메뉴 건너뛰기




Volumn 27, Issue , 2009, Pages 669-692

Blood monocytes: Development, heterogeneity, and relationship with dendritic cells

Author keywords

Inflammation; Macrophages; Subsets

Indexed keywords

CHEMOKINE RECEPTOR; CYTOKINE; FAS ANTIGEN; P21 ACTIVATED KINASE; TRANSCRIPTION FACTOR;

EID: 67649404131     PISSN: 07320582     EISSN: None     Source Type: Book Series    
DOI: 10.1146/annurev.immunol.021908.132557     Document Type: Review
Times cited : (1260)

References (152)
  • 1
    • 0032861322 scopus 로고    scopus 로고
    • Ontogeny and behaviour of early macrophages in the zebrafish embryo
    • Herbomel P, Thisse B, Thisse C. 1999. Ontogeny and behaviour of early macrophages in the zebrafish embryo. Development 126:3735-45
    • (1999) Development , vol.126 , pp. 3735-3745
    • Herbomel, P.1    Thisse, B.2    Thisse, C.3
  • 4
    • 34247103287 scopus 로고    scopus 로고
    • Drosophila hemopoiesis and cellular immunity
    • Williams MJ. 2007. Drosophila hemopoiesis and cellular immunity. J. Immunol. 178:4711-16
    • (2007) J. Immunol , vol.178 , pp. 4711-4716
    • Williams, M.J.1
  • 5
    • 0034616310 scopus 로고    scopus 로고
    • Specification of Drosophila hematopoietic lineage by conserved transcription factors
    • Lebestky T, Chang T, Hartenstein V, Banerjee U. 2000. Specification of Drosophila hematopoietic lineage by conserved transcription factors. Science 288:146-49
    • (2000) Science , vol.288 , pp. 146-149
    • Lebestky, T.1    Chang, T.2    Hartenstein, V.3    Banerjee, U.4
  • 6
    • 0030152160 scopus 로고    scopus 로고
    • Croquemort, a novel Drosophila hemocyte/macrophage receptor that recognizes apoptotic cells
    • Franc NC, Dimarcq JL, Lagueux M, Hoffmann J, Ezekowitz RA. 1996. Croquemort, a novel Drosophila hemocyte/macrophage receptor that recognizes apoptotic cells. Immunity 4:431-43
    • (1996) Immunity , vol.4 , pp. 431-443
    • Franc, N.C.1    Dimarcq, J.L.2    Lagueux, M.3    Hoffmann, J.4    Ezekowitz, R.A.5
  • 7
    • 34547730391 scopus 로고    scopus 로고
    • Immune-like phagocyte activity in the social amoeba
    • Chen G, Zhuchenko O, Kuspa A. 2007. Immune-like phagocyte activity in the social amoeba. Science 317:678-81
    • (2007) Science , vol.317 , pp. 678-681
    • Chen, G.1    Zhuchenko, O.2    Kuspa, A.3
  • 8
    • 33645902493 scopus 로고    scopus 로고
    • Monocyte emigration from bone marrow during bacterial infection requires signals mediated by chemokine receptor CCR2
    • Serbina NV, Pamer EG. 2006. Monocyte emigration from bone marrow during bacterial infection requires signals mediated by chemokine receptor CCR2. Nat. Immunol. 7:311-17
    • (2006) Nat. Immunol , vol.7 , pp. 311-317
    • Serbina, N.V.1    Pamer, E.G.2
  • 9
    • 0033403066 scopus 로고    scopus 로고
    • Differentiation of phagocytic monocytes into lymph node dendritic cells in vivo
    • Randolph GJ, Inaba K, Robbiani DF, Steinman RM, Muller WA. 1999. Differentiation of phagocytic monocytes into lymph node dendritic cells in vivo. Immunity 11:753-61
    • (1999) Immunity , vol.11 , pp. 753-761
    • Randolph, G.J.1    Inaba, K.2    Robbiani, D.F.3    Steinman, R.M.4    Muller, W.A.5
  • 10
    • 0037963473 scopus 로고    scopus 로고
    • Blood monocytes consist of two principal subsets with distinct migratory properties
    • Geissmann F, Jung S, Littman DR. 2003. Blood monocytes consist of two principal subsets with distinct migratory properties. Immunity 19:71-82
    • (2003) Immunity , vol.19 , pp. 71-82
    • Geissmann, F.1    Jung, S.2    Littman, D.R.3
  • 11
    • 33846408655 scopus 로고    scopus 로고
    • Monocytes give rise to mucosal, but not splenic, conventional dendritic cells
    • Varol C, Landsman L, Fogg DK, Greenshtein L, Gildor B, et al. 2007. Monocytes give rise to mucosal, but not splenic, conventional dendritic cells. J. Exp. Med. 204:171-80
    • (2007) J. Exp. Med , vol.204 , pp. 171-180
    • Varol, C.1    Landsman, L.2    Fogg, D.K.3    Greenshtein, L.4    Gildor, B.5
  • 12
    • 44049097818 scopus 로고    scopus 로고
    • The receptor tyrosine kinase Flt3 is required for dendritic cell development in peripheral lymphoid tissues
    • Waskow C, Liu K, Darrasse-Jeze G, Guermonprez P, Ginhoux F, et al. 2008. The receptor tyrosine kinase Flt3 is required for dendritic cell development in peripheral lymphoid tissues. Nat. Immunol. 9:676-83
    • (2008) Nat. Immunol , vol.9 , pp. 676-683
    • Waskow, C.1    Liu, K.2    Darrasse-Jeze, G.3    Guermonprez, P.4    Ginhoux, F.5
  • 13
    • 36248957063 scopus 로고    scopus 로고
    • Immunosurveillance by hematopoietic progenitor cells trafficking through blood, lymph, and peripheral tissues
    • Massberg S, Schaerli P, Knezevic-Maramica I, Kollnberger M, Tubo N, et al. 2007. Immunosurveillance by hematopoietic progenitor cells trafficking through blood, lymph, and peripheral tissues. Cell 131:994-1008
    • (2007) Cell , vol.131 , pp. 994-1008
    • Massberg, S.1    Schaerli, P.2    Knezevic-Maramica, I.3    Kollnberger, M.4    Tubo, N.5
  • 14
    • 30344444770 scopus 로고    scopus 로고
