-
3
-
-
0026966646
-
A training algorithm for optimal margin classifiers
-
D. Haussler, editor, Pittsburgh, PA, July ACM Press
-
B. E. BÖser, I. M. Guyon, and V. N. Vapnik. A training algorithm for optimal margin classifiers. In D. Haussler, editor, Proceedings of the Annual Conference on Computational Learning Theory, pages 144-152, Pittsburgh, PA, July 1992. ACM Press.
-
(1992)
Proceedings of the Annual Conference on Computational Learning Theory
, pp. 144-152
-
-
Böser, B.E.1
Guyon, I.M.2
Vapnik, V.N.3
-
6
-
-
0002282678
-
Probability, frequency, and reasonable expectations
-
R. Cox. Probability, frequency, and reasonable expectations. American Journal of Physics, 14:1-13, 1946.
-
(1946)
American Journal of Physics
, vol.14
, pp. 1-13
-
-
Cox, R.1
-
8
-
-
0036161034
-
Training invariant support vector machines
-
Accepted for publication. Also: Technical Report JPL-MLTR-00-1, Jet Propulsion Laboratory, Pasadena, CA, 2000
-
D. DeCoste and B. Schölkopf. Training invariant support vector machines. Machine Learning, 2002. Accepted for publication. Also: Technical Report JPL-MLTR-00-1, Jet Propulsion Laboratory, Pasadena, CA, 2000.
-
(2002)
Machine Learning
-
-
DeCoste, D.1
Schölkopf, B.2
-
9
-
-
0000259511
-
Approximate statistical test for comparing supervised classification learning algorithms
-
T. G. Dietterich. Approximate statistical test for comparing supervised classification learning algorithms. Neural Computation, 10(7):1895-1924, 1998.
-
(1998)
Neural Computation
, vol.10
, Issue.7
, pp. 1895-1924
-
-
Dietterich, T.G.1
-
11
-
-
84898944032
-
The kernel Gibbs sampler
-
T. K. Leen, T. G. Dietterich, and V. Tresp, editors, Cambridge, MA, MIT Press
-
T. Graepel and R. Herbrich. The kernel Gibbs sampler. In T. K. Leen, T. G. Dietterich, and V. Tresp, editors, Advances in Neural Information Processing Systems 13, pages 514-520, Cambridge, MA, 2001. MIT Press.
-
(2001)
Advances in Neural Information Processing Systems
, vol.13
, pp. 514-520
-
-
Graepel, T.1
Herbrich, R.2
-
12
-
-
6344220686
-
Bayesian Transduction
-
S. A. Solla, T. K. Leen, and K.-R. Müller, editors, Cambridge, MA, MIT Press
-
T. Graepel, R. Herbrich, and K. Obermayer. Bayesian Transduction. In S. A. Solla, T. K. Leen, and K.-R. Müller, editors, Advances in Neural Information Processing Systems 12, pages 456-462, Cambridge, MA, 2000. MIT Press.
-
(2000)
Advances in Neural Information Processing Systems
, vol.12
, pp. 456-462
-
-
Graepel, T.1
Herbrich, R.2
Obermayer, K.3
-
13
-
-
0008267184
-
-
Technical Report UCSC-CRL-99-10, Computer Science Department, University of California at Santa Cruz
-
D. Haussler. Convolutional kernels on discrete structures. Technical Report UCSC-CRL-99-10, Computer Science Department, University of California at Santa Cruz, 1999.
-
(1999)
Convolutional Kernels on Discrete Structures
-
-
Haussler, D.1
-
15
-
-
84894167296
-
A PAC-Bayesian margin bound for linear classifiers: Why SVMs work
-
T. K. Leen, T. G. Dietterich, and V. Tresp, editors, Cambridge, MA, MIT Press
-
R. Herbrich and T. Graepel. A PAC-Bayesian margin bound for linear classifiers: Why SVMs work. In T. K. Leen, T. G. Dietterich, and V. Tresp, editors, Advances in Neural Information Processing Systems 13, pages 224-230, Cambridge, MA, 2001. MIT Press.
-
(2001)
Advances in Neural Information Processing Systems
, vol.13
, pp. 224-230
-
-
Herbrich, R.1
Graepel, T.2
-
20
-
-
84957069814
-
Text categorization with support vector machines: Learning with many relevant features
-
Berlin, Springer
-
T. Joachims. Text categorization with support vector machines: Learning with many relevant features. In Proceedings of the European Conference on Machine Learning, pages 137-142, Berlin, 1998. Springer.
-
(1998)
Proceedings of the European Conference on Machine Learning
, pp. 137-142
-
-
Joachims, T.1
-
21
-
-
0002714543
-
Making large-scale SVM learning practical
-
B. Schölkopf, C. J. C. Burges, and A. J. Smola, editors, Cambridge, MA, MIT Press
-
T. Joachims. Making large-scale SVM learning practical. In B. Schölkopf, C. J. C. Burges, and A. J. Smola, editors, Advances in Kernel Methods - Support Vector Learning, pages 169-184, Cambridge, MA, 1999. MIT Press.
