메뉴 건너뛰기




Volumn 1, Issue 4, 2001, Pages 245-279

Bayes Point Machines

Author keywords

[No Author keywords available]

Indexed keywords


EID: 0000631731     PISSN: 15324435     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (183)

References (58)
  • 6
    • 0002282678 scopus 로고
    • Probability, frequency, and reasonable expectations
    • R. Cox. Probability, frequency, and reasonable expectations. American Journal of Physics, 14:1-13, 1946.
    • (1946) American Journal of Physics , vol.14 , pp. 1-13
    • Cox, R.1
  • 8
    • 0036161034 scopus 로고    scopus 로고
    • Training invariant support vector machines
    • Accepted for publication. Also: Technical Report JPL-MLTR-00-1, Jet Propulsion Laboratory, Pasadena, CA, 2000
    • D. DeCoste and B. Schölkopf. Training invariant support vector machines. Machine Learning, 2002. Accepted for publication. Also: Technical Report JPL-MLTR-00-1, Jet Propulsion Laboratory, Pasadena, CA, 2000.
    • (2002) Machine Learning
    • DeCoste, D.1    Schölkopf, B.2
  • 9
    • 0000259511 scopus 로고    scopus 로고
    • Approximate statistical test for comparing supervised classification learning algorithms
    • T. G. Dietterich. Approximate statistical test for comparing supervised classification learning algorithms. Neural Computation, 10(7):1895-1924, 1998.
    • (1998) Neural Computation , vol.10 , Issue.7 , pp. 1895-1924
    • Dietterich, T.G.1
  • 11
    • 84898944032 scopus 로고    scopus 로고
    • The kernel Gibbs sampler
    • T. K. Leen, T. G. Dietterich, and V. Tresp, editors, Cambridge, MA, MIT Press
    • T. Graepel and R. Herbrich. The kernel Gibbs sampler. In T. K. Leen, T. G. Dietterich, and V. Tresp, editors, Advances in Neural Information Processing Systems 13, pages 514-520, Cambridge, MA, 2001. MIT Press.
    • (2001) Advances in Neural Information Processing Systems , vol.13 , pp. 514-520
    • Graepel, T.1    Herbrich, R.2
  • 12
    • 6344220686 scopus 로고    scopus 로고
    • Bayesian Transduction
    • S. A. Solla, T. K. Leen, and K.-R. Müller, editors, Cambridge, MA, MIT Press
    • T. Graepel, R. Herbrich, and K. Obermayer. Bayesian Transduction. In S. A. Solla, T. K. Leen, and K.-R. Müller, editors, Advances in Neural Information Processing Systems 12, pages 456-462, Cambridge, MA, 2000. MIT Press.
    • (2000) Advances in Neural Information Processing Systems , vol.12 , pp. 456-462
    • Graepel, T.1    Herbrich, R.2    Obermayer, K.3
  • 13
    • 0008267184 scopus 로고    scopus 로고
    • Technical Report UCSC-CRL-99-10, Computer Science Department, University of California at Santa Cruz
    • D. Haussler. Convolutional kernels on discrete structures. Technical Report UCSC-CRL-99-10, Computer Science Department, University of California at Santa Cruz, 1999.
    • (1999) Convolutional Kernels on Discrete Structures
    • Haussler, D.1
  • 15
    • 84894167296 scopus 로고    scopus 로고
    • A PAC-Bayesian margin bound for linear classifiers: Why SVMs work
    • T. K. Leen, T. G. Dietterich, and V. Tresp, editors, Cambridge, MA, MIT Press
    • R. Herbrich and T. Graepel. A PAC-Bayesian margin bound for linear classifiers: Why SVMs work. In T. K. Leen, T. G. Dietterich, and V. Tresp, editors, Advances in Neural Information Processing Systems 13, pages 224-230, Cambridge, MA, 2001. MIT Press.
    • (2001) Advances in Neural Information Processing Systems , vol.13 , pp. 224-230
    • Herbrich, R.1    Graepel, T.2
  • 20
    • 84957069814 scopus 로고    scopus 로고
    • Text categorization with support vector machines: Learning with many relevant features
    • Berlin, Springer
    • T. Joachims. Text categorization with support vector machines: Learning with many relevant features. In Proceedings of the European Conference on Machine Learning, pages 137-142, Berlin, 1998. Springer.
    • (1998) Proceedings of the European Conference on Machine Learning , pp. 137-142
    • Joachims, T.1
  • 21
    • 0002714543 scopus 로고    scopus 로고
    • Making large-scale SVM learning practical
    • B. Schölkopf, C. J. C. Burges, and A. J. Smola, editors, Cambridge, MA, MIT Press