    • A clonogenic bone marrow progenitor specific for macrophages and dendritic cells
    • Fogg DK, Sibon C, Miled C, Jung S, Aucouturier P, et al. 2006. A clonogenic bone marrow progenitor specific for macrophages and dendritic cells. Science 311:83-87
    • (2006) Science , vol.311 , pp. 83-87
    • Fogg, D.K.1    Sibon, C.2    Miled, C.3    Jung, S.4    Aucouturier, P.5
  • 15
    • 34547728312 scopus 로고    scopus 로고
    • Monitoring of blood vessels and tissues by a population of monocytes with patrolling behavior
    • Auffray C, Fogg D, Garfa M, Elain G, Join-Lambert O, et al. 2007. Monitoring of blood vessels and tissues by a population of monocytes with patrolling behavior. Science 317:666-70
    • (2007) Science , vol.317 , pp. 666-670
    • Auffray, C.1    Fogg, D.2    Garfa, M.3    Elain, G.4    Join-Lambert, O.5
  • 17
    • 34547730844 scopus 로고    scopus 로고
    • Monocyte subpopulations and their differentiation patterns during infection
    • Strauss-Ayali D, Conrad SM, Mosser DM. 2007. Monocyte subpopulations and their differentiation patterns during infection. J. Leukoc. Biol. 82:244-52
    • (2007) J. Leukoc. Biol , vol.82 , pp. 244-252
    • Strauss-Ayali, D.1    Conrad, S.M.2    Mosser, D.M.3
  • 18
    • 46749135222 scopus 로고    scopus 로고
    • Blood monocytes: Distinct subsets, how they relate to dendritic cells, and their possible roles in the regulation of T-cell responses
    • Geissmann F, Auffray C, Palframan R, Wirrig C, Ciocca A, et al. 2008. Blood monocytes: distinct subsets, how they relate to dendritic cells, and their possible roles in the regulation of T-cell responses. Immunol. Cell Biol. 86:398-408
    • (2008) Immunol. Cell Biol , vol.86 , pp. 398-408
    • Geissmann, F.1    Auffray, C.2    Palframan, R.3    Wirrig, C.4    Ciocca, A.5
  • 19
    • 51649107331 scopus 로고    scopus 로고
    • Diversity of denizens of the atherosclerotic plaque: Not all monocytes are created equal
    • Libby P, Nahrendorf M, Pittet MJ, Swirski FK. 2008. Diversity of denizens of the atherosclerotic plaque: Not all monocytes are created equal. Circulation 117:3168-70
    • (2008) Circulation , vol.117 , pp. 3168-3170
    • Libby, P.1    Nahrendorf, M.2    Pittet, M.J.3    Swirski, F.K.4
  • 20
    • 0036092801 scopus 로고    scopus 로고
    • Targeted disruption of the mouse colony-stimulating factor 1 receptor gene results in osteopetrosis, mononuclear phagocyte deficiency, increased primitive progenitor cell frequencies, and reproductive defects
    • Dai XM, Ryan GR, Hapel AJ, Dominguez MG, Russell RG, et al. 2002.Targeted disruption of the mouse colony-stimulating factor 1 receptor gene results in osteopetrosis, mononuclear phagocyte deficiency, increased primitive progenitor cell frequencies, and reproductive defects. Blood 99:111-20
    • (2002) Blood , vol.99 , pp. 111-120
    • Dai, X.M.1    Ryan, G.R.2    Hapel, A.J.3    Dominguez, M.G.4    Russell, R.G.5
  • 21
    • 0028290252 scopus 로고
    • Role of colony stimulating factor-1 in the establishment and regulation of tissue macrophages during postnatal development of the mouse
    • Cecchini MG, Dominguez MG, Mocci S, Wetterwald A, Felix R, et al. 1994. Role of colony stimulating factor-1 in the establishment and regulation of tissue macrophages during postnatal development of the mouse. Development 120:1357-72
    • (1994) Development , vol.120 , pp. 1357-1372
    • Cecchini, M.G.1    Dominguez, M.G.2    Mocci, S.3    Wetterwald, A.4    Felix, R.5
  • 22
    • 0029859536 scopus 로고    scopus 로고
    • Cytokine regulation of the macrophage (M phi) system studied using the colony stimulating factor-1-deficient op/op mouse
    • Wiktor-Jedrzejczak W, Gordon S. 1996. Cytokine regulation of the macrophage (M phi) system studied using the colony stimulating factor-1-deficient op/op mouse. Physiol. Rev. 76:927-47
    • (1996) Physiol. Rev , vol.76 , pp. 927-947
    • Wiktor-Jedrzejczak, W.1    Gordon, S.2
  • 23
    • 0035412388 scopus 로고    scopus 로고
    • Rescue of the colony-stimulating factor 1 (CSF-1)-nullizygous mouse (Csf1(op)/Csf1(op)) phenotype with a CSF-1 transgene and identification of sites of local CSF-1 synthesis
    • Ryan GR, Dai XM, Dominguez MG, Tong W, Chuan F, et al. 2001. Rescue of the colony-stimulating factor 1 (CSF-1)-nullizygous mouse (Csf1(op)/Csf1(op)) phenotype with a CSF-1 transgene and identification of sites of local CSF-1 synthesis. Blood 98:74-84
    • (2001) Blood , vol.98 , pp. 74-84
    • Ryan, G.R.1    Dai, X.M.2    Dominguez, M.G.3    Tong, W.4    Chuan, F.5
  • 24
    • 0037307026 scopus 로고    scopus 로고
    • A macrophage colony-stimulating factor receptor-green fluorescent protein transgene is expressed throughout the mononuclear phagocyte system of the mouse
    • Sasmono RT, Oceandy D, Pollard JW, Tong W, Pavli P, et al. 2003. A macrophage colony-stimulating factor receptor-green fluorescent protein transgene is expressed throughout the mononuclear phagocyte system of the mouse. Blood 101:1155-63
    • (2003) Blood , vol.101 , pp. 1155-1163
    • Sasmono, R.T.1    Oceandy, D.2    Pollard, J.W.3    Tong, W.4    Pavli, P.5
