-
1
-
-
2942607403
-
-
10.1002/pssa.200404336;
-
R. W. I. de Boer, M. E. Gershenson, A. F. Morpurgo, and V. Podzorov, Phys. Status Solidi A 201, 1302 (2004) 10.1002/pssa.200404336
-
(2004)
Phys. Status Solidi A
, vol.201
, pp. 1302
-
-
De Boer, R.W.I.1
Gershenson, M.E.2
Morpurgo, A.F.3
Podzorov, V.4
-
3
-
-
1542723292
-
-
10.1126/science.1094196
-
V. C. Sundar, J. Zaumseil, V. Podzorov, E. Menard, R. L. Willett, T. Someya, M. E. Gershenson, and J. A. Rogers, Science 303, 1644 (2004). 10.1126/science.1094196
-
(2004)
Science
, vol.303
, pp. 1644
-
-
Sundar, V.C.1
Zaumseil, J.2
Podzorov, V.3
Menard, E.4
Willett, R.L.5
Someya, T.6
Gershenson, M.E.7
Rogers, J.A.8
-
4
-
-
19544383048
-
-
10.1103/PhysRevLett.93.086602
-
V. Podzorov, E. Menard, A. Borissov, V. Kiryukhin, J. A. Rogers, and M. E. Gershenson, Phys. Rev. Lett. 93, 086602 (2004). 10.1103/PhysRevLett.93.086602
-
(2004)
Phys. Rev. Lett.
, vol.93
, pp. 086602
-
-
Podzorov, V.1
Menard, E.2
Borissov, A.3
Kiryukhin, V.4
Rogers, J.A.5
Gershenson, M.E.6
-
6
-
-
40749153893
-
-
10.1016/S1369-7021(08)70055-5
-
A. L. Briseno, S. C. B. Mannsfeld, S. A. Jenekhe, Z. Bao, and Y. Xia, Mater. Today 11, 38 (2008). 10.1016/S1369-7021(08)70055-5
-
(2008)
Mater. Today
, vol.11
, pp. 38
-
-
Briseno, A.L.1
Mannsfeld, S.C.B.2
Jenekhe, S.A.3
Bao, Z.4
Xia, Y.5
-
7
-
-
67849097766
-
-
10.1021/ja809848y
-
A. S. Molinari, H. Alves, Z. Chen, A. Facchetti, and A. F. Morpurgo, J. Am. Chem. Soc. 131, 2462 (2009). 10.1021/ja809848y
-
(2009)
J. Am. Chem. Soc.
, vol.131
, pp. 2462
-
-
Molinari, A.S.1
Alves, H.2
Chen, Z.3
Facchetti, A.4
Morpurgo, A.F.5
-
8
-
-
67650763692
-
-
10.1063/1.3183509
-
S. Haas, Y. Takahashi, K.Takimiya, and T. Hasegawa, Appl. Phys. Lett. 95, 022111 (2009). 10.1063/1.3183509
-
(2009)
Appl. Phys. Lett.
, vol.95
, pp. 022111
-
-
Haas, S.1
Takahashi, Y.2
Takimiya, K.3
Hasegawa, T.4
-
9
-
-
19544380397
-
-
10.1103/PhysRevLett.93.086802;
-
D. V. Lang, X. Chi, T. Siegrist, A. M. Sergent, and A. P. Ramirez, Phys. Rev. Lett. 93, 086802 (2004) 10.1103/PhysRevLett.93.086802
-
(2004)
Phys. Rev. Lett.
, vol.93
, pp. 086802
-
-
Lang, D.V.1
Chi, X.2
Siegrist, T.3
Sergent, A.M.4
Ramirez, A.P.5
-
10
-
-
33750241920
-
-
10.1103/PhysRevLett.97.166601;
-
O. Mitrofanov, D. V. Lang, C. Kloc, J. M. Wikberg, T. Siegrist, W. Y. So, M. A. Sergent, and A. P. Ramirez, Phys. Rev. Lett. 97, 166601 (2006) 10.1103/PhysRevLett.97.166601
-
(2006)
Phys. Rev. Lett.
