-
1
-
-
24044435942
-
Reducing multiclass to binary: A unifying approach for margin classifiers
-
8
-
E. L. Allwein, R. E. Schapire, and Y. Singer. Reducing multiclass to binary: a unifying approach for margin classifiers. Journal of Machine Learning Research, 1:133-141, 2000. http://www.jmlr.org 8
-
(2000)
Journal of Machine Learning Research
, vol.1
, pp. 133-141
-
-
Allwein, E.L.1
Schapire, R.E.2
Singer, Y.3
-
2
-
-
0001614864
-
The MOSEK interior point optimizer for linear programming: An implementation of the homogeneous algorithm
-
T. Terlaky H. Frenk, C. Roos and S. Zhang, editors, Kluwer Academic Publishers
-
E. D.Anderson and A. D. Anderson. The MOSEK interior point optimizer for linear programming: An implementation of the homogeneous algorithm. InT.Terlaky H. Frenk, C. Roos and S. Zhang, editors, High Performance Optimization, pages 197-232. Kluwer Academic Publishers, 2000. 60
-
(2000)
High Performance Optimization
, vol.60
, pp. 197-232
-
-
Anderson, E.D.1
Anderson, A.D.2
-
3
-
-
46249088758
-
Consistency of the group lasso and multiple kernel learning
-
F. Bach. Consistency of the group lasso and multiple kernel learning. Journal of Machine Learning Research, 9:1179-1225, 2008. 57
-
(2008)
Journal of Machine Learning Research
, vol.9
, Issue.1179-1225
, pp. 57
-
-
Bach, F.1
-
4
-
-
14344252374
-
Multiple kernel learning, conic duality and the SMO algorithm
-
DOI: 10.1145/1015330.1015424 57
-
F. Bach, G. R. G. Lanckriet, and M. I. Jordan. Multiple kernel learning, conic duality and the SMO algorithm. In Proceedings of theTwenty-first International Conference on Machine Learning (ICML), 2004. DOI: 10.1145/1015330.1015424 57, 60
-
(2004)
Proceedings of TheTwenty-first International Conference on Machine Learning (ICML)
, pp. 60
-
-
Bach, F.1
Lanckriet, G.R.G.2
Jordan, M.I.3
-
5
-
-
36849072723
-
-
MIT Press
-
G. Bakir, B. Taskar, T. Hofmann, B. Schölkopf, A. Smola, and S. V. N Viswanathan. Predicting structured data. MIT Press, 2007. 43
-
(2007)
Predicting Structured Data
, pp. 43
-
-
Bakir, G.1
Taskar, B.2
Hofmann, T.3
Schölkopf, B.4
Smola, A.5
Viswanathan, S.V.N.6
-
6
-
-
0034296402
-
Generalised discriminant analysis using a kernel approach
-
DOI: 10.1162/089976600300014980 28
-
G. Baudat and F. Anouar. Generalised discriminant analysis using a kernel approach. Neural Computation, 12:2385-2404, 2000. DOI: 10.1162/ 089976600300014980 28
-
(2000)
Neural Computation
, vol.12
, pp. 2385-2404
-
-
Baudat, G.1
Anouar, F.2
-
8
-
-
0002935122
-
Combining support vector and mathematical programming methods for induction
-
MIT Press
-
K. P. Bennett. Combining support vector and mathematical programming methods for induction. In Advances in Kernel Methods, pages 307-326. MIT Press, 1999. 28
-
(1999)
Advances in Kernel Methods
, vol.28
, pp. 307-326
-
-
Bennett, K.P.1
-
10
-
-
0032096712
-
Optimization problems with perturbation: A guided tour
-
DOI: 10.1137/S0036144596302644 62
-
J. F. Bonnans and A. Shapiro. Optimization problems with perturbation: a guided tour. SIAM Review, 40:202-227, 1998. DOI: 10.1137/S0036144596302644 62
-
(1998)
SIAM Review
, vol.40
, pp. 202-227
-
-
Bonnans, J.F.1
Shapiro, A.2
-
11
-
-
33745771638
-
Protein function prediction via graph kernels
-
DOI 10.1093/bioinformatics/bti1007
-
K. M. Borgwardt, C. S. Ong, S. Schönauer, and S. V. N. Vishwanathan. Protein function prediction via graph kernels. In Proce (Pubitemid 41794474)
-
(2005)
Bioinformatics
, vol.21
, Issue.SUPPL. 1
-
-
Borgwardt, K.M.1
Ong, C.S.2
Schonauer, S.3
Vishwanathan, S.V.N.4
Smola, A.J.5
Kriegel, H.-P.6
-
12
-
-
56749100556
-
-
Neural Information Processing Series, The MIT Press
-
L. Bottou,O. Chapelle,D.DeCoste,and J. Weston. Large-Scale Kernel Machines.Neural Information Processing Series, The MIT Press, 2007. 15, 17
-
(2007)
Large-Scale Kernel Machines
, vol.15
, pp. 17
-
-
Bottou, L.1
Chapelle, O.2
De Coste, D.3
Weston, J.4