  • 25
    • 22544455619 scopus 로고    scopus 로고
    • The colony-stimulating factor 1 receptor is expressed on dendritic cells during differentiation and regulates their expansion
    • MacDonald KP, Rowe V, Bofinger HM, Thomas R, Sasmono T, et al. 2005. The colony-stimulating factor 1 receptor is expressed on dendritic cells during differentiation and regulates their expansion. J. Immunol. 175:1399-405
    • (2005) J. Immunol , vol.175 , pp. 1399-1405
    • MacDonald, K.P.1    Rowe, V.2    Bofinger, H.M.3    Thomas, R.4    Sasmono, T.5
  • 26
    • 0022145365 scopus 로고
    • Molecular cloning of a complementary DNA encoding human macrophage-specific colony-stimulating factor (CSF-1)
    • Kawasaki ES, Ladner MB, Wang AM, Van Arsdell J, Warren MK, et al. 1985. Molecular cloning of a complementary DNA encoding human macrophage-specific colony-stimulating factor (CSF-1). Science 230:291-96
    • (1985) Science , vol.230 , pp. 291-296
    • Kawasaki, E.S.1    Ladner, M.B.2    Wang, A.M.3    Van Arsdell, J.4    Warren, M.K.5
  • 27
    • 44049092407 scopus 로고    scopus 로고
    • Discovery of a cytokine and its receptor by functional screening of the extracellular proteome
    • Lin H, Lee E, Hestir K, Leo C, Huang M, et al. 2008. Discovery of a cytokine and its receptor by functional screening of the extracellular proteome. Science 320:807-11
    • (2008) Science , vol.320 , pp. 807-811
    • Lin, H.1    Lee, E.2    Hestir, K.3    Leo, C.4    Huang, M.5
  • 28
    • 17444387421 scopus 로고    scopus 로고
    • Intrinsic lymphotoxin-β receptor requirement for homeostasis of lymphoid tissue dendritic cells
    • Kabashima K, Banks TA, Ansel KM, Lu TT, Ware CF, Cyster JG. 2005. Intrinsic lymphotoxin-β receptor requirement for homeostasis of lymphoid tissue dendritic cells. Immunity 22:439-50
    • (2005) Immunity , vol.22 , pp. 439-450
    • Kabashima, K.1    Banks, T.A.2    Ansel, K.M.3    Lu, T.T.4    Ware, C.F.5    Cyster, J.G.6
  • 29
    • 0034210658 scopus 로고    scopus 로고
    • Mice lacking Flt3 ligand have deficient hematopoiesis affecting hematopoietic progenitor cells, dendritic cells, and natural killer cells
    • McKenna HJ. 2000. Mice lacking Flt3 ligand have deficient hematopoiesis affecting hematopoietic progenitor cells, dendritic cells, and natural killer cells. Blood 95:3489-97
    • (2000) Blood , vol.95 , pp. 3489-3497
    • McKenna, H.J.1
  • 30
    • 34250214880 scopus 로고    scopus 로고
    • Myeloid lineage commitment from the hematopoietic stem cell
    • Iwasaki H, Akashi K. 2007. Myeloid lineage commitment from the hematopoietic stem cell. Immunity 26:726-40
    • (2007) Immunity , vol.26 , pp. 726-740
    • Iwasaki, H.1    Akashi, K.2
  • 31
    • 0032146794 scopus 로고    scopus 로고
    • PU.1 induces myeloid lineage commitment in multipotent hematopoietic progenitors
    • Nerlov C, Graf T. 1998. PU.1 induces myeloid lineage commitment in multipotent hematopoietic progenitors. Genes. Dev. 12:2403-12
    • (1998) Genes. Dev , vol.12 , pp. 2403-2412
    • Nerlov, C.1    Graf, T.2
  • 32
    • 18644373047 scopus 로고    scopus 로고
    • PU.1 regulates the commitment of adult hematopoietic progenitors and restricts granulopoiesis
    • Dakic A, Metcalf D, Di Rago L, Mifsud S, Wu L, Nutt SL. 2005. PU.1 regulates the commitment of adult hematopoietic progenitors and restricts granulopoiesis. J. Exp. Med. 201:1487-502
    • (2005) J. Exp. Med , vol.201 , pp. 1487-1502
    • Dakic, A.1    Metcalf, D.2    Di Rago, L.3    Mifsud, S.4    Wu, L.5    Nutt, S.L.6
  • 33
    • 23944446085 scopus 로고    scopus 로고
    • Distinctive and indispensable roles of PU.1 in maintenance of hematopoietic stem cells and their differentiation
    • Iwasaki H, Somoza C, Shigematsu H, Duprez EA, Iwasaki-Arai J, et al. 2005. Distinctive and indispensable roles of PU.1 in maintenance of hematopoietic stem cells and their differentiation. Blood 106:1590-600
    • (2005) Blood , vol.106 , pp. 1590-1600
    • Iwasaki, H.1    Somoza, C.2    Shigematsu, H.3    Duprez, E.A.4    Iwasaki-Arai, J.5
  • 34
    • 18744416572 scopus 로고    scopus 로고
    • Cooperative and antagonistic interplay between PU.1 and GATA-2 in the specification of myeloid cell fates
    • Walsh JC, DeKoter RP, Lee HJ, Smith ED, Lancki DW, et al. 2002. Cooperative and antagonistic interplay between PU.1 and GATA-2 in the specification of myeloid cell fates. Immunity 17:665-76
    • (2002) Immunity , vol.17 , pp. 665-676
    • Walsh, J.C.1    DeKoter, R.P.2    Lee, H.J.3    Smith, E.D.4    Lancki, D.W.5
  • 35
    • 0142124320 scopus 로고    scopus 로고
    • Regulation of macrophage and neutrophil cell fates by the PU.1:C/EBPα ratio and granulocyte colony-stimulating factor
    • Dahl R, Walsh JC, Lancki D, Laslo P, Iyer SR, et al. 2003. Regulation of macrophage and neutrophil cell fates by the PU.1:C/EBPα ratio and granulocyte colony-stimulating factor. Nat. Immunol. 4:1029-36
    • (2003) Nat. Immunol , vol.4 , pp. 1029-1036
    • Dahl, R.1    Walsh, J.C.2    Lancki, D.3    Laslo, P.4    Iyer, S.R.5
  • 36
    • 0031029557 scopus 로고    scopus 로고