, vol.97
, pp. 166601
-
-
Mitrofanov, O.1
Lang, D.V.2
Kloc, C.3
Wikberg, J.M.4
Siegrist, T.5
So, W.Y.6
Sergent, M.A.7
Ramirez, A.P.8
-
11
-
-
34347406534
-
-
10.1103/PhysRevB.75.245115
-
C. Krellner, S. Haas, C. Goldmann, K. P. Pernstich, D. J. Gundlach, and B. Batlogg, Phys. Rev. B 75, 245115 (2007). 10.1103/PhysRevB.75.245115
-
(2007)
Phys. Rev. B
, vol.75
, pp. 245115
-
-
Krellner, C.1
Haas, S.2
Goldmann, C.3
Pernstich, K.P.4
Gundlach, D.J.5
Batlogg, B.6
-
12
-
-
9744261680
-
-
10.1063/1.1812368
-
A. F. Stassen, R. W. I. de Boer, N. N. Iosad, and A. F. Morpurgo, Appl. Phys. Lett. 85, 3899 (2004). 10.1063/1.1812368
-
(2004)
Appl. Phys. Lett.
, vol.85
, pp. 3899
-
-
Stassen, A.F.1
De Boer, R.W.I.2
Iosad, N.N.3
Morpurgo, A.F.4
-
13
-
-
33751571254
-
-
10.1038/nmat1774
-
I. N. Hulea, S. Fratini, H. Xie, C. L. Mulder, N. N. Iossad, G. Rastelli, S. Ciuchi, and A. F. Morpurgo, Nature Mater. 5, 982 (2006). 10.1038/nmat1774
-
(2006)
Nature Mater.
, vol.5
, pp. 982
-
-
Hulea, I.N.1
Fratini, S.2
Xie, H.3
Mulder, C.L.4
Iossad, N.N.5
Rastelli, G.6
Ciuchi, S.7
Morpurgo, A.F.8
-
14
-
-
34547365184
-
-
10.1103/PhysRevLett.98.196804
-
J. Takeya, Phys. Rev. Lett. 98, 196804 (2007). 10.1103/PhysRevLett.98. 196804
-
(2007)
Phys. Rev. Lett.
, vol.98
, pp. 196804
-
-
Takeya, J.1
-
15
-
-
33750713684
-
-
10.1063/1.2370743;
-
M. Fischer, M. Dressel, B. Gompf, A. K. Tripathi, and J. Pflaum, Appl. Phys. Lett. 89, 182103 (2006) 10.1063/1.2370743
-
(2006)
Appl. Phys. Lett.
, vol.89
, pp. 182103
-
-
Fischer, M.1
Dressel, M.2
Gompf, B.3
Tripathi, A.K.4
Pflaum, J.5
-
16
-
-
34547249957
-
-
10.1103/PhysRevLett.99.016403
-
Z. Q. Li, V. Podzorov, N. Sai, M. C. Martin, M. E. Gershenson, M. Di Ventra, and D. N. Basov, Phys. Rev. Lett. 99, 016403 (2007). 10.1103/PhysRevLett.99.016403
-
(2007)
Phys. Rev. Lett.
, vol.99
, pp. 016403
-
-
Li, Z.Q.1
Podzorov, V.2
Sai, N.3
Martin, M.C.4
Gershenson, M.E.5
Di Ventra, M.6
Basov, D.N.7
-
18
-
-
37549026793
-
-
10.1002/adma.200701139
-
C. Reese and Z. Bao, Adv. Mater. 19, 4535 (2007). 10.1002/adma.200701139
-
(2007)
Adv. Mater.
, vol.19
, pp. 4535
-
-
Reese, C.1
Bao, Z.2
-
20
-
-
0242666862
-
-
10.1063/1.1622799
-
V. Podzorov, S. E. Sysoev, E. Loginova, V. M. Pudalov, and M. E. Gershenson, Appl. Phys. Lett. 83, 3504 (2003). 10.1063/1.1622799
-
(2003)
Appl. Phys. Lett.
, vol.83
, pp. 3504
-
-
Podzorov, V.1
Sysoev, S.E.2
Loginova, E.3
Pudalov, V.M.4
Gershenson, M.E.5
-
21
-
-
0242552083
-
-
10.1063/1.1618919;
-
J. Takeya, C. Goldmann, S. Haas, K. P. Pernstich, B. Ketterer, and B. Batlogg, J. Appl. Phys. 94, 5800 (2003) 10.1063/1.1618919
-
(2003)
J. Appl. Phys.
, vol.94
, pp. 5800
-
-
Takeya, J.1
Goldmann, C.2
Haas, S.3
Pernstich, K.P.4
Ketterer, B.5
Batlogg, B.6
-
22
-
-
0346306371
-
-
10.1063/1.1631736
-
V. Y. Butko, X. Chi, D. V. Lang, and A. P. Ramirez, Appl. Phys. Lett. 83, 4773 (2003). 10.1063/1.1631736
-
(2003)
Appl. Phys. Lett.
