
    • C. BurgesB. Schölkopf and A. Smola, editors, MIT press, Cambridge, MA
    • J. Platt. Fast training of SVMs using sequential minimal optimization. In C. BurgesB. Schölkopf and A. Smola, editors, Advances in Kernel Methods: Support Vector Learning. MIT press, Cambridge, MA, 1999a. 17
    • (1999) Advances in Kernel Methods: Support Vector Learning , pp. 17
    • Platt, J.1
  • 57
    • 0003243224 scopus 로고    scopus 로고
    • Probabilistic outputs for support vector machines and comparison to regularised likelihood methods
    • MIT Press
    • J. Platt. Probabilistic outputs for support vector machines and comparison to regularised likelihood methods. In Advances in large margin classifiers, pages 61-74. MIT Press, 1999b. 8, 29
    • (1999) Advances in Large Margin Classifiers , vol.8 , Issue.29 , pp. 61-74
    • Platt, J.1
  • 63
  • 65
    • 0004094721 scopus 로고    scopus 로고
    • The MIT Press, Cambridge, MA 30, 33
    • B. Schölkopf and A. Smola. Learning with Kernels. The MIT Press, Cambridge, MA, 2002a. 17, 28, 29, 30, 33
    • (2002) Learning with Kernels , vol.17 , Issue.28 , pp. 29
    • Schölkopf, B.1    Smola, A.2
  • 73
    • 9444285502 scopus 로고    scopus 로고
    • Kernels and Regularization on Graphs
    • Learning Theory and Kernel Machines
    • A. J. Smola and I. R. Kondor. Kernels and regularization on graphs. In Lecture Notes in Computer Science, pages 144-158. Springer-Verlag, Heidelberg, Germany, 2003. DOI: 10.1007/978-3-540-45167-9-12 56 (Pubitemid 37053201)
    • (2003) Lecture Notes in Computer Science , Issue.2777 , pp. 144-158
    • Smola, A.J.1    Kondor, R.2
  • 74
    • 4043137356 scopus 로고    scopus 로고
    • A tutorial on support vector regression
    • DOI 10.1023/B:STCO.0000035301.49549.88
    • A. J. Smola and B. Schölkopf. A tutorial on support vector regression. Statistics and Computing, 14: 199-222, 2004. DOI: 10.1023/B:STCO.0000035301.49549.88 40 (Pubitemid 39063488)
    • (2004) Statistics and Computing , vol.14 , Issue.3 , pp. 199-222
    • Smola, A.J.1    Scholkopf, B.2
  • 75
    • 0036163572 scopus 로고    scopus 로고
    • Bayesian methods for support vector machines: Evidence and predictive class probabilities
    • DOI 10.1023/A:1012489924661
    • P. Sollich. Bayesian methods for support vector machines: Evidence and predictive class probabilities. Machine Learning, 46:21-52, 2002. DOI: 10.1023/A:1012489924661 50 (Pubitemid 34129962)
    • (2002) Machine Learning , vol.46 , Issue.1-3 , pp. 21-52
    • Sollich, P.1
  • 79
    • 0033296299 scopus 로고    scopus 로고
    • Using SEDUMI 1.02a, a matlab toolbox for optimization over symmetric cones
    • DOI: 10.1080/10556789908805766
    • J. F. Sturm. Using SEDUMI 1.02a, a matlab toolbox for optimization over symmetric cones. Optimization Methods and Software, pages 625-653, 1999. DOI: 10.1080/10556789908805766 60
    • (1999) Optimization Methods and Software , vol.60 , pp. 625-653
    • Sturm, J.F.1
  • 80
    • 0032638628 scopus 로고    scopus 로고
    • Least squares support vector machine classifiers
    • DOI: 10.1023/A:1018628609742 28
    • J. A.K. Suykens and J. Vandewalle. Least squares support vector machine classifiers. Neural Processing Letters, 9:293-300, 1999. DOI: 10.1023/A:1018628609742 28
    • (1999) Neural Processing Letters , vol.9 , pp. 293-300
    • Suykens, J.A.K.1    Vandewalle, J.2
  • 82
    • 0001986205 scopus 로고    scopus 로고
    • Data domain description by support vectors
    • M. Verleysen, editor, D. Facto Press, Brussels
    • D. Tax andR.Duin. Data domain description by support vectors. In M. Verleysen, editor,Proceedings of ESANN99, pages 251-256. D. Facto Press, Brussels, 1999. 33
    • (1999) Proceedings of ESANN99 , vol.33 , pp. 251-256
    • Tax, D.1    Duin, R.2
  • 83
    • 0013314147 scopus 로고    scopus 로고
    • Support vector data description applied to machine vibration analysis
    • M. Boasson, J. Kaandorp, J. Tonino, and M. Vosselman, editors, Heijen, NL
    • D. Tax, A. Ypma,andR.Duin. Support vector data description applied to machine vibration analysis. In M. Boasson, J. Kaandorp, J. Tonino, and M. Vosselman, editors, Proc. 5th Annual Conference of the Advanced School for Computing and Imaging, pages 398-405. Heijen, NL, 1999. 33
    • (1999) Proc. 5th Annual Conference of the Advanced School for Computing and Imaging , vol.33 , pp. 398-405
