-
1
-
-
0242408081
-
-
National Institute of Population and Social Security Research. December 2006. Available at: . Accessed March 11
-
National Institute of Population and Social Security Research. Population projections for Japan: 2006-2055, December 2006. Available at: Http:// www.ipss.go.jp/index-e.html. Accessed March 11, 2010.
-
Population projections for Japan: 2006-2055
, pp. 2010
-
-
-
2
-
-
69949111619
-
From heterochromatin islands to the NAD World: A hierarchical view of aging through the functions of mammalian Sirt1 and systemic NAD biosynthesis
-
Imai S. From heterochromatin islands to the NAD World: A hierarchical view of aging through the functions of mammalian Sirt1 and systemic NAD biosynthesis. Biochim Biophys Acta. 2009;1790:997-1004.
-
(2009)
Biochim Biophys Acta.
, vol.1790
, pp. 997-1004
-
-
Imai, S.1
-
3
-
-
63149089930
-
The NAD World: A new systemic regulatory network for metabolism and aging-Sirt1 systemic NAD biosynthesis, and their importance
-
Imai S. The NAD World: A new systemic regulatory network for metabolism and aging-Sirt1, systemic NAD biosynthesis, and their importance. Cell Biochem Biophys. 2009;53:65-74.
-
(2009)
Cell Biochem Biophys.
, vol.53
, pp. 65-74
-
-
Imai, S.1
-
4
-
-
77953290430
-
Clocks in the NAD World: NAD as a metabolic oscillator for the regulation of metabolism and aging
-
Imai S. "Clocks" in the NAD World: NAD as a metabolic oscillator for the regulation of metabolism and aging. Biochim Biophys Acta. 2010; 1804:1584-1590.
-
(1804)
Biochim Biophys Acta.
, vol.2010
, pp. 1584-1590
-
-
Imai, S.1
-
5
-
-
77952547233
-
Ten years of NAD-dependent SIR2 family deacetylases: Implications for metabolic diseases
-
Imai S, Guarente L. Ten years of NAD-dependent SIR2 family deacetylases: Implications for metabolic diseases. Trends Pharmacol Sci. 2010;31:212-220.
-
(2010)
Trends Pharmacol Sci.
, vol.31
, pp. 212-220
-
-
Imai, S.1
Guarente, L.2
-
6
-
-
3943054839
-
The Sir2 family of protein deacetylases
-
Blander G, Guarente L. The Sir2 family of protein deacetylases. Annu Rev Biochem. 2004;73:417-435.
-
(2004)
Annu Rev Biochem.
, vol.73
, pp. 417-435
-
-
Blander, G.1
Guarente, L.2
-
7
-
-
34547914840
-
Sirtuins: The 'magnificent seven', function, metabolism and longevity
-
Dali-Youcef N, Lagouge M, Froelich S, et al. Sirtuins: The magnificent seven, function, metabolism and longevity. Ann Med. 2007;39:335-345.
-
(2007)
Ann Med.
, vol.39
, pp. 335-345
-
-
Dali-Youcef, N.1
Lagouge, M.2
Froelich, S.3
-
8
-
-
33746228121
-
Sirtuins in aging and age-related disease
-
Longo VD, Kennedy BK. Sirtuins in aging and age-related disease. Cell. 2006;126:257-268.
-
(2006)
Cell.
, vol.126
, pp. 257-268
-
-
Longo, V.D.1
Kennedy, B.K.2
-
9
-
-
38649123072
-
Conserved metabolic regulatory functions of sirtuins
-
Schwer B, Verdin E. Conserved metabolic regulatory functions of sirtuins. Cell Metab. 2008;7:104-112.
-
(2008)
Cell Metab.
, vol.7
, pp. 104-112
-
-
Schwer, B.1
Verdin, E.2
-
10
-
-
0037355004
-
+ gene is nonessential and has only minor effects on position-effect variegation
-
Astrom SU, Cline TW, Rine J. The Drosophila melanogaster sir2+ gene is nonessential and has only minor effects on position-effect variegation. Genetics. 2003;163:931-937.