    • T. Joachims. Making large-scale SVM learning practical. In B. Schölkopf, C. J. C. Burges, and A. J. Smola, editors, Advances in Kernel Methods - Support Vector Learning, pages 169-184, Cambridge, MA, 1999. MIT Press.
    • (1999) Advances in Kernel Methods - Support Vector Learning , pp. 169-184
    • Joachims, T.1
  • 23
    • 0003748256 scopus 로고
    • PhD thesis, Computation and Neural Systems, California Institute of Technology, Pasadena, CA
    • D. J. C. MacKay. Bayesian Methods for Adaptive Models. PhD thesis, Computation and Neural Systems, California Institute of Technology, Pasadena, CA, 1991.
    • (1991) Bayesian Methods for Adaptive Models
    • MacKay, D.J.C.1
  • 26
    • 0001500115 scopus 로고    scopus 로고
    • Functions of positive and negative type and their connection with the theory of integral equations
    • J. Mercer. Functions of positive and negative type and their connection with the theory of integral equations. Philosophical Transactions of the Royal Society, London, A 209:415-446, 1909.
    • Philosophical Transactions of the Royal Society, London , vol.A 209 , pp. 415-446
    • Mercer, J.1
  • 29
    • 0002056465 scopus 로고
    • Version spaces: A candidate elimination approach to rule learning
    • Cambridge, Massachusetts, IJCAII
    • T. M. Mitchell. Version spaces: a candidate elimination approach to rule learning. In Proceedings of the International Joint Conference on Neural Networks, pages 305-310, Cambridge, Massachusetts, 1977. IJCAII.
    • (1977) Proceedings of the International Joint Conference on Neural Networks , pp. 305-310
    • Mitchell, T.M.1
  • 30
    • 0000531852 scopus 로고
    • Generalization as search
    • T. M. Mitchell. Generalization as search. Artificial Intelligence, 18(2):202-226, 1982.
    • (1982) Artificial Intelligence , vol.18 , Issue.2 , pp. 202-226
    • Mitchell, T.M.1
  • 34
    • 0001654264 scopus 로고
    • Generalization performance of Bayes optimal classification algorithms for learning a perceptron
    • M. Opper and D. Haussler. Generalization performance of Bayes optimal classification algorithms for learning a perceptron. Physical Review Letters, 66:2677, 1991.
    • (1991) Physical Review Letters , vol.66 , pp. 2677
    • Opper, M.1    Haussler, D.2
  • 36
    • 0008238669 scopus 로고
    • On the ability of the optimal perceptron to generalize
    • M. Opper, W. Kinzel, J. Kleinz, and R. Nehl. On the ability of the optimal perceptron to generalize. Journal of Physics A, 23:581-586, 1990.
    • (1990) Journal of Physics A , vol.23 , pp. 581-586
    • Opper, M.1    Kinzel, W.2    Kleinz, J.3    Nehl, R.4
  • 37
    • 0034320350 scopus 로고    scopus 로고
    • Gaussian processes for classification: Mean field algorithms
    • M. Opper and O. Winther. Gaussian processes for classification: Mean field algorithms. Neural Computation, 12(11) =2655-2684, 2000.
    • (2000) Neural Computation , vol.12 , Issue.11 , pp. 2655-2684
    • Opper, M.1    Winther, O.2
  • 38
    • 0003425662 scopus 로고    scopus 로고
    • Technical report, Artificial Intelligence Laboratory, Massachusetts Institute of Technology, AI Memo No. 1602
    • E. E. Osuna, R. Freund, and F. Girosi. Support vector machines: Training and applications. Technical report, Artificial Intelligence Laboratory, Massachusetts Institute of Technology, 1997. AI Memo No. 1602.
    • (1997) Support Vector Machines: Training and Applications
    • Osuna, E.E.1    Freund, R.2    Girosi, F.3
  • 39
    • 0010860902 scopus 로고
    • The estimation of the location and scale parameters of a continuous population of any given form
    • E. J. G. Pitman. The estimation of the location and scale parameters of a continuous population of any given form. Biometrika, 30:391-421, 1939.
    • (1939) Biometrika , vol.30 , pp. 391-421
    • Pitman, E.J.G.1
  • 40
    • 0003120218 scopus 로고    scopus 로고
    • Fast training of support vector machines using sequential minimal optimization
    • B. Schölkopf, C. J. C. Burges, and A. J. Smola, editors, Cambridge, MA, MIT Press