-
13
-
-
0033721433
-
Massive data discrimination via linear support vector machines
-
DOI: 10.1080/10556780008805771 28
-
P. S. Bradley andO.L. Mangasarian. Massive data discrimination via linear support vector machines. Optimization Methods and Software, 13:1-10, 2000. DOI: 10.1080/10556780008805771 28
-
(2000)
Optimization Methods and Software
, vol.13
, pp. 1-10
-
-
Bradley, P.S.1
Mangasarian, O.L.2
-
14
-
-
27144489164
-
A Tutorial on Support Vector Machines for Pattern Recognition
-
DOI 10.1023/A:1009715923555
-
C. Burges.Atutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery, 2:121-167, 1998. DOI: 10.1023/A: 1009715923555 33 (Pubitemid 128126769)
-
(1998)
Data Mining and Knowledge Discovery
, vol.2
, Issue.2
, pp. 121-168
-
-
Burges, C.J.C.1
-
18
-
-
0036161011
-
Choosing multiple parameters for support vector machines
-
DOI 10.1023/A:1012450327387
-
O. Chapelle, V. Vapnik, O. Bousquet, and S. Mukerjhee. Choosing multiple parameters for SVM. Machine Learning, 46:131-159, 2002. DOI: 10.1023/A:1012450327387 62 (Pubitemid 34129966)
-
(2002)
Machine Learning
, vol.46
, Issue.1-3
, pp. 131-159
-
-
Chapelle, O.1
Vapnik, V.2
Bousquet, O.3
Mukherjee, S.4
-
19
-
-
34249753618
-
Support vector networks
-
DOI: 10.1023/A:1022627411411 14
-
C. Cortes and V. Vapnik. Support vector networks. Machine Learning, 20:273-297, 1995. DOI: 10.1023/A:1022627411411 14
-
(1995)
Machine Learning
, vol.20
, pp. 273-297
-
-
Cortes, C.1
Vapnik, V.2
-
20
-
-
84898998301
-
Dynamically adapting kernels in support vector machines
-
MIT Press, Cambridge, MA
-
N. Cristianini, C. Campbell, and J. Shawe-Taylor. Dynamically adapting kernels in support vector machines. In Advances in Neural Information Processing Systems, 11, pages 204-210. MIT Press, Cambridge, MA, 1999. 50
-
(1999)
Advances in Neural Information Processing Systems, 11
, vol.50
, pp. 204-210
-
-
Cristianini, N.1
Campbell, C.2
Shawe-Taylor, J.3
-
22
-
-
43349094032
-
Probabilistic multi-class multi-kernel learning: On protein fold recognition and remote homology detection
-
DOI 10.1093/bioinformatics/btn112
-
T. Damoulas and M. Girolami. Probabilistic multi-class multi-kernel learning: on protein fold recognition and remote homology detection. Bioinformatics, 24:1264-1270, 2008. DOI: 10.1093/bioinformatics/btn112 64 (Pubitemid 351659623)
-
(2008)
Bioinformatics
, vol.24
, Issue.10
, pp. 1264-1270
-
-
Damoulas, T.1
Girolami, M.A.2
-
23
-
-
0000406788
-
Solving multiclass learning problems via error-correcting output codes
-
DOI: 10.1613/jair.105 8
-
T. G. Dietterich and G. Bakiri. Solving multiclass learning problems via error-correcting output codes. Journal of Artificial Intelligence, 2:263-286, 1995. DOI: 10.1613/jair.105 8
-
(1995)
Journal of Artificial Intelligence
, vol.2
, pp. 263-286
-
-
Dietterich, T.G.1
Bakiri, G.2
-
24
-
-
26444573178
-
Which is the best multiclass SVM method? An empirical study
-
Multiple Classifier Systems: 6th International Workshop, MCS 2005. Proceedings
-
K.-B.Duan and S. S. Keerthi.Which is the bestmulticlassSVMmethod? an empirical study. Lecture Notes in Computer Science, 3541:278-285, 2006. DOI: 10.1007/11494683-28 8 (Pubitemid 41422626)
-
(2005)
Lecture Notes in Computer Science
, vol.3541
, pp. 278-285
-
-
Duan, K.-B.1
Keerthi, S.S.2
-
25
-
-
9444266406
-
On Graph Kernels: Hardness Results and Efficient Alternatives
-
Learning Theory and Kernel Machines
-
T. Gartner, P. Flach, and S. Wrobel. On graph kernels: Hardness results and efficient alternatives. In Proceedings Annual Conference Computational Learning Theory (COLT), pages 129-143. Springer, 2003. 56 (Pubitemid 37053200)
-
(2003)
Lecture Notes in Computer Science
, Issue.2777
, pp. 129-143
-
-
Gartner, T.1
Flach, P.2
Wrobel, S.3
-
26
-
-
84899020966
-
Classification on pairwise proximity data
-
MIT Press
-