-
(1999)
Advances in Kernel Methods - Support Vector Learning
, pp. 169-184
-
-
Joachims, T.1
-
23
-
-
0003748256
-
-
PhD thesis, Computation and Neural Systems, California Institute of Technology, Pasadena, CA
-
D. J. C. MacKay. Bayesian Methods for Adaptive Models. PhD thesis, Computation and Neural Systems, California Institute of Technology, Pasadena, CA, 1991.
-
(1991)
Bayesian Methods for Adaptive Models
-
-
MacKay, D.J.C.1
-
26
-
-
0001500115
-
Functions of positive and negative type and their connection with the theory of integral equations
-
J. Mercer. Functions of positive and negative type and their connection with the theory of integral equations. Philosophical Transactions of the Royal Society, London, A 209:415-446, 1909.
-
Philosophical Transactions of the Royal Society, London
, vol.A 209
, pp. 415-446
-
-
Mercer, J.1
-
29
-
-
0002056465
-
Version spaces: A candidate elimination approach to rule learning
-
Cambridge, Massachusetts, IJCAII
-
T. M. Mitchell. Version spaces: a candidate elimination approach to rule learning. In Proceedings of the International Joint Conference on Neural Networks, pages 305-310, Cambridge, Massachusetts, 1977. IJCAII.
-
(1977)
Proceedings of the International Joint Conference on Neural Networks
, pp. 305-310
-
-
Mitchell, T.M.1
-
30
-
-
0000531852
-
Generalization as search
-
T. M. Mitchell. Generalization as search. Artificial Intelligence, 18(2):202-226, 1982.
-
(1982)
Artificial Intelligence
, vol.18
, Issue.2
, pp. 202-226
-
-
Mitchell, T.M.1
-
34
-
-
0001654264
-
Generalization performance of Bayes optimal classification algorithms for learning a perceptron
-
M. Opper and D. Haussler. Generalization performance of Bayes optimal classification algorithms for learning a perceptron. Physical Review Letters, 66:2677, 1991.
-
(1991)
Physical Review Letters
, vol.66
, pp. 2677
-
-
Opper, M.1
Haussler, D.2
-
36
-
-
0008238669
-
On the ability of the optimal perceptron to generalize
-
M. Opper, W. Kinzel, J. Kleinz, and R. Nehl. On the ability of the optimal perceptron to generalize. Journal of Physics A, 23:581-586, 1990.
-
(1990)
Journal of Physics A
, vol.23
, pp. 581-586
-
-
Opper, M.1
Kinzel, W.2
Kleinz, J.3
Nehl, R.4
-
37
-
-
0034320350
-
Gaussian processes for classification: Mean field algorithms
-
M. Opper and O. Winther. Gaussian processes for classification: Mean field algorithms. Neural Computation, 12(11) =2655-2684, 2000.
-
(2000)
Neural Computation
, vol.12
, Issue.11
, pp. 2655-2684
-
-
Opper, M.1
Winther, O.2
-
38
-
-
0003425662
-
-
Technical report, Artificial Intelligence Laboratory, Massachusetts Institute of Technology, AI Memo No. 1602
-
E. E. Osuna, R. Freund, and F. Girosi. Support vector machines: Training and applications. Technical report, Artificial Intelligence Laboratory, Massachusetts Institute of Technology, 1997. AI Memo No. 1602.
-
(1997)
Support Vector Machines: Training and Applications
-
-
Osuna, E.E.1
Freund, R.2
Girosi, F.3
-
39
-
-
0010860902
-
The estimation of the location and scale parameters of a continuous population of any given form
-
E. J. G. Pitman. The estimation of the location and scale parameters of a continuous population of any given form. Biometrika, 30:391-421, 1939.
-
(1939)
Biometrika
, vol.30
, pp. 391-421
-
-
Pitman, E.J.G.1
-
40
-
-
0003120218
-
Fast training of support vector machines using sequential minimal optimization
-
B. Schölkopf, C. J. C. Burges, and A. J. Smola, editors, Cambridge, MA, MIT Press
-
J. Platt. Fast training of support vector machines using sequential minimal optimization. In B. Schölkopf, C. J. C. Burges, and A. J. Smola, editors, Advances in Kernel Methods - Support Vector Learning, pages 185-208, Cambridge, MA, 1999. MIT Press.
-
(1999)
Advances in Kernel Methods - Support Vector Learning
, pp. 185-208
-
-
Platt, J.1
-
41
-
-
0003243224
-
Probabilities for SV machines
-
A. J. Smola, P. L. Bartlett, B. Schölkopf, and D. Schuurmans, editors, Cambridge, MA, MIT Press
-
J. Platt. Probabilities for SV machines. In A. J. Smola, P. L. Bartlett, B. Schölkopf, and D. Schuurmans, editors, Advances in Large Margin Classifiers, pages 61-73, Cambridge, MA, 2000. MIT Press.
