-
2
-
-
0031176507
-
Scale-sensitive dimensions, uniform convergence and learnability
-
N. Alon, S. Ben-David, S. N. Cesa-Bianchi, and D. Haussler. Scale-sensitive dimensions, uniform convergence and learnability. Journal of the ACM, 44:615-631, 1997.
-
(1997)
Journal of the ACM
, vol.44
, pp. 615-631
-
-
Alon, N.1
Ben-David, S.2
Cesa-Bianchi, S.N.3
Haussler, D.4
-
3
-
-
33645505792
-
Convexity, classification, and risk bounds
-
P. L. Bartlett, M. I. Jordan, and J. D. McAuliffe. Convexity, classification, and risk bounds. Journal of the American Statistical Association, 101:138-156, 2006.
-
(2006)
Journal of the American Statistical Association
, vol.101
, pp. 138-156
-
-
Bartlett, P.L.1
Jordan, M.I.2
McAuliffe, J.D.3
-
4
-
-
0038453192
-
Rademacher and Gaussian complexities: Risk bounds and structural results
-
P. L. Bartlett and S. Mendelson. Rademacher and Gaussian complexities: Risk bounds and structural results. Journal of Machine Learning Research, 3:463-482, 2002.
-
(2002)
Journal of Machine Learning Research
, vol.3
, pp. 463-482
-
-
Bartlett, P.L.1
Mendelson, S.2
-
5
-
-
84898998301
-
Dynamically adapting kernels in support vector machines
-
M. S. Kearns, S. A. Solla, and D. A. Cohn, eds, MIT Press
-
N. Cristianini, J. Shawe-Taylor, and C. Campbell. Dynamically adapting kernels in support vector machines. In Advances in Neural Information Processing Systems 11 (M. S. Kearns, S. A. Solla, and D. A. Cohn, eds), MIT Press, 1999.
-
(1999)
Advances in Neural Information Processing Systems
, pp. 11
-
-
Cristianini, N.1
Shawe-Taylor, J.2
Campbell, C.3
-
6
-
-
84879394399
-
Support vector machine soft margin classifiers: Error analysis
-
D. R. Chen, Q. Wu, Y. Ying, and D. X. Zhou. Support vector machine soft margin classifiers: Error analysis. Journal of Machine Learning Research, 5:1143-1175, 2004.
-
(2004)
Journal of Machine Learning Research
, vol.5
, pp. 1143-1175
-
-
Chen, D.R.1
Wu, Q.2
Ying, Y.3
Zhou, D.X.4
-
7
-
-
0036161011
-
Choosing multiple parameters for support vector machines
-
O. Chapelle, V. Vapnik, O. Bousquet, and S. Mukherjee. Choosing multiple parameters for support vector machines. Machine Learning, 46:131-159, 2002.
-
(2002)
Machine Learning
, vol.46
, pp. 131-159
-
-
Chapelle, O.1
Vapnik, V.2
Bousquet, O.3
Mukherjee, S.4
-
8
-
-
34249753618
-
Support-vector networks
-
C. Cortes and V. Vapnik. Support-vector networks. Machine Learning, 20:273-297, 1995.
-
(1995)
Machine Learning
, vol.20
, pp. 273-297
-
-
Cortes, C.1
Vapnik, V.2
-
10
-
-
33744770935
-
Learning Theory: An Approximation Theory Viewpoint. Cambridge University Press
-
to appear
-
F. Cucker and D. X. Zhou. Learning Theory: An Approximation Theory Viewpoint. Cambridge University Press, to appear, 2007.
-
(2007)
-
-
Cucker, F.1
Zhou, D.X.2
-
17
-
-
0035397715
-
Rademacher penalties and structural risk minimization
-
V. Koltchinskii. Rademacher penalties and structural risk minimization. IEEE Transactions on Information Theory, 47:1902-1914, 2001.
-
(2001)
IEEE Transactions on Information Theory
, vol.47
, pp. 1902-1914
-
-
Koltchinskii, V.1
-
18
-
-
0036104545
-
Empirical margin distributions and bounding the generalization error of combined classifiers
-
V. Koltchinskii and V. Panchenko. Empirical margin distributions and bounding the generalization error of combined classifiers. The Annals of Statistics, 30:1-50, 2002.
-
(2002)
The Annals of Statistics
, vol.30
, pp. 1-50
-
-
Koltchinskii, V.1
Panchenko, V.2
-
19
-
-
8844278523
-
Learning the kernel matrix with semidefinite programming
-
G. R. G. Lanckriet, N. Cristianini, P. L. Bartlett, P. L. El Ghaoui, and M. I. Jordan. Learning the kernel matrix with semidefinite programming. Journal of Machine Learning Research, 5:27-72, 2004.