-
(2003)
Genetics.
, vol.163
, pp. 931-937
-
-
Astrom, S.U.1
Cline, T.W.2
Rine, J.3
-
11
-
-
0141719702
-
Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan
-
Howitz KT, Bitterman KJ, Cohen HY, et al. Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature. 2003;425: 191-196.
-
(2003)
Nature.
, vol.425
, pp. 191-196
-
-
Howitz, K.T.1
Bitterman, K.J.2
Cohen, H.Y.3
-
12
-
-
0033214237
-
The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms
-
Kaeberlein M, McVey M, Guarente L. The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes Dev. 1999;13:2570-2580.
-
(1999)
Genes Dev.
, vol.13
, pp. 2570-2580
-
-
Kaeberlein, M.1
McVey, M.2
Guarente, L.3
-
13
-
-
8644224064
-
Sir2 mediates longevity in the fly through a pathway related to calorie restriction
-
Rogina B, Helfand SL. Sir2 mediates longevity in the fly through a pathway related to calorie restriction. Proc Natl Acad Sci U S A. 2004; 101:15998-16003.
-
(2004)
Proc Natl Acad Sci U S A.
, vol.101
, pp. 15998-16003
-
-
Rogina, B.1
Helfand, S.L.2
-
14
-
-
0035826271
-
Increased dosage of a sir-2 gene extends lifespan in Caenorhabditis elegans
-
Tissenbaum HA, Guarente L. Increased dosage of a sir-2 gene extends lifespan in Caenorhabditis elegans. Nature. 2001;410:227-230.
-
(2001)
Nature.
, vol.410
, pp. 227-230
-
-
Tissenbaum, H.A.1
Guarente, L.2
-
15
-
-
3943071801
-
Sirtuin activators mimic caloric restriction and delay ageing in metazoans
-
Wood JG, Rogina B, Lavu S, et al. Sirtuin activators mimic caloric restriction and delay ageing in metazoans. Nature. 2004;430:686-689.
-
(2004)
Nature.
, vol.430
, pp. 686-689
-
-
Wood, J.G.1
Rogina, B.2
Lavu, S.3
-
16
-
-
0038329323
-
Nicotinamide and PNC1 govern lifespan extension by calorie restriction in Saccharomyces cerevisiae
-
Anderson RM, Bitterman KJ, Wood JG, et al. Nicotinamide and PNC1 govern lifespan extension by calorie restriction in Saccharomyces cerevisiae. Nature. 2003;423:181-185.
-
(2003)
Nature.
, vol.423
, pp. 181-185
-
-
Anderson, R.M.1
Bitterman, K.J.2
Wood, J.G.3
-
17
-
-
0034703217
-
Life span extension by calorie restriction in S. cerevisiae requires NAD and SIR2
-
Lin S-J, Defossez P-A, Guarente L. Life span extension by calorie restriction in S. cerevisiae requires NAD and SIR2. Science. 2000;289: 2126-2128.
-
(2000)
Science
, vol.289
, pp. 2126-2128
-
-
Lin, S.-J.1
Defossez, P.-A.2
Guarente, L.3
-
18
-
-
0037130175
-
Calorie restriction extends Saccharomyces cerevisiae lifespan by increasing respiration
-
Lin S-J, Kaeberlein M, Andalis AA, et al. Calorie restriction extends Saccharomyces cerevisiae lifespan by increasing respiration. Nature. 2002;418:344-348.
-
(2002)
Nature.
, vol.418
, pp. 344-348
-
-
Lin, S.-J.1
Kaeberlein, M.2
Andalis, A.A.3
-
19
-
-
28244475950
-
Overlapping and distinct functions for a Caenorhabditis elegans SIR2 and DAF-16/FOXO
-
Wang Y, Tissenbaum HA. Overlapping and distinct functions for a Caenorhabditis elegans SIR2 and DAF-16/FOXO. Mech Ageing Dev. 2006;127:48-56.