T. Graepel, R. Herbrich, P. Bollmann-Sdorra, and K. Obermayer. Classification on pairwise proximity data. In Advances in Neural Information Processing Systems, 11, pages 438-444. MIT Press, 1998. 47
-
(1998)
Advances in Neural Information Processing Systems, 11
, vol.47
, pp. 438-444
-
-
Graepel, T.1
Herbrich, R.2
Bollmann-Sdorra, P.3
Obermayer, K.4
-
27
-
-
0033311945
-
Classification on proximity data with LP-machines
-
T. Graepel,R. Herbrich, B. Schölkopf, A. J. Smola, P. L. Bartlett, K. Muller,K.Obermayer, and R. C. Williamson. Classification on proximity data with LP-machines. In Ninth International Conference on Artificial Neural Networks, volume 470, pages 304-309, 1999. DOI: 10.1049/cp:19991126 28 (Pubitemid 30519956)
-
(1999)
IEE Conference Publication
, vol.1
, Issue.470
, pp. 304-309
-
-
Graepel Thore1
Herbrich Ralf2
Schoelkopf Bernhard3
Smola Alex4
Bartlett Peter5
Mueller Klaus-Robert6
Obermayer Klaus7
Williamson Robert8
-
28
-
-
33745561205
-
An introduction to variable and feature selection
-
21
-
I. Guyon and A. Elisseeff. An introduction to variable and feature selection. Journal of Machine Learning Research, 3:1157-1182, 2003. http://www.jmlr.org 21
-
(2003)
Journal of Machine Learning Research
, vol.3
, pp. 1157-1182
-
-
Guyon, I.1
Elisseeff, A.2
-
29
-
-
0036161259
-
Gene selection for cancer classification using support vector machines
-
DOI 10.1023/A:1012487302797
-
I. Guyon, J. Weston, S. Barnhill, andV.Vapnik. Gene selection for cancer classification using support vector machines. Machine Learning, 46:389-422, 2002. DOI: 10.1023/A:1012487302797 21 (Pubitemid 34129977)
-
(2002)
Machine Learning
, vol.46
, Issue.1-3
, pp. 389-422
-
-
Guyon, I.1
Weston, J.2
Barnhill, S.3
Vapnik, V.4
-
30
-
-
7344268878
-
Online Bayes point machines
-
Springer-Verlag, DOI: 10.1007/3-540-36175-8-24 28
-
E. Harrington, R. Herbrich, J. Kivinen, J. C. Platt, and R. C. Williamson. Online Bayes point machines. In Proceedings of the Seventh Pacific-Asia Conference on Knowledge Discovery and Data Mining. Springer-Verlag, 2003. DOI: 10.1007/3-540-36175-8-24 28
-
(2003)
Proceedings of the Seventh Pacific-Asia Conference on Knowledge Discovery and Data Mining
-
-
Harrington, E.1
Herbrich, R.2
Kivinen, J.3
Platt, J.C.4
Williamson, R.C.5
-
31
-
-
0032355984
-
Classification by pairwise coupling
-
DOI: 10.1214/aos/1028144844 8
-
T. Hastie and R. Tibshirani. Classification by pairwise coupling. The Annals of Statistics, 26:451-471, 1998. DOI: 10.1214/aos/1028144844 8
-
(1998)
The Annals of Statistics
, vol.26
, pp. 451-471
-
-
Hastie, T.1
Tibshirani, R.2
-
32
-
-
0000631731
-
Bayes Point Machines
-
DOI 10.1162/153244301753683717
-
R. Herbrich, T. Graepel, and C. Campbell. Bayes point machines. Journal of Machine Learning Research, 1:245-279, 2001. http://www.jmlr.org 28 (Pubitemid 33687204)
-
(2001)
Journal of Machine Learning Research
, vol.1
, Issue.4
, pp. 245-279
-
-
Herbrich, R.1
Graepel, T.2
Campbell, C.3
-
33
-
-
0027657329
-
Semi-infinite programming: Theory, methods and applications
-
DOI: 10.1137/1035089 62
-
R. Hettich and K. O. Kortanek. Semi-infinite programming: Theory, methods and applications. SIAM Review, 3:380-429, 1993. DOI: 10.1137/1035089 62, 67
-
(1993)
SIAM Review
, vol.3
, Issue.380-429
, pp. 67
-
-
Hettich, R.1
Kortanek, K.O.2
-
34
-
-
84942484786
-
Ridge regression: Biased estimation for nonorthogonal problems
-
DOI: 10.2307/1267352 40
-
A. E. Hoerl and R. Kennard. Ridge regression: biased estimation for nonorthogonal problems. Technometrics, 12:55-67, 1970. DOI: 10.2307/1267352 40
-
(1970)
Technometrics
, vol.12
, pp. 55-67
-
-
Hoerl, A.E.1
Kennard, R.2
-
36
-
-
33750317385
-
Kernels on graphs
-
MIT Press, Cambridge, MA
-
H. Kashima, K. Tsuda, and A. Inokuchi. Kernels on graphs. In Kernels and Bioinformatics, pages 155-170. MIT Press, Cambridge, MA, 2004. 56
-
(2004)
Kernels and Bioinformatics
, vol.56
, pp. 155-170
-
-
Kashima, H.1
Tsuda, K.2
Inokuchi, A.3
-
37
-
-
0000545946
-