, vol.83
, pp. 4773
-
-
Butko, V.Y.1
Chi, X.2
Lang, D.V.3
Ramirez, A.P.4
-
25
-
-
4143089280
-
-
10.1557/JMR.2004.0254
-
H. E. Katz, C. Kloc, V. Sundar, J. Zaumseil, A. L. Briseno, and Z. Bao, J. Mater. Res. 19, 1995 (2004). 10.1557/JMR.2004.0254
-
(2004)
J. Mater. Res.
, vol.19
, pp. 1995
-
-
Katz, H.E.1
Kloc, C.2
Sundar, V.3
Zaumseil, J.4
Briseno, A.L.5
Bao, Z.6
-
26
-
-
45849148144
-
-
10.1088/1367-2630/10/3/033031
-
S. Fratini, H. Xie, I. N. Hulea, S. Ciuchi, and A. F. Morpurgo, New J. Phys. 10, 033031 (2008). 10.1088/1367-2630/10/3/033031
-
(2008)
New J. Phys.
, vol.10
, pp. 033031
-
-
Fratini, S.1
Xie, H.2
Hulea, I.N.3
Ciuchi, S.4
Morpurgo, A.F.5
-
27
-
-
41649114542
-
-
10.1063/1.2904629
-
A. S. Molinari, I. Gutiérrez Lezama, P. Parisse, T. Takenobu, Y. Iwasa, and A. F. Morpurgo, Appl. Phys. Lett. 92, 133303 (2008). 10.1063/1.2904629
-
(2008)
Appl. Phys. Lett.
, vol.92
, pp. 133303
-
-
Molinari, A.S.1
Gutiérrez Lezama, I.2
Parisse, P.3
Takenobu, T.4
Iwasa, Y.5
Morpurgo, A.F.6
-
28
-
-
70349762694
-
-
10.1002/adma.200900276
-
T. Kaji, T. Takenobu, A. F. Morpurgo, and Y. Iwasa, Adv. Mater. 21, 3689 (2009). 10.1002/adma.200900276
-
(2009)
Adv. Mater.
, vol.21
, pp. 3689
-
-
Kaji, T.1
Takenobu, T.2
Morpurgo, A.F.3
Iwasa, Y.4
-
30
-
-
0000495127
-
-
10.1103/PhysRevB.32.1172
-
W. Warta and N. Karl, Phys. Rev. B 32, 1172 (1985). 10.1103/PhysRevB.32. 1172
-
(1985)
Phys. Rev. B
, vol.32
, pp. 1172
-
-
Warta, W.1
Karl, N.2
-
33
-
-
0346936421
-
-
10.1063/1.1631751
-
M. S. Nam, A. Ardavan, R. J. Cava, and P. M. Chaikin, Appl. Phys. Lett. 83, 4782 (2003). 10.1063/1.1631751
-
(2003)
Appl. Phys. Lett.
, vol.83
, pp. 4782
-
-
Nam, M.S.1
Ardavan, A.2
Cava, R.J.3
Chaikin, P.M.4
-
34
-
-
69249179410
-
-
10.3938/jkps.55.212
-
J.Y. Kim, M. Yun, D.-W. Jeong, J.-J. Kim, and I. J. Lee, J. Korean Phys. Soc. 55, 212 (2009). 10.3938/jkps.55.212
-
(2009)
J. Korean Phys. Soc.
, vol.55
, pp. 212
-
-
Kim, J.Y.1
Yun, M.2
Jeong, D.-W.3
Kim, J.-J.4
Lee, I.J.5
-
35
-
-
11344269281
-
-
10.1002/adma.200401017
-
E. Menard, V. Podzorov, S.-H. Hur, A. Gaur, M. E. Gershenson, and J. A. Rogers, Adv. Mater. 16, 2097 (2004). 10.1002/adma.200401017
-
(2004)
Adv. Mater.
, vol.16
, pp. 2097
-
-
Menard, E.1
Podzorov, V.2
Hur, S.-H.3
Gaur, A.4
Gershenson, M.E.5
Rogers, J.A.6
-
36
-
-
10944220172
-
-
To see examples in which this strategy has been applied to the analysis of transistor data in amorphous organic materials, see, for instance, 10.1103/PhysRevB.70.115311;
-
To see examples in which this strategy has been applied to the analysis of transistor data in amorphous organic materials, see, for instance, A. Salleo, T. W. Chen, A. R. Volkel, Y. Wu, P. Liu, B. S. Ong, and R. A. Street, Phys. Rev. B 70, 115311 (2004) 10.1103/PhysRevB.70.115311
-
(2004)
Phys. Rev. B
, vol.70
, pp. 115311
-
-
Salleo, A.1
Chen, T.W.2
Volkel, A.R.3
Wu, Y.4
Liu, P.5
Ong, B.S.6
Street, R.A.7
-
37
-
-
15744392259
-
-
10.1021/ja044078h;
-
J. A. Merlo, J. Am. Chem Soc. 127, 3997 (2005) 10.1021/ja044078h
-
(2005)
