-
1
-
-
0020702681
-
Numerical methods for nondifferentiable convex optimization
-
A. AUSLENDER, Numerical methods for nondifferentiable convex optimization, Math. Programming Study, 30 (1987), pp. 102-126.
-
(1987)
Math. Programming Study
, vol.30
, pp. 102-126
-
-
Auslender, A.1
-
2
-
-
0003441640
-
-
Elsevier, New York
-
R. BELLMAN, R. KALABA, AND J. LOCKETT, Numerical Inversion of the Laplace Transform, Elsevier, New York, 1966.
-
(1966)
Numerical Inversion of the Laplace Transform
-
-
Bellman, R.1
Kalaba, R.2
Lockett, J.3
-
3
-
-
0001360721
-
A family of variable metric proximal methods
-
J. BONNANS, J. GILBERT, C. LEMARÉCHAL, AND C. SAGASTIZÁBAL, A family of variable metric proximal methods, Math. Programming, 68 (1995), pp. 15-48.
-
(1995)
Math. Programming
, vol.68
, pp. 15-48
-
-
Bonnans, J.1
Gilbert, J.2
Lemaréchal, C.3
Sagastizábal, C.4
-
4
-
-
0001582886
-
Convergence of functions: Equi-semi-continuity
-
S. DOLECKI, G. SALINETTI, AND R. WETS, Convergence of functions: Equi-semi-continuity, Trans. Amer. Math. Soc., 276 (1983), pp. 409-429.
-
(1983)
Trans. Amer. Math. Soc.
, vol.276
, pp. 409-429
-
-
Dolecki, S.1
Salinetti, G.2
Wets, R.3
-
5
-
-
0021503955
-
A descent algorithm for nonsmooth convex programming
-
M. FUKUSHIMA, A descent algorithm for nonsmooth convex programming, Math. Programming, 30 (1984), pp. 163-175.
-
(1984)
Math. Programming
, vol.30
, pp. 163-175
-
-
Fukushima, M.1
-
6
-
-
0041064212
-
The approximate first-order and second-order directional derivatives for a convex function
-
J.-P. Cecconi and T. Zolezzi, eds., Lecture Notes in Mathematics 979, Springer-Verlag, Berlin, New York
-
J.-B. HlRIART-URRUTY, The approximate first-order and second-order directional derivatives for a convex function, in Mathematical Theories of Optimization, J.-P. Cecconi and T. Zolezzi, eds., Lecture Notes in Mathematics 979, Springer-Verlag, Berlin, New York, 1983, pp. 154-166.
-
(1983)
Mathematical Theories of Optimization
, pp. 154-166
-
-
Hlriart-Urruty, J.-B.1
-
8
-
-
0027110831
-
Local convergence of quasi-Newton methods for B-differentiable equations
-
C.-M. IP AND J. KYPARISIS, Local convergence of quasi-Newton methods for B-differentiable equations, Math. Programming, 56 (1992), pp. 71-89.
-
(1992)
Math. Programming
, vol.56
, pp. 71-89
-
-
Ip, C.-M.1
Kyparisis, J.2
-
9
-
-
0025208765
-
Proximity control in bundle methods for convex nondifferentiable minimization
-
K. KIWIEL, Proximity control in bundle methods for convex nondifferentiable minimization, Math. Programming, 46 (1990), pp. 105-122.
-
(1990)
Math. Programming
, vol.46
, pp. 105-122
-
-
Kiwiel, K.1
-
10
-
-
0000525522
-
An approach to variable metric bundle methods
-
J. Henry and J.-P. Yvon, eds., Lecture Notes in Control and Inform. Sci. 197, Springer-Verlag, Berlin, New York
-
C. LEMARÉCHAL AND C. SAGASTIZABAL, An approach to variable metric bundle methods, in Systems Modelling and Optimization, J. Henry and J.-P. Yvon, eds., Lecture Notes in Control and Inform. Sci. 197, Springer-Verlag, Berlin, New York, 1994, pp. 144-162.
-
(1994)
Systems Modelling and Optimization
, pp. 144-162
-
-
Lemaréchal, C.1
Sagastizabal, C.2
-
11
-
-
21744439259
-
More than first-order developments of convex functions: Primal-dual relations
-
C. LEMARÉCHAL AND C. SAGASTIZÁBAL, More than first-order developments of convex functions: Primal-dual relations, J. Convex Anal., (1996), pp. 1-14.
-
(1996)
J. Convex Anal.
, pp. 1-14
-
-
Lemaréchal, C.1
Sagastizábal, C.2
-
13
-
-
0001566816
-
Régularisation d'inéquations variationnelles par approximations successives
-
B. MARTINET, Régularisation d'inéquations variationnelles par approximations successives, Revue Française d'Informatique et Recherche Opérationnelle, R-3 (1970), pp. 154-179.
-
(1970)
Revue Française d'Informatique et Recherche Opérationnelle
, vol.R-3
, pp. 154-179
-
-
Martinet, B.1
-
14
-
-
0041064213
-
-
Technical report 93-3, University of Washington, Pullman, WA
-
R. MIFFLIN, A Quasi-Second-Order Proximal Bundle Algorithm, Technical report 93-3, University of Washington, Pullman, WA, 1993.