Improvements to Platt's SMO algorithm for SVM classifier design
-
DOI 10.1162/089976601300014493
-
S. Keerthi, S. Shevade, C. Bhattacharyya, and K. Murthy. Improvements to platt's SMO algorithm for SVM classifier design. Neural Computation, 13:637-649, 2001. DOI: 10.1162/089976601300014493 17 (Pubitemid 33595014)
-
(2001)
Neural Computation
, vol.13
, Issue.3
, pp. 637-649
-
-
Keerthi, S.S.1
Shevade, S.K.2
Bhattacharyya, C.3
Murthy, K.R.K.4
-
38
-
-
84858738634
-
Efficient and accurate LP-norm multiple kernel learning
-
MIT Press
-
M. Kloft, U. Brefeld, S. Sonnenburg, P. Laskov, K.-R. Müller, and A. Zien. Efficient and accurate LP-norm multiple kernel learning. In Advances in Neural Information Processing Systems, 22, pages 997-1005. MIT Press, 2009. 64
-
(2009)
Advances in Neural Information Processing Systems, 22
, vol.64
, pp. 997-1005
-
-
Kloft, M.1
Brefeld, U.2
Sonnenburg, S.3
Laskov, P.4
Müller, K.-R.5
Zien, A.6
-
39
-
-
0041775676
-
Diffusion kernels on graphs and other discrete structures
-
Morgan Kaufmann, San Francisco, CA
-
I. R. Kondor and J. D. Lafferty. Diffusion kernels on graphs and other discrete structures. In Proceedings of the International Conference on Machine Learning, pages 315-322. Morgan Kaufmann, San Francisco, CA, 2002. 56
-
(2002)
Proceedings of the International Conference on Machine Learning
, vol.56
, pp. 315-322
-
-
Kondor, I.R.1
Lafferty, J.D.2
-
40
-
-
8844278523
-
Learning the kernel matrix with semidefinite programming
-
58, 64
-
G. R. G. Lanckriet, N. Cristianini, P. Bartlett, L. El Ghaoui, and M. I. Jordan. Learning the kernel matrix with semidefinite programming. Journal of Machine Learning Research, 5:27-72, 2004a. 57, 58, 64
-
(2004)
Journal of Machine Learning Research
, vol.5
, Issue.27-72
, pp. 57
-
-
Lanckriet, G.R.G.1
Cristianini, N.2
Bartlett, P.3
El Ghaoui, L.4
Jordan, M.I.5
-
41
-
-
8844263749
-
A statistical framework for genomic data fusion
-
DOI 10.1093/bioinformatics/bth294
-
G. R. G. Lanckriet,T. De Bie,N.Cristianini, M. I. Jordan, andW.S.Noble. A statistical framework for genomic data fusion. Bioinformatics, 2004b. DOI: 10.1093/bioinformatics/bth294 64 (Pubitemid 39530149)
-
(2004)
Bioinformatics
, vol.20
, Issue.16
, pp. 2626-2635
-
-
Lanckriet, G.R.G.1
De Bie, T.2
Cristianini, N.3
Jordan, M.I.4
Noble, S.5
-
43
-
-
0040165092
-
Practical aspects of moreau-yosida regularization : TTheoretical preliminaries
-
DOI: 10.1137/S1052623494267127 62
-
C. Lemaréchal and C. Sagastizabal. Practical aspects of moreau-yosida regularization : theoretical preliminaries. SIAM Journal of Optimization, 7:867-895, 1997. DOI: 10.1137/S1052623494267127 62
-
(1997)
SIAM Journal of Optimization
, vol.7
, pp. 867-895
-
-
Lemaréchal, C.1
Sagastizabal, C.2
-
44
-
-
9444285762
-
Fast Kernels for Inexact String Matching
-
Learning Theory and Kernel Machines
-
C. Leslie and R. Kuang. Fast kernels for inexact string matching. Lecture Notes in Computer Science, 2777:114-128, 2003. DOI: 10.1007/978-3-540-45167-9- 10 53 (Pubitemid 37053199)
-
(2003)
Lecture Notes in Computer Science
, Issue.2777
, pp. 114-128
-
-
Leslie, C.1
Kuang, R.2
-
45
-
-
0041965869
-
Text Classification using String Kernels
-
DOI 10.1162/153244302760200687
-
H. Lodhi, C. Saunders, J. Shawe-Taylor, N. Cristianini, and C. Watkins. Text classification using string kernels. Journal of Machine Learning Research, 2:419-444, 2002. http://www.jmlr.org 53 (Pubitemid 135712568)
-
(2002)
Journal of Machine Learning Research
, vol.2
, Issue.3
, pp. 419-444
-
-
Lodhi, H.1
Saunders, C.2
Shawe-Taylor, J.3
Cristianini, N.4
Watkins, C.5
-
49
-
-
0000963583
-
Linear and nonlinear separation of patterns by linear programming
-
DOI: 10.1287/opre.13.3.444 28
-
O. L. Mangasarian. Linear and nonlinear separation of patterns by linear programming. Operations Research, 13:444-452, 1965. DOI: 10.1287/opre.13.3.444 28
-
(1965)
Operations Research
, vol.13
, pp. 444-452