    • Absence of granulocyte colony-stimulating factor signaling and neutrophil development in CCAAT enhancer binding protein α-deficient mice
    • Zhang DE, Zhang P, Wang ND, Hetherington CJ, Darlington GJ, Tenen DG. 1997. Absence of granulocyte colony-stimulating factor signaling and neutrophil development in CCAAT enhancer binding protein α-deficient mice. Proc. Natl. Acad. Sci. USA 94:569-74
    • (1997) Proc. Natl. Acad. Sci. USA , vol.94 , pp. 569-574
    • Zhang, D.E.1    Zhang, P.2    Wang, N.D.3    Hetherington, C.J.4    Darlington, G.J.5    Tenen, D.G.6
  • 37
    • 33747196725 scopus 로고    scopus 로고
    • Multilineage transcriptional priming and determination of alternate hematopoietic cell fates
    • Laslo P, Spooner CJ, Warmflash A, Lancki DW, Lee HJ, et al. 2006. Multilineage transcriptional priming and determination of alternate hematopoietic cell fates. Cell 126:755-66
    • (2006) Cell , vol.126 , pp. 755-766
    • Laslo, P.1    Spooner, C.J.2    Warmflash, A.3    Lancki, D.W.4    Lee, H.J.5
  • 38
    • 2542455620 scopus 로고    scopus 로고
    • Stepwise reprogramming of B cells into macrophages
    • Xie H, Ye M, Feng R, Graf T. 2004. Stepwise reprogramming of B cells into macrophages. Cell 117:663-76
    • (2004) Cell , vol.117 , pp. 663-676
    • Xie, H.1    Ye, M.2    Feng, R.3    Graf, T.4
  • 39
    • 33846257739 scopus 로고    scopus 로고
    • Reprogramming of committed T cell progenitors to macrophages and dendritic cells by C/EBPα and PU.1 transcription factors
    • Laiosa CV, Stadtfeld M, Xie H, de Andres-Aguayo L, Graf T. 2006. Reprogramming of committed T cell progenitors to macrophages and dendritic cells by C/EBPα and PU.1 transcription factors. Immunity 25:731-44
    • (2006) Immunity , vol.25 , pp. 731-744
    • Laiosa, C.V.1    Stadtfeld, M.2    Xie, H.3    de Andres-Aguayo, L.4    Graf, T.5
  • 41
    • 0032190631 scopus 로고    scopus 로고
    • A transcription factor party during blood cell differentiation
    • Sieweke MH, Graf T. 1998. A transcription factor party during blood cell differentiation. Curr. Opin. Genet. Dev. 8:545-51
    • (1998) Curr. Opin. Genet. Dev , vol.8 , pp. 545-551
    • Sieweke, M.H.1    Graf, T.2
  • 42
    • 0037244284 scopus 로고    scopus 로고
    • Intrinsic requirement for zinc finger transcription factor Gfi-1 in neutrophil differentiation
    • Hock H, Hamblen MJ, Rooke HM, Traver D, Bronson RT, et al. 2003. Intrinsic requirement for zinc finger transcription factor Gfi-1 in neutrophil differentiation. Immunity 18:109-20
    • (2003) Immunity , vol.18 , pp. 109-120
    • Hock, H.1    Hamblen, M.J.2    Rooke, H.M.3    Traver, D.4    Bronson, R.T.5
  • 43
    • 0036510161 scopus 로고    scopus 로고
    • Inflammatory reactions and severe neutropenia in mice lacking the transcriptional repressor Gfi1
    • Karsunky H, Zeng H, Schmidt T, Zevnik B, Kluge R, et al. 2002. Inflammatory reactions and severe neutropenia in mice lacking the transcriptional repressor Gfi1. Nat. Genet. 30:295-300
    • (2002) Nat. Genet , vol.30 , pp. 295-300
    • Karsunky, H.1    Zeng, H.2    Schmidt, T.3    Zevnik, B.4    Kluge, R.5
  • 44
    • 0027476673 scopus 로고
    • The zinc finger transcription factor Egr-1 is essential for and restricts differentiation along the macrophage lineage
    • Nguyen HQ, Hoffman Liebermann B, Liebermann DA. 1993. The zinc finger transcription factor Egr-1 is essential for and restricts differentiation along the macrophage lineage. Cell 72:197-209
    • (1993) Cell , vol.72 , pp. 197-209
    • Nguyen, H.Q.1    Hoffman Liebermann, B.2    Liebermann, D.A.3
  • 45
    • 0035283135 scopus 로고    scopus 로고
    • Early growth response gene 1 stimulates development of hematopoietic progenitor cells along the macrophage lineage at the expense of the granulocyte and erythroid lineages
    • Krishnaraju K, Hoffman B, Liebermann DA. 2001. Early growth response gene 1 stimulates development of hematopoietic progenitor cells along the macrophage lineage at the expense of the granulocyte and erythroid lineages. Blood 97:1298-305
    • (2001) Blood , vol.97 , pp. 1298-1305
    • Krishnaraju, K.1    Hoffman, B.2    Liebermann, D.A.3
  • 46
    • 0029905408 scopus 로고    scopus 로고
    • Unimpaired macrophage differentiation and activation in mice lacking the zinc finger transplantation factor NGFI-A (EGR1)
    • Lee SL, Wang Y, Milbrandt J. 1996. Unimpaired macrophage differentiation and activation in mice lacking the zinc finger transplantation factor NGFI-A (EGR1). Mol. Cell. Biol. 16:4566-72
    • (1996) Mol. Cell. Biol , vol.16 , pp. 4566-4572
    • Lee, S.L.1    Wang, Y.2    Milbrandt, J.3
  • 47
    • 0033680746 scopus 로고    scopus 로고
    • ICSBP directs bipotential myeloid progenitor cells to differentiate into mature macrophages
    • Tamura T, Nagamura-Inoue T, Shmeltzer Z, Kuwata T, Ozato K. 2000. ICSBP directs bipotential myeloid progenitor cells to differentiate into mature macrophages. Immunity 13:155-65
    • (2000) Immunity , vol.13 , pp. 155-165
    • Tamura, T.1    Nagamura-Inoue, T.2    Shmeltzer, Z.3    Kuwata, T.4    Ozato, K.5
  • 48