-
(1993)
A Quasi-Second-Order Proximal Bundle Algorithm
-
-
Mifflin, R.1
-
15
-
-
0000276924
-
Proximité et dualité dans un espace hilbertien
-
J. MOREAU, Proximité et dualité dans un espace hilbertien, Bull. Soc. Math. France, 93 (1965), pp. 273-299.
-
(1965)
Bull. Soc. Math. France
, vol.93
, pp. 273-299
-
-
Moreau, J.1
-
16
-
-
0003317924
-
Nonsmooth equations: Motivation and algorithms
-
J. PANG AND L. QI, Nonsmooth equations: Motivation and algorithms, SIAM J. Control Optim., 3 (1993), pp. 443-465.
-
(1993)
SIAM J. Control Optim.
, vol.3
, pp. 443-465
-
-
Pang, J.1
Qi, L.2
-
17
-
-
0039928944
-
Generalized hessian properties of regularized nonsmooth functions
-
R. POLIQUIN AND R. ROCKAFELLAR, Generalized hessian properties of regularized nonsmooth functions, SIAM J. Optim., 6 (1996), pp. 1121-1137.
-
(1996)
SIAM J. Optim.
, vol.6
, pp. 1121-1137
-
-
Poliquin, R.1
Rockafellar, R.2
-
18
-
-
0028427060
-
1 optimization problems
-
1 optimization problems, Math. Programming, 64 (1994), pp. 277-294.
-
(1994)
Math. Programming
, vol.64
, pp. 277-294
-
-
Qi, L.1
-
19
-
-
0039285285
-
Second-order analysis of the Moreau-Yosida approximation of a convex function
-
School of Mathematics, The University of New South Wales, Sydney, Australia
-
L. QI, Second-Order Analysis of the Moreau-Yosida Approximation of a Convex Function, Applied Mathematics Report AMR94/20, School of Mathematics, The University of New South Wales, Sydney, Australia, 1994.
-
(1994)
Applied Mathematics Report AMR94/20
-
-
Qi, L.1
-
20
-
-
0027543961
-
A nonsmooth version of Newton's method
-
L. QI AND J. SUN, A nonsmooth version of Newton's method, Math. Programming, 58 (1993), pp. 353-367.
-
(1993)
Math. Programming
, vol.58
, pp. 353-367
-
-
Qi, L.1
Sun, J.2
-
21
-
-
0002247777
-
-
Department of Mathematics, Manuscript GN-50, University of Washington, Seattle, WA 98195
-
M. QIAN, The Variable Metric Proximal Point Algorithm: Application to Optimization, Department of Mathematics, Manuscript GN-50, University of Washington, Seattle, WA 98195, 1992.
-
(1992)
The Variable Metric Proximal Point Algorithm: Application to Optimization
-
-
Qian, M.1
-
22
-
-
0004267646
-
-
Princeton University Press, Princeton, NJ
-
R. ROCKAFELLAR, Convex Analysis, Princeton University Press, Princeton, NJ, 1970.
-
(1970)
Convex Analysis
-
-
Rockafellar, R.1
-
23
-
-
0016985417
-
Monotone operators and the proximal point algorithm
-
R. ROCKAFELLAR, Monotone operators and the proximal point algorithm, SIAM J. Control Optim., 14 (1976), pp. 877-898.
-
(1976)
SIAM J. Control Optim.
, vol.14
, pp. 877-898
-
-
Rockafellar, R.1
-
24
-
-
84966234425
-
Maximal monotone relations and the second derivatives of nonsmooth functions
-
R. ROCKAFELLAR, Maximal monotone relations and the second derivatives of nonsmooth functions, Annales de l'Institut Henri Poincaré, Analyse non linéaire, 2 (1985), pp. 167-186.
-
(1985)
Annales de l'Institut Henri Poincaré, Analyse Non Linéaire
, vol.2
, pp. 167-186
-
-
Rockafellar, R.1
-
25
-
-
0000091855
-
A version of the bundle idea for minimizing a nonsmooth function: Conceptual idea, convergence analysis, numerical results
-
H. SCHRAMM AND J. ZOWE, A version of the bundle idea for minimizing a nonsmooth function: Conceptual idea, convergence analysis, numerical results, SIAM J. Optim., 2 (1992), pp. 121-152.
-
(1992)
SIAM J. Optim.
, vol.2
, pp. 121-152
-
-
Schramm, H.1
Zowe, J.2
-
26
-
-
0010677475
-
Convergence of convex functions, variational inequalities and convex optimization problems
-
F. G. R. Cottle and J.-L. Lions, eds., Wiley, New York
-
R. WETS, Convergence of convex functions, variational inequalities and convex optimization problems, in Variational Inequalities and Complementarity Problems, F. G. R. Cottle and J.-L. Lions, eds., Wiley, New York, 1980, pp. 405-419.
-
(1980)
Variational Inequalities and Complementarity Problems
, pp. 405-419
-
-
Wets, R.1
-
27
-
-
0004021335
-
-
Springer-Verlag, Berlin, New York
-
K. YOSIDA, Functional Analysis, Springer-Verlag, Berlin, New York, 1964.
-
(1964)
Functional Analysis
-
-
Yosida, K.1
-
28
-
-
85033125123
-
Variable metric bundle methods: From conceptual to implementable forms
-
to appear
-
C. LEMARÉCHAL AND C. SAGASTIZÁBAL, Variable metric bundle methods: From conceptual to implementable forms, Math. Programming, to appear.
-
Math. Programming
-
-
Lemaréchal, C.1
Sagastizábal, C.2
|