    • J. Platt. Fast training of support vector machines using sequential minimal optimization. In B. Schölkopf, C. J. C. Burges, and A. J. Smola, editors, Advances in Kernel Methods - Support Vector Learning, pages 185-208, Cambridge, MA, 1999. MIT Press.
    • (1999) Advances in Kernel Methods - Support Vector Learning , pp. 185-208
    • Platt, J.1
  • 41
    • 0003243224 scopus 로고    scopus 로고
    • Probabilities for SV machines
    • A. J. Smola, P. L. Bartlett, B. Schölkopf, and D. Schuurmans, editors, Cambridge, MA, MIT Press
    • J. Platt. Probabilities for SV machines. In A. J. Smola, P. L. Bartlett, B. Schölkopf, and D. Schuurmans, editors, Advances in Large Margin Classifiers, pages 61-73, Cambridge, MA, 2000. MIT Press.
    • (2000) Advances in Large Margin Classifiers , pp. 61-73
    • Platt, J.1
  • 43
    • 0002536264 scopus 로고    scopus 로고
    • Playing billiards in version space
    • P. Ruján. Playing billiards in version space. Neural Computation, 9:99-122, 1997.
    • (1997) Neural Computation , vol.9 , pp. 99-122
    • Ruján, P.1
  • 44
    • 0013406706 scopus 로고    scopus 로고
    • Computing the Bayes kernel classifier
    • A. J. Smola, P. L. Bartlett, B. Schölkopf, and D. Schuurmans, editors, Cambridge, MA, MIT Press
    • P. Ruján and M. Marchand. Computing the Bayes kernel classifier. In A. J. Smola, P. L. Bartlett, B. Schölkopf, and D. Schuurmans, editors, Advances in Large Margin Classifiers, pages 329-347, Cambridge, MA, 2000. MIT Press.
    • (2000) Advances in Large Margin Classifiers , pp. 329-347
    • Ruján, P.1    Marchand, M.2
  • 46
    • 0003893955 scopus 로고    scopus 로고
    • R. Oldenbourg Verlag, München, Doktorarbeit, TU Berlin
    • B. Schölkopf. Support Vector Learning. R. Oldenbourg Verlag, München, 1997. Doktorarbeit, TU Berlin. Download: http://www.kernel-machines.org.
    • (1997) Support Vector Learning
    • Schölkopf, B.1
  • 50
    • 0000622640 scopus 로고    scopus 로고
    • Margin distribution and soft margin
    • A. J. Smola, P. L. Bartlett, B. Schölkopf, and D. Schuurmans, editors, Cambridge, MA, MIT Press
    • J. Shawe-Taylor and N. Cristianini. Margin distribution and soft margin. In A. J. Smola, P. L. Bartlett, B. Schölkopf, and D. Schuurmans, editors, Advances in Large Margin Classifiers, pages 349-358, Cambridge, MA, 2000. MIT Press.
    • (2000) Advances in Large Margin Classifiers , pp. 349-358
    • Shawe-Taylor, J.1    Cristianini, N.2
  • 51
    • 0004094721 scopus 로고    scopus 로고
    • PhD thesis, Technische Universität Berlin, GMD Research Series No. 25
    • A. J. Smola. Learning with Kernels. PhD thesis, Technische Universität Berlin, 1998. GMD Research Series No. 25.
    • (1998) Learning with Kernels
    • Smola, A.J.1
  • 52
    • 84899032333 scopus 로고    scopus 로고
    • Probabilistic methods for support vector machines
    • S. A. Solla, T. K. Leen, and K.-R. Müller, editors, Cambridge, MA, MIT Press
    • P. Sollich. Probabilistic methods for support vector machines. In S. A. Solla, T. K. Leen, and K.-R. Müller, editors, Advances in Neural Information Processing Systems 12, pages 349-355, Cambridge, MA, 2000. MIT Press.
    • (2000) Advances in Neural Information Processing Systems , vol.12 , pp. 349-355
    • Sollich, P.1
  • 56
    • 84956110061 scopus 로고
    • Optimal learning with a neural network
    • T. Watkin. Optimal learning with a neural network. Europhysics Letters, 21:871, 1993.
    • (1993) Europhysics Letters , vol.21 , pp. 871
    • Watkin, T.1
  • 57
    • 0003017575 scopus 로고    scopus 로고
    • Prediction with Gaussian processes: From linear regression to linear prediction and beyond
    • M. Jordan, editor, MIT Press
    • C. K. I. Williams. Prediction with Gaussian processes: From linear regression to linear prediction and beyond. In M. Jordan, editor, Learning and Inference in Graphical Models, pages 599-621. MIT Press, 1999.
    • (1999) Learning and Inference in Graphical Models , pp. 599-621
    • Williams, C.K.I.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.