-
(2006)
Mech Ageing Dev.
, vol.127
, pp. 48-56
-
-
Wang, Y.1
Tissenbaum, H.A.2
-
20
-
-
36749087548
-
Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes
-
Milne JC, Lambert PD, Schenk S, et al. Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes. Nature. 2007; 450:712-716.
-
(2007)
Nature.
, vol.450
, pp. 712-716
-
-
Milne, J.C.1
Lambert, P.D.2
Schenk, S.3
-
21
-
-
40849135481
-
The Sirtuin family: Therapeutic targets to treat diseases of aging
-
Milne JC, Denu JM. The Sirtuin family: Therapeutic targets to treat diseases of aging. Curr Opin Chem Biol. 2008;12:11-17.
-
(2008)
Curr Opin Chem Biol.
, vol.12
, pp. 11-17
-
-
Milne, J.C.1
Denu, J.M.2
-
23
-
-
17144429302
-
Calorie restriction SIRT1 and metabolism: Understanding longevity
-
Bordone L, Guarente L. Calorie restriction, SIRT1 and metabolism: Understanding longevity. Nat Rev Mol Cell Biol. 2005;6:298-305.
-
(2005)
Nat Rev Mol Cell Biol.
, vol.6
, pp. 298-305
-
-
Bordone, L.1
Guarente, L.2
-
24
-
-
63849252078
-
Therapeutic potential of SIRT1 and NAMPT-mediated NAD biosynthesis in type 2 diabetes
-
Imai S, Kiess W. Therapeutic potential of SIRT1 and NAMPT-mediated NAD biosynthesis in type 2 diabetes. Front Biosci. 2009;14:2983-2995.
-
(2009)
Front Biosci.
, vol.14
, pp. 2983-2995
-
-
Imai, S.1
Kiess, W.2
-
25
-
-
25144454432
-
Increased dosage of mammalian Sir2 in pancreatic beta cells enhances glucose-stimulated insulin secretion in mice
-
Moynihan KA, Grimm AA, Plueger MM, et al. Increased dosage of mammalian Sir2 in pancreatic beta cells enhances glucose-stimulated insulin secretion in mice. Cell Metab. 2005;2:105-117.
-
(2005)
Cell Metab.
, vol.2
, pp. 105-117
-
-
Moynihan, K.A.1
Grimm, A.A.2
Plueger, M.M.3
-
26
-
-
33244486764
-
Sirt1 regulates insulin secretion by repressing UCP2 in pancreatic beta cells
-
Bordone L, Motta MC, Picard F, et al. Sirt1 regulates insulin secretion by repressing UCP2 in pancreatic beta cells. PLoS Biol. 2006;4:e31.
-
(2006)
PLoS Biol.
, vol.4
-
-
Bordone, L.1
Motta, M.C.2
Picard, F.3
-
27
-
-
9444242665
-
Five stages of evolving beta-cell dysfunction during progression to diabetes
-
Weir GC, Bonner-Weir S. Five stages of evolving beta-cell dysfunction during progression to diabetes. Diabetes. 2004;53(Suppl 3):S16-S21.
-
(2004)
Diabetes.
, vol.53
, Issue.SUPPL. 3
-
-
Weir, G.C.1
Bonner-Weir, S.2
-
28
-
-
38349112898
-
Age-associated loss of Sirt1- mediated enhancement of glucose-stimulated insulin secretion in b cellspecific Sirt1-overexpressing (BESTO) mice
-
Ramsey KM, Mills KF, Satoh A, et al. Age-associated loss of Sirt1- mediated enhancement of glucose-stimulated insulin secretion in b cellspecific Sirt1-overexpressing (BESTO) mice. Aging Cell. 2008;7:78-88.