    • 0032740313 scopus 로고    scopus 로고
    • Protein-protein and DNA-protein interactions affect the activity of lymphoid-specific IFN regulatory factors
    • Meraro D, Hashmueli S, Koren B, Azriel A, Oumard A, et al. 1999. Protein-protein and DNA-protein interactions affect the activity of lymphoid-specific IFN regulatory factors. J. Immunol. 163:6468-78
    • (1999) J. Immunol , vol.163 , pp. 6468-6478
    • Meraro, D.1    Hashmueli, S.2    Koren, B.3    Azriel, A.4    Oumard, A.5
  • 49
    • 34648831595 scopus 로고    scopus 로고
    • The Kruppel-like factor KLF4 is a critical regulator of monocyte differentiation
    • Feinberg MW, Wara AK, Cao Z, Lebedeva MA, Rosenbauer F, et al. 2007. The Kruppel-like factor KLF4 is a critical regulator of monocyte differentiation. EMBO J. 26:4138-48
    • (2007) EMBO J , vol.26 , pp. 4138-4148
    • Feinberg, M.W.1    Wara, A.K.2    Cao, Z.3    Lebedeva, M.A.4    Rosenbauer, F.5
  • 50
    • 0029870839 scopus 로고    scopus 로고
    • MafB is an interaction partner and repressor of Ets-1 that inhibits erythroid differentiation
    • Sieweke MH, Tekotte H, Frampton J, Graf T. 1996. MafB is an interaction partner and repressor of Ets-1 that inhibits erythroid differentiation. Cell 85:49-60
    • (1996) Cell , vol.85 , pp. 49-60
    • Sieweke, M.H.1    Tekotte, H.2    Frampton, J.3    Graf, T.4
  • 51
    • 0031193935 scopus 로고    scopus 로고
    • The expression pattern of the mafB/kr gene in birds and mice reveals that the kreisler phenotype does not represent a null mutant
    • Eichmann A, Grapin-Botton A, Kelly L, Graf T, Le Douarin NM, Sieweke M. 1997. The expression pattern of the mafB/kr gene in birds and mice reveals that the kreisler phenotype does not represent a null mutant. Mech. Dev. 65:111-22
    • (1997) Mech. Dev , vol.65 , pp. 111-122
    • Eichmann, A.1    Grapin-Botton, A.2    Kelly, L.3    Graf, T.4    Le Douarin, N.M.5    Sieweke, M.6
  • 52
    • 15944364735 scopus 로고    scopus 로고
    • Balance of MafB and PU.1 specifies alternative macrophage or dendritic cell fate
    • Bakri Y, Sarrazin S, Mayer UP, Tillmanns S, Nerlov C, et al. 2005. Balance of MafB and PU.1 specifies alternative macrophage or dendritic cell fate. Blood 105:2707-16
    • (2005) Blood , vol.105 , pp. 2707-2716
    • Bakri, Y.1    Sarrazin, S.2    Mayer, U.P.3    Tillmanns, S.4    Nerlov, C.5
  • 53
    • 0033198522 scopus 로고    scopus 로고
    • c-Maf induces monocytic differentiation and apoptosis in bipotent myeloid progenitors
    • Hegde SP, Zhao J, Ashmun RA, Shapiro LH. 1999. c-Maf induces monocytic differentiation and apoptosis in bipotent myeloid progenitors. Blood 94:1578-89
    • (1999) Blood , vol.94 , pp. 1578-1589
    • Hegde, S.P.1    Zhao, J.2    Ashmun, R.A.3    Shapiro, L.H.4
  • 55
    • 0028114205 scopus 로고
    • Opposing actions of c-ets/PU.1 and c-myb protooncogene products in regulating the macrophage-specific promoters of the human and mouse colony-stimulating factor-1 receptor (c-fms) genes
    • Reddy MA, Yang BS, Yue X, Barnett CJ, Ross IL, et al. 1994. Opposing actions of c-ets/PU.1 and c-myb protooncogene products in regulating the macrophage-specific promoters of the human and mouse colony-stimulating factor-1 receptor (c-fms) genes. J. Exp. Med. 180:2309-19
    • (1994) J. Exp. Med , vol.180 , pp. 2309-2319
    • Reddy, M.A.1    Yang, B.S.2    Yue, X.3    Barnett, C.J.4    Ross, I.L.5
  • 56
    • 0032479989 scopus 로고    scopus 로고
    • PU.1 regulates both cytokine-dependent proliferation and differentiation of granulocyte/macrophage progenitors
    • DeKoter RP, Walsh JC, Singh H. 1998. PU.1 regulates both cytokine-dependent proliferation and differentiation of granulocyte/macrophage progenitors. EMBO J. 17:4456-68
    • (1998) EMBO J , vol.17 , pp. 4456-4468
    • DeKoter, R.P.1    Walsh, J.C.2    Singh, H.3
  • 57
    • 0036645169 scopus 로고    scopus 로고
    • Transcription factor complex formation and chromatin fine structure alterations at the murine c-fms (CSF-1 receptor) locus during maturation of myeloid precursor cells
    • Tagoh H, Himes R, Clarke D, Leenen PJ, Riggs AD, et al. 2002. Transcription factor complex formation and chromatin fine structure alterations at the murine c-fms (CSF-1 receptor) locus during maturation of myeloid precursor cells. Genes Dev. 16:1721-37
    • (2002) Genes Dev , vol.16 , pp. 1721-1737
    • Tagoh, H.1    Himes, R.2    Clarke, D.3    Leenen, P.J.4    Riggs, A.D.5
  • 58
    • 0031587848 scopus 로고    scopus 로고
    • Enforced expression of Bcl-2 in monocytes rescues macrophages and partially reverses osteopetrosis in op/op mice
    • Lagasse E, Weissman IL. 1997. Enforced expression of Bcl-2 in monocytes rescues macrophages and partially reverses osteopetrosis in op/op mice. Cell 89:1021-31
    • (1997) Cell , vol.89 , pp. 1021-1031
    • Lagasse, E.1    Weissman, I.L.2
  • 59
    • 0034699390 scopus 로고    scopus 로고
    • Cell-fate conversion of lymphoidcommitted progenitors by instructive actions of cytokines
    • Kondo M, Scherer DC, Miyamoto T, King AG, Akashi K, et al. 2000. Cell-fate conversion of lymphoidcommitted progenitors by instructive actions of cytokines. Nature 407:383-86