-
(2000)
Advances in Large Margin Classifiers
, pp. 61-73
-
-
Platt, J.1
-
42
-
-
0342502195
-
Soft margins for adaboost
-
G. Rätsch, T. Onoda, and K.-R. Müller. Soft margins for adaboost. Machine Learning, 42(3): 287-320, 2001.
-
(2001)
Machine Learning
, vol.42
, Issue.3
, pp. 287-320
-
-
Rätsch, G.1
Onoda, T.2
Müller, K.-R.3
-
43
-
-
0002536264
-
Playing billiards in version space
-
P. Ruján. Playing billiards in version space. Neural Computation, 9:99-122, 1997.
-
(1997)
Neural Computation
, vol.9
, pp. 99-122
-
-
Ruján, P.1
-
44
-
-
0013406706
-
Computing the Bayes kernel classifier
-
A. J. Smola, P. L. Bartlett, B. Schölkopf, and D. Schuurmans, editors, Cambridge, MA, MIT Press
-
P. Ruján and M. Marchand. Computing the Bayes kernel classifier. In A. J. Smola, P. L. Bartlett, B. Schölkopf, and D. Schuurmans, editors, Advances in Large Margin Classifiers, pages 329-347, Cambridge, MA, 2000. MIT Press.
-
(2000)
Advances in Large Margin Classifiers
, pp. 329-347
-
-
Ruján, P.1
Marchand, M.2
-
46
-
-
0003893955
-
-
R. Oldenbourg Verlag, München, Doktorarbeit, TU Berlin
-
B. Schölkopf. Support Vector Learning. R. Oldenbourg Verlag, München, 1997. Doktorarbeit, TU Berlin. Download: http://www.kernel-machines.org.
-
(1997)
Support Vector Learning
-
-
Schölkopf, B.1
-
48
-
-
0032594954
-
Input space vs. feature space in kernel-based methods
-
B. Schölkopf, S. Mika, C. Burges, P. Knirsch, K.-R. Müller, G. Rätsch, and A. Smola. Input space vs. feature space in kernel-based methods. IEEE Transactions on Neural Networks, 10(5):1000-1017, 1999.
-
(1999)
IEEE Transactions on Neural Networks
, vol.10
, Issue.5
, pp. 1000-1017
-
-
Schölkopf, B.1
Mika, S.2
Burges, C.3
Knirsch, P.4
Müller, K.-R.5
Rätsch, G.6
Smola, A.7
-
49
-
-
0032166068
-
Structural risk minimization over data-dependent hierarchies
-
J. Shawe-Taylor, P. L. Bartlett, R. C. Williamson, and M. Anthony. Structural risk minimization over data-dependent hierarchies. IEEE Transactions on Information Theory, 44(5):1926-1940, 1998.
-
(1998)
IEEE Transactions on Information Theory
, vol.44
, Issue.5
, pp. 1926-1940
-
-
Shawe-Taylor, J.1
Bartlett, P.L.2
Williamson, R.C.3
Anthony, M.4
-
50
-
-
0000622640
-
Margin distribution and soft margin
-
A. J. Smola, P. L. Bartlett, B. Schölkopf, and D. Schuurmans, editors, Cambridge, MA, MIT Press
-
J. Shawe-Taylor and N. Cristianini. Margin distribution and soft margin. In A. J. Smola, P. L. Bartlett, B. Schölkopf, and D. Schuurmans, editors, Advances in Large Margin Classifiers, pages 349-358, Cambridge, MA, 2000. MIT Press.
-
(2000)
Advances in Large Margin Classifiers
, pp. 349-358
-
-
Shawe-Taylor, J.1
Cristianini, N.2
-
51
-
-
0004094721
-
-
PhD thesis, Technische Universität Berlin, GMD Research Series No. 25
-
A. J. Smola. Learning with Kernels. PhD thesis, Technische Universität Berlin, 1998. GMD Research Series No. 25.
-
(1998)
Learning with Kernels
-
-
Smola, A.J.1
-
52
-
-
84899032333
-
Probabilistic methods for support vector machines
-
S. A. Solla, T. K. Leen, and K.-R. Müller, editors, Cambridge, MA, MIT Press
-
P. Sollich. Probabilistic methods for support vector machines. In S. A. Solla, T. K. Leen, and K.-R. Müller, editors, Advances in Neural Information Processing Systems 12, pages 349-355, Cambridge, MA, 2000. MIT Press.
-
(2000)
Advances in Neural Information Processing Systems
, vol.12
, pp. 349-355
-
-
Sollich, P.1
-
56
-
-
84956110061
-
Optimal learning with a neural network
-
T. Watkin. Optimal learning with a neural network. Europhysics Letters, 21:871, 1993.
-
(1993)
Europhysics Letters
, vol.21
, pp. 871
-
-
Watkin, T.1
-
57
-
-
0003017575
-
Prediction with Gaussian processes: From linear regression to linear prediction and beyond
-
M. Jordan, editor, MIT Press
-
C. K. I. Williams. Prediction with Gaussian processes: From linear regression to linear prediction and beyond. In M. Jordan, editor, Learning and Inference in Graphical Models, pages 599-621. MIT Press, 1999.
-
(1999)
Learning and Inference in Graphical Models
, pp. 599-621
-
-
Williams, C.K.I.1
|