-
-
Mangasarian, O.L.1
-
55
-
-
0041995203
-
A generalized kernel approach to dissimilarity based classification
-
47
-
E. Pekalska, P. Paclik, and R. P.W. Duin. A generalized kernel approach to dissimilarity based classification. Journal of Machine Learning Research, 2:175-211, 2002. http://www.jmlr.org 47
-
(2002)
Journal of Machine Learning Research
, vol.2
, pp. 175-211
-
-
Pekalska, E.1
Paclik, P.2
Duin, R.P.W.3
-
56
-
-
0003120218
-
Fast training of SVMs using sequential minimal optimization
-
C. BurgesB. Schölkopf and A. Smola, editors, MIT press, Cambridge, MA
-
J. Platt. Fast training of SVMs using sequential minimal optimization. In C. BurgesB. Schölkopf and A. Smola, editors, Advances in Kernel Methods: Support Vector Learning. MIT press, Cambridge, MA, 1999a. 17
-
(1999)
Advances in Kernel Methods: Support Vector Learning
, pp. 17
-
-
Platt, J.1
-
57
-
-
0003243224
-
Probabilistic outputs for support vector machines and comparison to regularised likelihood methods
-
MIT Press
-
J. Platt. Probabilistic outputs for support vector machines and comparison to regularised likelihood methods. In Advances in large margin classifiers, pages 61-74. MIT Press, 1999b. 8, 29
-
(1999)
Advances in Large Margin Classifiers
, vol.8
, Issue.29
, pp. 61-74
-
-
Platt, J.1
-
58
-
-
84888364466
-
Large margin DAGS for multiclass classification
-
MIT Press, Cambridge, MA
-
J. Platt, N. Cristianini, and J. Shawe-Taylor. Large margin DAGS for multiclass classification. In Advances in Neural Information Processing Systems, 12, pages 547-553. MIT Press, Cambridge, MA, 2000. 8
-
(2000)
Advances in Neural Information Processing Systems, 12
, vol.8
, pp. 547-553
-
-
Platt, J.1
Cristianini, N.2
Shawe-Taylor, J.3
-
59
-
-
57249084590
-
Simple MKL
-
62
-
A. Rakotomamonjy, F. Bach, S. Canu, and Y. Grandvalet. SimpleMKL. Journal of Machine Learning Research, 9:2491-2521, 2008. 57, 62
-
(2008)
Journal of Machine Learning Research
, vol.9
, Issue.2491-2521
, pp. 57
-
-
Rakotomamonjy, A.1
Bach, F.2
Canu, S.3
Grandvalet, Y.4
-
62
-
-
0347380866
-
Optimal cluster preserving embedding of nonmetric proximity data
-
DOI: 10.1109/TPAMI.2003.1251147 47
-
V. Roth, J. Laub, M. Kawanabe, and J. M. Buhmann. Optimal cluster preserving embedding of nonmetric proximity data. IEEE Transactions on Pattern Analysis and Machine Intelligence, 25: 1540-1551, 2003. DOI: 10.1109/TPAMI.2003.1251147 47
-
(2003)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.25
, pp. 1540-1551
-
-
Roth, V.1
Laub, J.2
Kawanabe, M.3
Buhmann, J.M.4
-
64
-
-
0002619965
-
Ridge regression learning algorithm in dual variables
-
J. Shavlik, editor, Morgan Kaufmann
-
C. Saunders, A. Gammermann, and V. Vovk. Ridge regression learning algorithm in dual variables. In J. Shavlik, editor, Proceedings of the Fifteenth International Conference in Machine Learning (ICML). Morgan Kaufmann, 1998. 40
-
(1998)
Proceedings of the Fifteenth International Conference in Machine Learning (ICML)
, pp. 40
-
-
Saunders, C.1
Gammermann, A.2
Vovk, V.3
-
65
-
-
0004094721
-
-
The MIT Press, Cambridge, MA 30, 33
-
B. Schölkopf and A. Smola. Learning with Kernels. The MIT Press, Cambridge, MA, 2002a. 17, 28, 29, 30, 33
-
(2002)
Learning with Kernels
, vol.17
, Issue.28
, pp. 29
-
-
Schölkopf, B.1
Smola, A.2
-
66
-
-
0004094721
-
-
The MIT Press, Cambridge,MA,USA
-
B. Schölkopf and A. J. Smola. Learning with Kernels. The MIT Press, Cambridge,MA,USA, 2002b. 40
-
(2002)
Learning with Kernels
, pp. 40
-
-
Schölkopf, B.1
Smola, A.J.2
-
67
-
-
85118436573
-
Extracting support data for a given task
-
U. M. Fayyad and R. Uthurusamy, editors, AAAI Press, Menlo park, CA
-
B. Schölkopf, C. Burges, and V. Vapnik. Extracting support data for a given task. In U. M. Fayyad and R. Uthurusamy, editors, Proceedings: First International Conference on Knowledge Discovery and Data Mining. AAAI Press, Menlo park, CA, 1995. 33
-
(1995)