    • (2000) Nature , vol.407 , pp. 383-386
    • Kondo, M.1    Scherer, D.C.2    Miyamoto, T.3    King, A.G.4    Akashi, K.5
  • 60
    • 0032546352 scopus 로고    scopus 로고
    • Dendritic cells and the control of immunity
    • Banchereau J, Steinman RM. 1998. Dendritic cells and the control of immunity. Nature 392:245-52
    • (1998) Nature , vol.392 , pp. 245-252
    • Banchereau, J.1    Steinman, R.M.2
  • 61
    • 0037184995 scopus 로고    scopus 로고
    • Pattern recognition receptors: Doubling up for the innate immune response
    • Gordon S. 2002. Pattern recognition receptors: doubling up for the innate immune response. Cell 111:927-30
    • (2002) Cell , vol.111 , pp. 927-930
    • Gordon, S.1
  • 62
    • 0014325451 scopus 로고
    • The origin and kinetics of mononuclear phagocytes
    • van Furth R, Cohn ZA. 1968. The origin and kinetics of mononuclear phagocytes. J. Exp. Med. 128:415-35
    • (1968) J. Exp. Med , vol.128 , pp. 415-435
    • van Furth, R.1    Cohn, Z.A.2
  • 63
    • 0037769059 scopus 로고    scopus 로고
    • Monocyte heterogeneity and innate immunity
    • Taylor PR, Gordon S. 2003. Monocyte heterogeneity and innate immunity. Immunity 19:2-4
    • (2003) Immunity , vol.19 , pp. 2-4
    • Taylor, P.R.1    Gordon, S.2
  • 64
  • 65
    • 0036906526 scopus 로고    scopus 로고
    • Langerhans cells renew in the skin throughout life under steady-state conditions
    • Merad M, Manz MG, Karsunky H, Wagers A, Peters W, et al. 2002. Langerhans cells renew in the skin throughout life under steady-state conditions. Nat. Immunol. 3:1135-41
    • (2002) Nat. Immunol , vol.3 , pp. 1135-1141
    • Merad, M.1    Manz, M.G.2    Karsunky, H.3    Wagers, A.4    Peters, W.5
  • 67
    • 0016240723 scopus 로고
    • Identification of a novel cell type in peripheral lymphoid organs of mice. 3. Functional properties in vivo
    • Steinman RM, Lustig DS, Cohn ZA. 1974. Identification of a novel cell type in peripheral lymphoid organs of mice. 3. Functional properties in vivo. J. Exp. Med. 139:1431-45
    • (1974) J. Exp. Med , vol.139 , pp. 1431-1445
    • Steinman, R.M.1    Lustig, D.S.2    Cohn, Z.A.3
  • 69
    • 0037625155 scopus 로고    scopus 로고
    • TNF/iNOS-producing dendritic cells mediate innate immune defense against bacterial infection
    • Serbina NV, Salazar-Mather TP, Biron CA, Kuziel WA, Pamer EG. 2003. TNF/iNOS-producing dendritic cells mediate innate immune defense against bacterial infection. Immunity 19:59-70
    • (2003) Immunity , vol.19 , pp. 59-70
    • Serbina, N.V.1    Salazar-Mather, T.P.2    Biron, C.A.3    Kuziel, W.A.4    Pamer, E.G.5
  • 70
    • 1642406217 scopus 로고    scopus 로고
    • Subpopulations of mouse blood monocytes differ in maturation stage and inflammatory response
    • Sunderkotter C, Nikolic T, Dillon MJ, Van Rooijen N, Stehling M, et al. 2004. Subpopulations of mouse blood monocytes differ in maturation stage and inflammatory response. J. Immunol. 172:4410-17
    • (2004) J. Immunol , vol.172 , pp. 4410-4417
    • Sunderkotter, C.1    Nikolic, T.2    Dillon, M.J.3    Van Rooijen, N.4    Stehling, M.5
  • 71
  • 72
    • 0027500568 scopus 로고
    • Granulocytes, macrophages, and dendritic cells arise from a common major histocompatibility complex class II-negative progenitor in mouse bone marrow
    • Inaba K, Inaba M, Deguchi M, Hagi K, Yasumizu R, et al. 1993. Granulocytes, macrophages, and dendritic cells arise from a common major histocompatibility complex class II-negative progenitor in mouse bone marrow. Proc. Natl. Acad. Sci. USA 90:3038-42
    • (1993) Proc. Natl. Acad. Sci. USA , vol.90 , pp. 3038-3042
    • Inaba, K.1    Inaba, M.2    Deguchi, M.3    Hagi, K.4    Yasumizu, R.5
  • 74
    • 0034624828 scopus 로고    scopus 로고
    • A clonogenic common myeloid progenitor that gives rise to all myeloid lineages
    • Akashi K, Traver D, Miyamoto T, Weissman IL. 2000. A clonogenic common myeloid progenitor that gives rise to all myeloid lineages. Nature 404:193-97
    • (2000) Nature , vol.404 , pp. 193-197
    • Akashi, K.1    Traver, D.2    Miyamoto, T.3    Weissman, I.L.4
  • 75
    • 35549000134 scopus 로고    scopus 로고
    • Development of plasmacytoid and conventional dendritic cell subtypes from single precursor cells derived in vitro and in vivo
    • Naik SH, Sathe P, Park HY, Metcalf D, Proietto AI, et al. 2007. Development of plasmacytoid and conventional dendritic cell subtypes from single precursor cells derived in vitro and in vivo. Nat. Immunol. 8:1217-26
    • (2007) Nat. Immunol , vol.8 , pp. 1217-1226
    • Naik, S.H.1    Sathe, P.2    Park, H.Y.3    Metcalf, D.4    Proietto, A.I.5
  • 77
    • 0037355619 scopus 로고    scopus 로고
    • Blockade of macrophage colony-stimulating factor reduces macrophage proliferation and accumulation in renal allograft rejection
    • Jose MD, LeMeur Y, Atkins RC, Chadban SJ. 2003. Blockade of macrophage colony-stimulating factor reduces macrophage proliferation and accumulation in renal allograft rejection. Am. J. Transplant. 3:294-300