-
(2008)
Aging Cell.
, vol.7
, pp. 78-88
-
-
Ramsey, K.M.1
Mills, K.F.2
Satoh, A.3
-
29
-
-
27744518040
-
FoxO1 protects against pancreatic beta cell failure through NeuroD and MafA induction
-
Kitamura YI, Kitamura T, Kruse JP, et al. FoxO1 protects against pancreatic beta cell failure through NeuroD and MafA induction. Cell Metab. 2005;2:153-163.
-
(2005)
Cell Metab.
, vol.2
, pp. 153-163
-
-
Kitamura, Y.I.1
Kitamura, T.2
Kruse, J.P.3
-
30
-
-
63249112836
-
Overexpression of SIRT1 protects pancreatic beta-cells against cytokine toxicity by suppressing the nuclear factor-kappaB signaling pathway
-
Lee JH, Song MY, Song EK, et al. Overexpression of SIRT1 protects pancreatic beta-cells against cytokine toxicity by suppressing the nuclear factor-kappaB signaling pathway. Diabetes. 2009;58:344-351.
-
(2009)
Diabetes.
, vol.58
, pp. 344-351
-
-
Lee, J.H.1
Song, M.Y.2
Song, E.K.3
-
32
-
-
47749140333
-
SIRT1 regulates circadian clock gene expression through PER2 deacetylation
-
Asher G, Gatfield D, Stratmann M, et al. SIRT1 regulates circadian clock gene expression through PER2 deacetylation. Cell. 2008;134:317-328.
-
(2008)
Cell.
, vol.134
, pp. 317-328
-
-
Asher, G.1
Gatfield, D.2
Stratmann, M.3
-
33
-
-
47549088250
-
+-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control
-
+-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control. Cell. 2008;134:329-340.
-
(2008)
Cell.
, vol.134
, pp. 329-340
-
-
Nakahata, Y.1
Kaluzova, M.2
Grimaldi, B.3
-
37
-
-
33846693322
-
The regulation of nicotinamide adenine dinucleotide biosynthesis by Nampt/PBEF/visfatin in mammals
-
Revollo JR, Grimm AA, Imai S. The regulation of nicotinamide adenine dinucleotide biosynthesis by Nampt/PBEF/visfatin in mammals. Curr Opin Gastroenterol. 2007;23:164-170.
-
(2007)
Curr Opin Gastroenterol.
, vol.23
, pp. 164-170
-
-
Revollo, J.R.1
Grimm, A.A.2
Imai, S.3
-
38
-
-
0037829279
-
Reconstructing eukaryotic NAD metabolism
-
Rongvaux A, Andris F, Van Gool F, et al. Reconstructing eukaryotic NAD metabolism. Bioessays. 2003;25:683-690.
-
(2003)
Bioessays.
, vol.25
, pp. 683-690
-
-
Rongvaux, A.1
Andris, F.2
Van Gool, F.3
-
39
-
-
0036190727
-
Identification and functional analysis of the Saccharomyces cerevisiae nicotinamidase gene PNC1
-
Ghislain M, Talla E, Francois JM. Identification and functional analysis of the Saccharomyces cerevisiae nicotinamidase gene, PNC1. Yeast. 2002; 19:215-324.
-
(2002)
Yeast.
, vol.19
, pp. 215-324
-
-
Ghislain, M.1
Talla, E.2
Francois, J.M.3
-
40
-
-
33745817828
-
Molecular basis for the inhibition of human NMPRTase, a novel target for anticancer agents
-
Khan JA, Tao X, Tong L. Molecular basis for the inhibition of human NMPRTase, a novel target for anticancer agents. Nat Struct Mol Biol. 2006;13:582-588.
-
(2006)
Nat Struct Mol Biol.