-
(2004)
Journal of Machine Learning Research
, vol.5
, pp. 27-72
-
-
Lanckriet, G.R.G.1
Cristianini, N.2
Bartlett, P.L.3
El Ghaoui, P.L.4
Jordan, M.I.5
-
21
-
-
84898948162
-
Mixture density estimation
-
S. A. Solla, K. L. Todd, K.-R. Müller eds, MIT Press
-
J. Li, and A. Barron. Mixture density estimation. In Advances in Neural Information Processing Systems 12 (S. A. Solla, K. L. Todd, K.-R. Müller eds.), MIT Press, 2000.
-
(2000)
Advances in Neural Information Processing Systems
, pp. 12
-
-
Li, J.1
Barron, A.2
-
22
-
-
0000482137
-
On the relationships between generalization error, hypothesis complexity and sample complexity for radial basis functions
-
P. Niyogi and F. Girosi. On the relationships between generalization error, hypothesis complexity and sample complexity for radial basis functions. Neural Computation, 8:819-842, 1996.
-
(1996)
Neural Computation
, vol.8
, pp. 819-842
-
-
Niyogi, P.1
Girosi, F.2
-
25
-
-
84865131152
-
-
B. Schölkopf, B. R. Herbrich, and A. J. Smola. A generalized representer theorem. In Proceedings of the 14th Annual Conference on Computational Learning Theory, Lecture Notes in Artificial Intelligence, 2111: 416-426, 2001.
-
B. Schölkopf, B. R. Herbrich, and A. J. Smola. A generalized representer theorem. In Proceedings of the 14th Annual Conference on Computational Learning Theory, Lecture Notes in Artificial Intelligence, 2111: 416-426, 2001.
-
-
-
-
26
-
-
0032166068
-
Structural risk minimization over data-dependent hierarchies
-
J. Shawe-Taylor, P. L. Bartlett, S. C. Williamson, and M. Anthony. Structural risk minimization over data-dependent hierarchies. IEEE Transactions on Information Theory, 44:1926-1940, 1998.
-
(1998)
IEEE Transactions on Information Theory
, vol.44
, pp. 1926-1940
-
-
Shawe-Taylor, J.1
Bartlett, P.L.2
Williamson, S.C.3
Anthony, M.4
-
27
-
-
0037749769
-
Estimating the approximation error in learning theory
-
S. Smale and D. X. Zhou. Estimating the approximation error in learning theory. Analysis and Applications, 1:17-41, 2003.
-
(2003)
Analysis and Applications
, vol.1
, pp. 17-41
-
-
Smale, S.1
Zhou, D.X.2
-
31
-
-
0010786475
-
On the influence of the kernel on the consistency of support vector machines
-
I. Steinwart. On the influence of the kernel on the consistency of support vector machines. Journal of Machine Learning Research, 2:67-93, 2001.
-
(2001)
Journal of Machine Learning Research
, vol.2
, pp. 67-93
-
-
Steinwart, I.1
-
33
-
-
3142725508
-
Optimal aggregation of classifiers in statistical learning
-
A. B. Tsybakov. Optimal aggregation of classifiers in statistical learning. The Annals of Statistics, 32:135-166, 2004.
-
(2004)
The Annals of Statistics
, vol.32
, pp. 135-166
-
-
Tsybakov, A.B.1
-
38
-
-
55049127622
-
Learning and approximation by Gaussians on Riemannian manifolds
-
forthcoming
-
G. B. Ye and D. X. Zhou. Learning and approximation by Gaussians on Riemannian manifolds. Advances in Computational Mathematics, forthcoming.
-
Advances in Computational Mathematics
-
-
Ye, G.B.1
Zhou, D.X.2
-
40
-
-
4644257995
-
Statistical behavior and consistency of classification methods based on convex risk minimization
-
T. Zhang. Statistical behavior and consistency of classification methods based on convex risk minimization. The Annals of Statistics, 32:56-85, 2004.
-
(2004)
The Annals of Statistics
, vol.32
, pp. 56-85
-
-
Zhang, T.1
-
41
-
-
0036748375
-
The covering number in learning theory
-
D. X. Zhou. The covering number in learning theory. Journal of Complexity, 18:739-767, 2002.
-
(2002)
Journal of Complexity
, vol.18
, pp. 739-767
-
-
Zhou, D.X.1
-
42
-
-
0038105204
-
Capacity of reproducing kernel spaces in learning theory
-
D. X. Zhou. Capacity of reproducing kernel spaces in learning theory. IEEE Transactions on Information Theory, 49:1743-1752, 2003.
-
(2003)
IEEE Transactions on Information Theory
, vol.49
, pp. 1743-1752
-
-
Zhou, D.X.1
-
43
-
-
33745650526
-
Approximation with polynomial kernels and SVM classifiers
-
D. X. Zhou and K. Jetter. Approximation with polynomial kernels and SVM classifiers. Advances in Computational Mathematics, 25:323-344, 2006.
-
(2006)
Advances in Computational Mathematics
, vol.25
, pp. 323-344
-
-
Zhou, D.X.1
Jetter, K.2
|