J. Am. Chem Soc.
, vol.127
, pp. 3997
-
-
Merlo, J.A.1
-
38
-
-
33846043883
-
-
For other related work, see, for instance, 10.1109/TED.2006.887200
-
For other related work, see, for instance, D. Oberhoff, IEEE Trans. Electron Devices 54, 17 (2007). 10.1109/TED.2006.887200
-
(2007)
IEEE Trans. Electron Devices
, vol.54
, pp. 17
-
-
Oberhoff, D.1
-
39
-
-
33644670563
-
-
10.1103/PhysRevLett.96.086601
-
A. Troisi and G. Orlandi, Phys. Rev. Lett. 96, 086601 (2006). 10.1103/PhysRevLett.96.086601
-
(2006)
Phys. Rev. Lett.
, vol.96
, pp. 086601
-
-
Troisi, A.1
Orlandi, G.2
-
41
-
-
77954748085
-
-
Presently, our analysis cannot discriminate between small differences in the value of the exponent, which depend on details of the theoretical models
-
Presently, our analysis cannot discriminate between small differences in the value of the exponent, which depend on details of the theoretical models.
-
-
-
-
43
-
-
32244448254
-
-
For a general overview, see Chapter 12 of, Wiley, New York
-
For a general overview, see Chapter 12 of Y. Roichman, Physics of Organic Semiconductors (Wiley, New York, 2005), and references therein.
-
(2005)
Physics of Organic Semiconductors
-
-
Roichman, Y.1
-
45
-
-
77954721247
-
-
As an example of the possibility to check the consistency of the results, we note that the model discussed in this paper-and similar models used previously-relies essentially on the concept of "mobility edge" (i.e., on the existence of an energy value separating states that, when filled, contribute to conduction, from states that are localized and do not contribute to the conduction). In amorphous materials, this is an assumption that is not checked experimentally, because a metalliclike mobility is not observed in the measurement
-
As an example of the possibility to check the consistency of the results, we note that the model discussed in this paper-and similar models used previously-relies essentially on the concept of "mobility edge" (i.e., on the existence of an energy value separating states that, when filled, contribute to conduction, from states that are localized and do not contribute to the conduction). In amorphous materials, this is an assumption that is not checked experimentally, because a metalliclike mobility is not observed in the measurements.
-
-
-
-
46
-
-
77954747411
-
-
We have obtained similar and consistent results also with an exponential distribution. With such a distribution, however, the threshold voltage below 100-150 K is suppressed much more rapidly than with the constant or Gaussian distributions
-
We have obtained similar and consistent results also with an exponential distribution. With such a distribution, however, the threshold voltage below 100-150 K is suppressed much more rapidly than with the constant or Gaussian distributions.
-
-
-
-
47
-
-
66149092677
-
-
-1, which compare well with densities previously found in the bulk of rubrene and pentacene crystals (Ref.) (see also Fig. 5 of, 10.1002/adma.200802733
-
- 1, which compare well with densities previously found in the bulk of rubrene and pentacene crystals (Ref.) (see also Fig. 5 of D. Braga and G. Horowitz, Adv. Mater. 21, 1473 (2009). Since the density of defects at the crystal surface is expected to be larger than in the bulk (for the case of rubrene, see Ref.), this indicates the high quality of the TMTSF crystals. 10.1002/adma.200802733
-
(2009)
Adv. Mater.
, vol.21
, pp. 1473
-
-
Braga, D.1
Horowitz, G.2
-
48
-
-
77954696250
-
-
note
-
To avoid misunderstandings, we emphasize that our model does not attempt to capture the contribution to the conductivity due to the carriers occupying shallow traps. This contribution is negligible as long as enough carriers are present in the band, which is the case for temperatures higher than approximately 100 K in the best devices. In this range, we can then safely ignore the current carried by carriers that occupy shallow traps. However, in the lowest temperature range (T < 100 K in the best devices, i.e., the range excluded from our analysis), the amount of carriers occupying states in the band becomes negligible. Nevertheless, the conductivity that is observed experimentally remains rather high (with mobility values still as high as 2 cm 2 / V s at 50 K in the best devices). This indicates that carriers in shallow traps do still carry current. Qualitatively, our picture of shallow traps as extended regions where the energy of the electrons is low because of the electrostatic potential fluctuations is consistent with this conclusion. In fact, in this scenario, carriers in shallow traps move in the extended regions and contribute to the local conductivity.
-
-
-
|