메뉴 건너뛰기




Volumn , Issue , 2009, Pages 2205-2213

Analysis of SVM with indefinite kernels

Author keywords

[No Author keywords available]

Indexed keywords

CONTINUOUSLY DIFFERENTIABLE; GRADIENT BASED ALGORITHM; INDEFINITE KERNEL; KERNEL MATRICES; LIPSCHITZ CONTINUOUS; MIN-MAX; OBJECTIVE FUNCTIONS; PENALTY TERM; PROPERTY; SVM CLASSIFICATION (SVMC);

EID: 84858716027     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (51)

References (26)
  • 1
    • 0004151496 scopus 로고    scopus 로고
    • Graduate texts in Mathematics. Springer
    • R. Bhatia. Matrix analysis. Graduate texts in Mathematics. Springer, 1997.
    • (1997) Matrix Analysis
    • Bhatia, R.1
  • 3
    • 0032096712 scopus 로고    scopus 로고
    • Optimization problems with perturbation: A guided tour
    • J. F. Bonnans and A. Shapiro. Optimization problems with perturbation: A guided tour. SIAM Review, 40: 202-227, 1998.
    • (1998) SIAM Review , vol.40 , pp. 202-227
    • Bonnans, J.F.1    Shapiro, A.2
  • 4
    • 56449083666 scopus 로고    scopus 로고
    • Training SVM with indefinite kernels
    • J. Chen and J. Ye. Training SVM with Indefinite Kernels. ICML, 2008.
    • (2008) ICML
    • Chen, J.1    Ye, J.2
  • 11
    • 0041775676 scopus 로고    scopus 로고
    • Diffusion kernels on graphs and other discrete input spaces
    • R. I. Kondor and J. Laffferty. Diffusion kernels on graphs and other discrete input spaces. ICML, 2002.
    • (2002) ICML
    • Kondor, R.I.1    Laffferty, J.2
  • 12
    • 0040165092 scopus 로고    scopus 로고
    • Practical aspects of the moreau-yosida regularization: Theoretical preliminaries
    • C. Lemaréchal and C. Sagastizábal. Practical aspects of the Moreau-Yosida regularization: theoretical preliminaries. SIAM Journal on Optimization, 7: 367-385, 1997.
    • (1997) SIAM Journal on Optimization , vol.7 , pp. 367-385
    • Lemaréchal, C.1    Sagastizábal, C.2
  • 14
    • 3843050541 scopus 로고    scopus 로고
    • A study on sigmoid kernels for SVM and the training of non-psd kernels by smo-type methods
    • H.-T. Lin and C. J. Lin. A study on sigmoid kernels for SVM and the training of non-psd kernels by smo-type methods. Technical Report, National Taiwan University, 2003.
    • (2003) Technical Report, National Taiwan University
    • Lin, H.-T.1    Lin, C.J.2
  • 15
    • 64149091792 scopus 로고    scopus 로고
    • Support vector machine classification with indefinite kernels
    • R. Luss and A. d'Aspremont. Support vector machine classification with indefinite kernels. NIPS, 2007.
    • (2007) NIPS
    • Luss, R.1    D'Aspremont, A.2
  • 16
    • 70049091215 scopus 로고
    • Efficient methods in convex programming
    • A. Nemirovski. Efficient methods in convex programming. Lecture Notes, 1994.
    • (1994) Lecture Notes
    • Nemirovski, A.1
  • 18
    • 17444406259 scopus 로고    scopus 로고
    • Smooth minimization of non-smooth functions
    • Y. Nesterov. Smooth minimization of non-smooth functions. Mathematical Programming, 103:127-152, 2005.
    • (2005) Mathematical Programming , vol.103 , pp. 127-152
    • Nesterov, Y.1
  • 21
    • 0041995203 scopus 로고    scopus 로고
    • A generalized kernel approach to dissimilarity-based classification
    • E. Pekalska, P. Paclik, and R. P. W. Duin. A generalized kernel approach to dissimilarity-based classification. J. of Machine Learning Research, 2: 175-211, 2002.
    • (2002) J. of Machine Learning Research , vol.2 , pp. 175-211
    • Pekalska, E.1    Paclik, P.2    Duin, R.P.W.3
  • 23
    • 4444273377 scopus 로고    scopus 로고
    • Protein homology detection using string alignment kernels
    • H. Saigo, J.P. Vert and N. Ueda, and T. Akutsu. Protein homology detection using string alignment kernels. Bioinformatics, 20: 1682-1689., 2004.
    • (2004) Bioinformatics , vol.20 , pp. 1682-1689
    • Saigo, H.1    Vert, J.P.2    Ueda, N.3    Akutsu, T.4
  • 26
    • 33749237249 scopus 로고    scopus 로고
    • An analysis of transformation on non-positive semidefinite similarity matrix for kernel machines
    • G. Wu, Z. Zhang, and E. Y. Chang. An analysis of transformation on non-positive semidefinite similarity matrix for kernel machines. Technical Report, UCSB, 2005.
    • (2005) Technical Report, UCSB
    • Wu, G.1    Zhang, Z.2    Chang, E.Y.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.