Proceedings: First International Conference on Knowledge Discovery and Data Mining
, pp. 33
-
-
Schölkopf, B.1
Burges, C.2
Vapnik, V.3
-
68
-
-
0038091288
-
Estimating the support of a high-dimensional distribution
-
DOI: 10.1162/089976601750264965
-
B. Schölkopf, J. C. Platt, J. Shawe-Taylor, A. J. Smola, and R. C.Williamson. Estimating the support of a high-dimensional distribution. In Microsoft Research Corporation Technical Report MSR-TR-99-87, 1999. DOI: 10.1162/089976601750264965 33
-
(1999)
Microsoft Research Corporation Technical Report MSR-TR-99-87
, pp. 33
-
-
Schölkopf, B.1
Platt, J.C.2
Shawe-Taylor, J.3
Smola, A.J.4
Williamson, R.C.5
-
69
-
-
17444438778
-
New support vector algorithms
-
DOI: 10.1162/089976600300015565 14
-
B. Schölkopf,A. Smola,R.C.Williamson, and P. L. Bartlett. New support vector algorithms. Neural Computation, 12:1207-1245, 2000. DOI: 10.1162/089976600300015565 14
-
(2000)
Neural Computation
, vol.12
, pp. 1207-1245
-
-
Schölkopf, B.1
Smola, A.2
Williamson, R.C.3
Bartlett, P.L.4
-
70
-
-
0001149082
-
Support vector regression with automatic accuracy control
-
M. Boden L. Niklasson and T. Ziemke, editors, Springer Verlag, Berlin
-
P. Schölkopf, B. and Bartlett, A. Smola, and R. Williamson. Support vector regression with automatic accuracy control. In M. Boden L. Niklasson and T. Ziemke, editors, Proceedings of the 8th International Conference on Artificial Neural Networks, Perspectives in Neural Computing. Springer Verlag, Berlin, 1998. 40
-
(1998)
Proceedings of the 8th International Conference on Artificial Neural Networks, Perspectives in Neural Computing
, pp. 40
-
-
Schölkopf, P.1
Bartlett, B.2
Smola, A.3
Williamson, R.4
-
72
-
-
0034271493
-
Improvements to the SMO algorithm for SVM regression
-
DOI: 10.1109/72.870050 17
-
S. K. Shevade, S. S. Keerthi, C. Bhattacharyya, and K. R. Krishna Murthy. Improvements to the SMO algorithm for SVM regression. IEEE Transactions on Neural Networks, 11:1188-1194, 2000. DOI: 10.1109/72.870050 17
-
(2000)
IEEE Transactions on Neural Networks
, vol.11
, pp. 1188-1194
-
-
Shevade, S.K.1
Keerthi, S.S.2
Bhattacharyya, C.3
Krishna Murthy, K.R.4
-
73
-
-
9444285502
-
Kernels and Regularization on Graphs
-
Learning Theory and Kernel Machines
-
A. J. Smola and I. R. Kondor. Kernels and regularization on graphs. In Lecture Notes in Computer Science, pages 144-158. Springer-Verlag, Heidelberg, Germany, 2003. DOI: 10.1007/978-3-540-45167-9-12 56 (Pubitemid 37053201)
-
(2003)
Lecture Notes in Computer Science
, Issue.2777
, pp. 144-158
-
-
Smola, A.J.1
Kondor, R.2
-
74
-
-
4043137356
-
A tutorial on support vector regression
-
DOI 10.1023/B:STCO.0000035301.49549.88
-
A. J. Smola and B. Schölkopf. A tutorial on support vector regression. Statistics and Computing, 14: 199-222, 2004. DOI: 10.1023/B:STCO.0000035301.49549.88 40 (Pubitemid 39063488)
-
(2004)
Statistics and Computing
, vol.14
, Issue.3
, pp. 199-222
-
-
Smola, A.J.1
Scholkopf, B.2
-
75
-
-
0036163572
-
Bayesian methods for support vector machines: Evidence and predictive class probabilities
-
DOI 10.1023/A:1012489924661
-
P. Sollich. Bayesian methods for support vector machines: Evidence and predictive class probabilities. Machine Learning, 46:21-52, 2002. DOI: 10.1023/A:1012489924661 50 (Pubitemid 34129962)
-
(2002)
Machine Learning
, vol.46
, Issue.1-3
, pp. 21-52
-
-
Sollich, P.1
-
76
-
-
33745776113
-
Large scalemultiple kernel learning
-
62
-
S. Sonnenburg,G. Rätsch, C. Schäfer, and B. Schölkopf. Large scalemultiple kernel learning. Journal of Machine Learning Research, 7:1531-1565, 2006. 57, 62
-
(2006)
Journal of Machine Learning Research
, vol.7
, Issue.1531-1565
, pp. 57
-
-
Sonnenburg, S.1
Rätsch, G.2
Schäfer, C.3
Schölkopf, B.4
-
79
-
-
0033296299
-
Using SEDUMI 1.02a, a matlab toolbox for optimization over symmetric cones
-
DOI: 10.1080/10556789908805766
-