, vol.13
, pp. 582-588
-
-
Khan, J.A.1
Tao, X.2
Tong, L.3
-
41
-
-
33747624726
-
Crystal structure of visfatin/pre-B cell colony-enhancing factor 1/nicotinamide phosphoribosyltransferase, free and in complex with the anti-cancer agent FK-866
-
Kim MK, Lee JH, Kim H, et al. Crystal structure of visfatin/pre-B cell colony-enhancing factor 1/nicotinamide phosphoribosyltransferase, free and in complex with the anti-cancer agent FK-866. J Mol Biol. 2006;362: 66-77.
-
(2006)
J Mol Biol.
, vol.362
, pp. 66-77
-
-
Kim, M.K.1
Lee, J.H.2
Kim, H.3
-
42
-
-
10944270187
-
The NAD biosynthesis pathway mediated by nicotinamide phosphoribosyltransferase regulates Sir2 activity in mammalian cells
-
Revollo JR, Grimm AA, Imai S. The NAD biosynthesis pathway mediated by nicotinamide phosphoribosyltransferase regulates Sir2 activity in mammalian cells. J Biol Chem. 2004;279:50754-50763.
-
(2004)
J Biol Chem.
, vol.279
, pp. 50754-50763
-
-
Revollo, J.R.1
Grimm, A.A.2
Imai, S.3
-
43
-
-
0036856578
-
Pre-B-cell colony-enhancing factor, whose expression is up-regulated in activated lymphocytes, is a nicotinamide phosphoribosyltransferase, a cytosolic enzyme involved in NAD biosynthesis
-
Rongvaux A, Shea RJ, Mulks MH, et al. Pre-B-cell colony-enhancing factor, whose expression is up-regulated in activated lymphocytes, is a nicotinamide phosphoribosyltransferase, a cytosolic enzyme involved in NAD biosynthesis. Eur J Immunol. 2002;32:3225-3234.
-
(2002)
Eur J Immunol.
, vol.32
, pp. 3225-3234
-
-
Rongvaux, A.1
Shea, R.J.2
Mulks, M.H.3
-
44
-
-
33745862384
-
+) biosynthetic enzyme
-
Wang T, Zhang X, Bheda P, et al. Structure of Nampt/PBEF/visfatin, a mammalian NAD(+) biosynthetic enzyme. Nat Struct Mol Biol. 2006; 13:661-662.
-
(2006)
Nat Struct Mol Biol.
, vol.13
, pp. 661-662
-
-
Wang, T.1
Zhang, X.2
Bheda, P.3
-
45
-
-
62149148872
-
Nicotinamide phosphoribosyltransferase (Nampt): A link between NAD biology, metabolism, and diseases
-
Imai S. Nicotinamide phosphoribosyltransferase (Nampt): A link between NAD biology, metabolism, and diseases. Curr Pharm Des. 2009;15: 20-28.
-
(2009)
Curr Pharm Des.
, vol.15
, pp. 20-28
-
-
Imai, S.1
-
46
-
-
35549002189
-
Nampt/PBEF/visfatin regulates insulin secretion in b cells as a systemic NAD biosynthetic enzyme
-
Revollo JR, Körner A, Mills KF, et al. Nampt/PBEF/visfatin regulates insulin secretion in b cells as a systemic NAD biosynthetic enzyme. Cell Metab. 2007;6:363-375.
-
(2007)
Cell Metab.
, vol.6
, pp. 363-375
-
-
Revollo, J.R.1
Körner, A.2
Mills, K.F.3
-
47
-
-
43049121395
-
Glucose restriction inhibits skeletal myoblast differentiation by activating SIRT1 through AMPK-mediated regulation of Nampt
-
Fulco M, Cen Y, Zhao P, et al. Glucose restriction inhibits skeletal myoblast differentiation by activating SIRT1 through AMPK-mediated regulation of Nampt. Dev Cell. 2008;14:661-673.
-
(2008)
Dev Cell.