    • Tax, D.1    Ypma, A.2    Duin, R.3
  • 84
    • 0042868698 scopus 로고    scopus 로고
    • Support vector machine active learning with applications to text classification
    • 25
    • S. Tong andD. Koller. Support vector machine active learning with applications to text classification. Journal of Machine Learning Research, 2:45-66, 2001. http://www.jmlr.org 25
    • (2001) Journal of Machine Learning Research , vol.2 , pp. 45-66
    • Tong, S.1    Koller, D.2
  • 85
    • 0036158544 scopus 로고    scopus 로고
    • An analytic center machine
    • DOI 10.1023/A:1012458531022
    • T. B. Trafalis and A. M. Malyscheff. An analytic center machine. Machine Learning, 46:203 - 224, 2002. DOI: 10.1023/A:1012458531022 28 (Pubitemid 34129969)
    • (2002) Machine Learning , vol.46 , Issue.1-3 , pp. 203-223
    • Trafalis, T.B.1    Malyscheff, A.M.2
  • 86
    • 24944537843 scopus 로고    scopus 로고
    • Large margin methods for structured and independent output variables
    • UCI Machine learning Repository, 10
    • I. Tsochantaridis,T. Joachims,T. Hofmann, and Y. Altun. Large margin methods for structured and independent output variables. Journal of machine learning research, 6:1453-1584, 2005. 43 UCI Machine learning Repository. http://www.ics.uci.edu/∼mlearn/mlrepository.html. 10
    • (2005) Journal of Machine Learning Research , vol.6 , Issue.1453-1584 , pp. 43
    • Tsochantaridis, I.1    Joachims, T.2    Hofmann, T.3    Altun, Y.4
  • 87
    • 0030106462 scopus 로고    scopus 로고
    • Semi definite programming
    • DOI: 10.1137/1038003 60, 67
    • L. Vandenberghe and S. Boyd. Semidefinite programming. SIAM Review, 38, 1996. DOI: 10.1137/1038003 60, 62, 67
    • (1996) SIAM Review , vol.38 , pp. 62
    • Vandenberghe, L.1    Boyd, S.2
  • 90
    • 0034264380 scopus 로고    scopus 로고
    • Bounds on error expectation for support vector machines
    • DOI: 10.1162/089976600300015042 50
    • V. Vapnik and O. Chapelle. Bounds on error expectation for support vector machines. Neural Computation, 12:2013-2036, 2000. DOI: 10.1162/ 089976600300015042 50
    • (2000) Neural Computation , vol.12 , pp. 2013-2036
    • Vapnik, V.1    Chapelle, O.2
  • 94
    • 0037365194 scopus 로고    scopus 로고
    • Active learning with support vector machine in the drug discovery process
    • DOI: 10.1021/ci025620t 25
    • M. K.Warmuth, J. Liao,G. Ratsch, M. Mathieson, S. Putta, and C. Lemmen. Active learning with support vector machine in the drug discovery process. J. Chem. Inf. Comput. Sci., 43:667-673, 2003. DOI: 10.1021/ci025620t 25
    • (2003) J. Chem. Inf. Comput. Sci , vol.43 , pp. 667-673
    • Warmuth, M.K.1    Liao, J.2    Ratsch, G.3    Mathieson, M.4    Putta, S.5    Lemmen, C.6
  • 95
    • 0001254045 scopus 로고    scopus 로고
    • Multi-class support vector machines
    • MVerleysen, editor, D. Facto Press, Brussels
    • J. Weston and C. Watkins. Multi-class support vector machines. InMVerleysen, editor, Proceedings of ESANN99, pages 219-224. D. Facto Press, Brussels, 1999. 8
    • (1999) Proceedings of ESANN99 , vol.8 , pp. 219-224
    • Weston, J.1    Watkins, C.2
  • 100
    • 33847115868 scopus 로고    scopus 로고
    • Learnability of gaussians with flexible variances
    • Y. Ying andD.X. Zhou. Learnability of gaussians with flexible variances. Journal of Machine Learning Research, 8:249-276, 2007. 57
    • (2007) Journal of Machine Learning Research , vol.8 , Issue.249-276 , pp. 57
    • Ying, Y.1    Zhou, D.X.2
  • 102
    • 70449364579 scopus 로고    scopus 로고
    • Enhanced protein fold recognition through a novel data integration approach
    • DOI: 10.1186/1471-2105-10-267 62
    • Y. Ying, K. Huang, and C. Campbell. Enhanced protein fold recognition through a novel data integration approach. BMC Bioinformatics, 10:267-285, 2009b.DOI: 10.1186/1471-2105-10-267 62, 64
    • (2009) BMC Bioinformatics , vol.10 , Issue.267-285 , pp. 64
    • Ying, Y.1    Huang, K.2    Campbell, C.3
  • 103
    • 0037686659 scopus 로고    scopus 로고
    • The concave-convex procedure
    • DOI 10.1162/08997660360581958
    • A. L. Yuille and A. Rangarajan. The concave convex procedure. Neural Computation, 15:915-936, 2003. DOI: 10.1162/08997660360581958 43 (Pubitemid 37049812)
    • (2003) Neural Computation , vol.15 , Issue.4 , pp. 915-936
    • Yuille, A.L.1    Rangarajan, A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.