J. F. Sturm. Using SEDUMI 1.02a, a matlab toolbox for optimization over symmetric cones. Optimization Methods and Software, pages 625-653, 1999. DOI: 10.1080/10556789908805766 60
-
(1999)
Optimization Methods and Software
, vol.60
, pp. 625-653
-
-
Sturm, J.F.1
-
80
-
-
0032638628
-
Least squares support vector machine classifiers
-
DOI: 10.1023/A:1018628609742 28
-
J. A.K. Suykens and J. Vandewalle. Least squares support vector machine classifiers. Neural Processing Letters, 9:293-300, 1999. DOI: 10.1023/A:1018628609742 28
-
(1999)
Neural Processing Letters
, vol.9
, pp. 293-300
-
-
Suykens, J.A.K.1
Vandewalle, J.2
-
82
-
-
0001986205
-
Data domain description by support vectors
-
M. Verleysen, editor, D. Facto Press, Brussels
-
D. Tax andR.Duin. Data domain description by support vectors. In M. Verleysen, editor,Proceedings of ESANN99, pages 251-256. D. Facto Press, Brussels, 1999. 33
-
(1999)
Proceedings of ESANN99
, vol.33
, pp. 251-256
-
-
Tax, D.1
Duin, R.2
-
83
-
-
0013314147
-
Support vector data description applied to machine vibration analysis
-
M. Boasson, J. Kaandorp, J. Tonino, and M. Vosselman, editors, Heijen, NL
-
D. Tax, A. Ypma,andR.Duin. Support vector data description applied to machine vibration analysis. In M. Boasson, J. Kaandorp, J. Tonino, and M. Vosselman, editors, Proc. 5th Annual Conference of the Advanced School for Computing and Imaging, pages 398-405. Heijen, NL, 1999. 33
-
(1999)
Proc. 5th Annual Conference of the Advanced School for Computing and Imaging
, vol.33
, pp. 398-405
-
-
Tax, D.1
Ypma, A.2
Duin, R.3
-
84
-
-
0042868698
-
Support vector machine active learning with applications to text classification
-
25
-
S. Tong andD. Koller. Support vector machine active learning with applications to text classification. Journal of Machine Learning Research, 2:45-66, 2001. http://www.jmlr.org 25
-
(2001)
Journal of Machine Learning Research
, vol.2
, pp. 45-66
-
-
Tong, S.1
Koller, D.2
-
85
-
-
0036158544
-
An analytic center machine
-
DOI 10.1023/A:1012458531022
-
T. B. Trafalis and A. M. Malyscheff. An analytic center machine. Machine Learning, 46:203 - 224, 2002. DOI: 10.1023/A:1012458531022 28 (Pubitemid 34129969)
-
(2002)
Machine Learning
, vol.46
, Issue.1-3
, pp. 203-223
-
-
Trafalis, T.B.1
Malyscheff, A.M.2
-
86
-
-
24944537843
-
Large margin methods for structured and independent output variables
-
UCI Machine learning Repository, 10
-
I. Tsochantaridis,T. Joachims,T. Hofmann, and Y. Altun. Large margin methods for structured and independent output variables. Journal of machine learning research, 6:1453-1584, 2005. 43 UCI Machine learning Repository. http://www.ics.uci.edu/∼mlearn/mlrepository.html. 10
-
(2005)
Journal of Machine Learning Research
, vol.6
, Issue.1453-1584
, pp. 43
-
-
Tsochantaridis, I.1
Joachims, T.2
Hofmann, T.3
Altun, Y.4
-
87
-
-
0030106462
-
Semi definite programming
-
DOI: 10.1137/1038003 60, 67
-
L. Vandenberghe and S. Boyd. Semidefinite programming. SIAM Review, 38, 1996. DOI: 10.1137/1038003 60, 62, 67
-
(1996)
SIAM Review
, vol.38
, pp. 62
-
-
Vandenberghe, L.1
Boyd, S.2
-
90
-
-
0034264380
-
Bounds on error expectation for support vector machines
-
DOI: 10.1162/089976600300015042 50
-
V. Vapnik and O. Chapelle. Bounds on error expectation for support vector machines. Neural Computation, 12:2013-2036, 2000. DOI: 10.1162/ 089976600300015042 50
-
(2000)
Neural Computation
, vol.12
, pp. 2013-2036
-
-
Vapnik, V.1
Chapelle, O.2
-
93
-
-
70349357562
-
Graph kernels
-
S. V. N. Vishwanathan, K. M. Borgwardt, I. R. Kondor, and N. N. Schraudolph. Graph kernels. Journal of Machine Learning Research, 9:1-41, 2008. 56
-
(2008)
Journal of Machine Learning Research
, vol.9
, Issue.1-41
, pp. 56
-
-
Vishwanathan, S.V.N.1
Borgwardt, K.M.2
Kondor, I.R.3
Schraudolph, N.N.4
-
94
-
-
0037365194
-
Active learning with support vector machine in the drug discovery process
-
DOI: 10.1021/ci025620t 25
-