    • (2003) Am. J. Transplant , vol.3 , pp. 294-300
    • Jose, M.D.1    LeMeur, Y.2    Atkins, R.C.3    Chadban, S.J.4
  • 78
    • 0033528755 scopus 로고    scopus 로고
    • Intraperitoneal administration of anti-c-fms monoclonal antibody prevents initial events of atherogenesis but does not reduce the size of advanced lesions in apolipoprotein E-deficient mice
    • Murayama T, Yokode M, Kataoka H, Imabayashi T, Yoshida H, et al. 1999. Intraperitoneal administration of anti-c-fms monoclonal antibody prevents initial events of atherogenesis but does not reduce the size of advanced lesions in apolipoprotein E-deficient mice. Circulation 99:1740-46
    • (1999) Circulation , vol.99 , pp. 1740-1746
    • Murayama, T.1    Yokode, M.2    Kataoka, H.3    Imabayashi, T.4    Yoshida, H.5
  • 79
    • 0029557424 scopus 로고
    • Functional hierarchy of c-kit and c-fms in intramarrow production of CFU-M
    • Sudo T, Nishikawa S, Ogawa M, Kataoka H, Ohno N, et al. 1995. Functional hierarchy of c-kit and c-fms in intramarrow production of CFU-M. Oncogene 11:2469-76
    • (1995) Oncogene , vol.11 , pp. 2469-2476
    • Sudo, T.1    Nishikawa, S.2    Ogawa, M.3    Kataoka, H.4    Ohno, N.5
  • 80
    • 0031719739 scopus 로고    scopus 로고
    • Establishment and characterization of pro-B cell lines from motheaten mutant mouse defective in SHP-1 protein tyrosine phosphatase
    • Miyamoto A, Kunisada T, Yamazaki H, Miyake K, Nishikawa SI, et al. 1998. Establishment and characterization of pro-B cell lines from motheaten mutant mouse defective in SHP-1 protein tyrosine phosphatase. Immunol. Lett. 63:75-82
    • (1998) Immunol. Lett , vol.63 , pp. 75-82
    • Miyamoto, A.1    Kunisada, T.2    Yamazaki, H.3    Miyake, K.4    Nishikawa, S.I.5
  • 81
    • 18344385284 scopus 로고    scopus 로고
    • An induced Ets repressor complex regulates growth arrest during terminal macrophage differentiation
    • Klappacher GW, Lunyak VV, Sykes DB, Sawka-Verhelle D, Sage J, et al. 2002. An induced Ets repressor complex regulates growth arrest during terminal macrophage differentiation. Cell 109:169-80
    • (2002) Cell , vol.109 , pp. 169-180
    • Klappacher, G.W.1    Lunyak, V.V.2    Sykes, D.B.3    Sawka-Verhelle, D.4    Sage, J.5
  • 82
    • 7444254061 scopus 로고    scopus 로고
    • CSF-1 regulation of the wandering macrophage: Complexity in action
    • Pixley FJ, Stanley ER. 2004. CSF-1 regulation of the wandering macrophage: Complexity in action. Trends Cell Biol. 14:628-38
    • (2004) Trends Cell Biol , vol.14 , pp. 628-638
    • Pixley, F.J.1    Stanley, E.R.2
  • 83
    • 0028009754 scopus 로고
    • Dual control of myc expression through a single DNA binding site targeted by ets family proteins and E2F-1
    • Roussel MF, Davis JN, Cleveland JL, Ghysdael J, Hiebert SW. 1994. Dual control of myc expression through a single DNA binding site targeted by ets family proteins and E2F-1. Oncogene 9:405-15
    • (1994) Oncogene , vol.9 , pp. 405-415
    • Roussel, M.F.1    Davis, J.N.2    Cleveland, J.L.3    Ghysdael, J.4    Hiebert, S.W.5
  • 84
    • 0031020872 scopus 로고    scopus 로고
    • Identification of the major positive regulators of c-myb expression in hematopoietic cells of different lineages
    • Sullivan J, Feeley B, Guerra J, Boxer LM. 1997. Identification of the major positive regulators of c-myb expression in hematopoietic cells of different lineages. J. Biol. Chem. 272:1943-49
    • (1997) J. Biol. Chem , vol.272 , pp. 1943-1949
    • Sullivan, J.1    Feeley, B.2    Guerra, J.3    Boxer, L.M.4
  • 85
    • 0026844368 scopus 로고
    • Myb: A transcriptional activator linking proliferation and differentiation in hematopoietic cells
    • Graf T. 1992. Myb: A transcriptional activator linking proliferation and differentiation in hematopoietic cells. Curr. Opin. Genet. Dev. 2:249-55
    • (1992) Curr. Opin. Genet. Dev , vol.2 , pp. 249-255
    • Graf, T.1
  • 86
    • 0031015370 scopus 로고    scopus 로고
    • Regulation of cell cycle entry and G1 progression by CSF-1
    • Roussel MF. 1997. Regulation of cell cycle entry and G1 progression by CSF-1. Mol. Reprod. Dev. 46:11-18
    • (1997) Mol. Reprod. Dev , vol.46 , pp. 11-18
    • Roussel, M.F.1
  • 87
    • 34547152101 scopus 로고    scopus 로고
    • SUMO-modification regulates MafB driven macrophage differentiation by enabling Myb dependent transcriptional repression
    • Tillmanns S, Otto C, Jaffray E, Duroure C, Bakri Y, et al. 2007. SUMO-modification regulates MafB driven macrophage differentiation by enabling Myb dependent transcriptional repression. Mol. Cell. Biol. 27:5554-64
    • (2007) Mol. Cell. Biol , vol.27 , pp. 5554-5564
    • Tillmanns, S.1    Otto, C.2    Jaffray, E.3    Duroure, C.4    Bakri, Y.5
  • 88
    • 0031897459 scopus 로고    scopus 로고
    • c-Maf interacts with c-Myb to regulate transcription of an early myeloid gene during differentiation
    • Hedge SP, Kumar A, Kurschner C, Shapiro LH. 1998. c-Maf interacts with c-Myb to regulate transcription of an early myeloid gene during differentiation. Mol. Cell. Biol. 18:2729-37
    • (1998) Mol. Cell. Biol , vol.18 , pp. 2729-2737