, vol.14
, pp. 661-673
-
-
Fulco, M.1
Cen, Y.2
Zhao, P.3
-
48
-
-
70249098847
-
SIRT1 markedly extends replicative lifespan if NAD(+) salvage is enhanced
-
Ho C, Van Der Veer E, Akawi O, et al. SIRT1 markedly extends replicative lifespan if NAD(+) salvage is enhanced. FEBS Lett. 2009;583: 3081-3085.
-
(2009)
FEBS Lett.
, vol.583
, pp. 3081-3085
-
-
Ho, C.1
Van Der Veer, E.2
Akawi, O.3
-
52
-
-
59649125761
-
NAMPT is essential for the G-CSFinduced myeloid differentiation via a NAD(+)-sirtuin-1-dependent pathway
-
Skokowa J, Lan D, Thakur BK, et al. NAMPT is essential for the G-CSFinduced myeloid differentiation via a NAD(+)-sirtuin-1-dependent pathway. Nat Med. 2009;15:151-158.
-
(2009)
Nat Med.
, vol.15
, pp. 151-158
-
-
Skokowa, J.1
Lan, D.2
Thakur, B.K.3
-
53
-
-
22144459034
-
+-dependent protein deacetylase activity and promotes vascular smooth muscle cell maturation
-
+-dependent protein deacetylase activity and promotes vascular smooth muscle cell maturation. Circ Res. 2005;97: 25-34.
-
(2005)
Circ Res.
, vol.97
, pp. 25-34
-
-
Van Der Veer, E.1
Nong, Z.2
O'Neil, C.3
-
54
-
-
67749089440
-
+ salvage pathway regulate SIRT1 activity at target gene promoters
-
+ salvage pathway regulate SIRT1 activity at target gene promoters. J Biol Chem. 2009;284:20408-20417.
-
(2009)
J Biol Chem.
, vol.284
, pp. 20408-20417
-
-
Zhang, T.1
Berrocal, J.G.2
Frizzell, K.M.3
-
55
-
-
0038353641
-
Mechanisms of the age-associated deterioration in glucose tolerance: Contribution of alterations in insulin secretion, action, and clearance
-
Basu R, Breda E, Oberg AL, et al. Mechanisms of the age-associated deterioration in glucose tolerance: Contribution of alterations in insulin secretion, action, and clearance. Diabetes. 2003;52:1738-1748.
-
(2003)
Diabetes.
, vol.52
, pp. 1738-1748
-
-
Basu, R.1
Breda, E.2
Oberg, A.L.3
-
56
-
-
0032988562
-
Independent influence of age on basal insulin secretion in nondiabetic humans. European Group for the Study of Insulin Resistance
-
Iozzo P, Beck-Nielsen H, Laakso M, et al. Independent influence of age on basal insulin secretion in nondiabetic humans. European Group for the Study of Insulin Resistance. J Clin Endocrinol Metab. 1999;84: 863-868.
-
(1999)
J Clin Endocrinol Metab.
, vol.84
, pp. 863-868
-
-
Iozzo, P.1
Beck-Nielsen, H.2
Laakso, M.3
-
57
-
-
0842331564
-
Decrease in glucose-stimulated insulin secretion with aging is independent of insulin action
-
Muzumdar R, Ma X, Atzmon G, et al. Decrease in glucose-stimulated insulin secretion with aging is independent of insulin action. Diabetes. 2004;53:441-446.
-
(2004)
Diabetes.
, vol.53
, pp. 441-446
-
-
Muzumdar, R.1
Ma, X.2
Atzmon, G.3
-
58
-
-
34447278854
-
Pellagra: A clue as to why energy failure causes diseases?
-
Williams AC Ramsden DB. Pellagra: A clue as to why energy failure causes diseases? Med Hypotheses. 2007;69:618-628.
-
(2007)
Med Hypotheses.
, vol.69
, pp. 618-628
-
-
Williams, A.C.1
Ramsden, D.B.2
|