M. K.Warmuth, J. Liao,G. Ratsch, M. Mathieson, S. Putta, and C. Lemmen. Active learning with support vector machine in the drug discovery process. J. Chem. Inf. Comput. Sci., 43:667-673, 2003. DOI: 10.1021/ci025620t 25
-
(2003)
J. Chem. Inf. Comput. Sci
, vol.43
, pp. 667-673
-
-
Warmuth, M.K.1
Liao, J.2
Ratsch, G.3
Mathieson, M.4
Putta, S.5
Lemmen, C.6
-
95
-
-
0001254045
-
Multi-class support vector machines
-
MVerleysen, editor, D. Facto Press, Brussels
-
J. Weston and C. Watkins. Multi-class support vector machines. InMVerleysen, editor, Proceedings of ESANN99, pages 219-224. D. Facto Press, Brussels, 1999. 8
-
(1999)
Proceedings of ESANN99
, vol.8
, pp. 219-224
-
-
Weston, J.1
Watkins, C.2
-
96
-
-
0001873884
-
Support vector density estimation
-
C. Burges B. Schölkopf and A. Smola, editors, MIT Press, Cambridge, MA
-
J. Weston, A. Gammerman, M. Stitson,V.Vapnik,V.Vovk, and C. Watkins. Support vector density estimation. In C. Burges B. Schölkopf and A. Smola, editors, Advances in Kernel Methods: Support Vector Machines, pages 293-306. MIT Press, Cambridge, MA, 1998. 40
-
(1998)
Advances in Kernel Methods: Support Vector Machines
, vol.40
, pp. 293-306
-
-
Weston, J.1
Gammerman, A.2
Stitson, M.3
Vapnik, V.4
Vovk, V.5
Watkins, C.6
-
97
-
-
3342939836
-
Prognostic classification of relapsing favorable histology Wilms tumor using cDNA microarray expression profiling and support vector machines
-
DOI 10.1002/gcc.20060
-
R. D. Williams, S. N. Hing, B. T. Greer, Craig C. Whiteford, J. S. Wei, R. Natrajan, A. Kelsey, S. Rogers, C. Campbell, K. Pritchard-Jones, and J. Khan. Prognostic classification of relapsing favourable histology wilms tumour using cdna microarray expression profiling and support vector machines. Genes, Chromosomes and Cancer, 41:65 - 79, 2004. DOI: 10.1002/gcc.20060 21 (Pubitemid 38988739)
-
(2004)
Genes Chromosomes and Cancer
, vol.41
, Issue.1
, pp. 65-79
-
-
Williams, R.D.1
Hing, S.N.2
Greer, B.T.3
Whiteford, C.C.4
Wei, J.S.5
Natrajan, R.6
Kelsey, A.7
Rogers, S.8
Campbell, C.9
Pritchard-Jones, K.10
Khan, J.11
-
98
-
-
84862789078
-
An extended level method for multiple kernel learning
-
MIT Press
-
Z. Xu, R. Jin, I. King, and M. R. Lyu. An extended level method for multiple kernel learning. In Advances in Neural Information Processing Systems, 22.MIT Press, 2008. 62
-
(2008)
Advances in Neural Information Processing Systems, 22
, pp. 62
-
-
Xu, Z.1
Jin, R.2
King, I.3
Lyu, M.R.4
-
100
-
-
33847115868
-
Learnability of gaussians with flexible variances
-
Y. Ying andD.X. Zhou. Learnability of gaussians with flexible variances. Journal of Machine Learning Research, 8:249-276, 2007. 57
-
(2007)
Journal of Machine Learning Research
, vol.8
, Issue.249-276
, pp. 57
-
-
Ying, Y.1
Zhou, D.X.2
-
101
-
-
84858716027
-
Analysis of SVM with indefinite kernels
-
MIT Press
-
Y. Ying, C. Campbell, and M. Girolami. Analysis of SVM with indefinite kernels. In Advances in Neural Information Processing Systems, 22, pages 2205-2213. MIT Press, 2009a. 47, 62
-
(2009)
Advances in Neural Information Processing Systems, 22
, vol.47
, Issue.62
, pp. 2205-2213
-
-
Ying, Y.1
Campbell, C.2
Girolami, M.3
-
102
-
-
70449364579
-
Enhanced protein fold recognition through a novel data integration approach
-
DOI: 10.1186/1471-2105-10-267 62
-
Y. Ying, K. Huang, and C. Campbell. Enhanced protein fold recognition through a novel data integration approach. BMC Bioinformatics, 10:267-285, 2009b.DOI: 10.1186/1471-2105-10-267 62, 64
-
(2009)
BMC Bioinformatics
, vol.10
, Issue.267-285
, pp. 64
-
-
Ying, Y.1
Huang, K.2
Campbell, C.3
-
103
-
-
0037686659
-
The concave-convex procedure
-
DOI 10.1162/08997660360581958
-
A. L. Yuille and A. Rangarajan. The concave convex procedure. Neural Computation, 15:915-936, 2003. DOI: 10.1162/08997660360581958 43 (Pubitemid 37049812)
-
(2003)
Neural Computation
, vol.15
, Issue.4
, pp. 915-936
-
-
Yuille, A.L.1
Rangarajan, A.2
|