    • Hedge, S.P.1    Kumar, A.2    Kurschner, C.3    Shapiro, L.H.4
  • 89
    • 33748669268 scopus 로고    scopus 로고
    • Development of macrophages with altered actin organization in the absence of MafB
    • Aziz A, Vanhille L, Mohideen P, Kelly LM, Otto C, et al. 2006. Development of macrophages with altered actin organization in the absence of MafB. Mol. Cell. Biol. 26:6808-18
    • (2006) Mol. Cell. Biol , vol.26 , pp. 6808-6818
    • Aziz, A.1    Vanhille, L.2    Mohideen, P.3    Kelly, L.M.4    Otto, C.5
  • 90
    • 33750813483 scopus 로고    scopus 로고
    • Transcriptional profiling of the human monocyte-to-macrophage differentiation and polarization: New molecules and patterns of gene expression
    • Martinez FO, Gordon S, Locati M, Mantovani A. 2006. Transcriptional profiling of the human monocyte-to-macrophage differentiation and polarization: new molecules and patterns of gene expression. J. Immunol. 177:7303-11
    • (2006) J. Immunol , vol.177 , pp. 7303-7311
    • Martinez, F.O.1    Gordon, S.2    Locati, M.3    Mantovani, A.4
  • 91
    • 33646505131 scopus 로고    scopus 로고
    • p21Cip1 is required for the development of monocytes and their response to serum transfer-induced arthritis
    • Scatizzi JC, Hutcheson J, Bickel E, Woods JM, Klosowska K, et al. 2006. p21Cip1 is required for the development of monocytes and their response to serum transfer-induced arthritis. Am. J. Pathol. 168:1531-41
    • (2006) Am. J. Pathol , vol.168 , pp. 1531-1541
    • Scatizzi, J.C.1    Hutcheson, J.2    Bickel, E.3    Woods, J.M.4    Klosowska, K.5
  • 92
    • 10344262904 scopus 로고    scopus 로고
    • Fas death receptor signaling represses monocyte numbers and macrophage activation in vivo
    • Brown NJ, Hutcheson J, Bickel E, Scatizzi JC, Albee LD, et al. 2004. Fas death receptor signaling represses monocyte numbers and macrophage activation in vivo. J. Immunol. 173:7584-93
    • (2004) J. Immunol , vol.173 , pp. 7584-7593
    • Brown, N.J.1    Hutcheson, J.2    Bickel, E.3    Scatizzi, J.C.4    Albee, L.D.5
  • 93
    • 33845970192 scopus 로고    scopus 로고
    • Ly-6Chi monocytes dominate hypercholesterolemia-associated monocytosis and give rise to macrophages in atheromata
    • Swirski FK, Libby P, Aikawa E, Alcaide P, Luscinskas FW, et al. 2007. Ly-6Chi monocytes dominate hypercholesterolemia-associated monocytosis and give rise to macrophages in atheromata. J. Clin. Invest. 117:195-205
    • (2007) J. Clin. Invest , vol.117 , pp. 195-205
    • Swirski, F.K.1    Libby, P.2    Aikawa, E.3    Alcaide, P.4    Luscinskas, F.W.5
  • 94
    • 41649107036 scopus 로고    scopus 로고
    • Fractalkine deficiency markedly reduces macrophage accumulation and atherosclerotic lesion formation in CCR2-/- mice: Evidence for independent chemokine functions in atherogenesis
    • Saederup N, Chan L, Lira SA, Charo IF. 2008. Fractalkine deficiency markedly reduces macrophage accumulation and atherosclerotic lesion formation in CCR2-/- mice: evidence for independent chemokine functions in atherogenesis. Circulation 117:1642-48
    • (2008) Circulation , vol.117 , pp. 1642-1648
    • Saederup, N.1    Chan, L.2    Lira, S.A.3    Charo, I.F.4
  • 95
    • 34147164049 scopus 로고    scopus 로고
    • Critical roles for CCR2 and MCP-3 in monocyte mobilization from bone marrow and recruitment to inflammatory sites
    • Tsou CL, Peters W, Si Y, Slaymaker S, Aslanian AM, et al. 2007. Critical roles for CCR2 and MCP-3 in monocyte mobilization from bone marrow and recruitment to inflammatory sites. J. Clin. Invest. 117:902-9
    • (2007) J. Clin. Invest , vol.117 , pp. 902-909
    • Tsou, C.L.1    Peters, W.2    Si, Y.3    Slaymaker, S.4    Aslanian, A.M.5
  • 96
    • 41649100060 scopus 로고    scopus 로고
    • Combined inhibition of CCL2, CX3CR1, and CCR5 abrogates Ly6 C(hi) and Ly6C(lo) monocytosis and almost abolishes atherosclerosis in hypercholesterolemic mice
    • Combadiere C, Potteaux S, Rodero M, Simon T, Pezard A, et al. 2008. Combined inhibition of CCL2, CX3CR1, and CCR5 abrogates Ly6 C(hi) and Ly6C(lo) monocytosis and almost abolishes atherosclerosis in hypercholesterolemic mice. Circulation 117:1649-57
    • (2008) Circulation , vol.117 , pp. 1649-1657
    • Combadiere, C.1    Potteaux, S.2    Rodero, M.3    Simon, T.4    Pezard, A.5
  • 98
    • 0024450489 scopus 로고
    • Identification and characterization of a novel monocyte subpopulation in human peripheral blood
    • Passlick B, Flieger D, Ziegler-Heitbrock HW. 1989. Identification and characterization of a novel monocyte subpopulation in human peripheral blood. Blood 74:2527-34
    • (1989) Blood , vol.74 , pp. 2527-2534
    • Passlick, B.1    Flieger, D.2    Ziegler-Heitbrock, H.W.3
  • 100
    • 0035155787 scopus 로고    scopus 로고
    • Heterogeneity of human peripheral blood monocyte subsets
    • Grage-Griebenow E, Flad HD, Ernst M. 2001. Heterogeneity of human peripheral blood monocyte subsets. J. Leukoc. Biol. 69:11-20
    • (2001) J. Leukoc. Biol , vol.69 , pp. 11-20
    • Grage-Griebenow, E.1    Flad, H.D.2    Ernst, M.3
  • 101
    • 0034114233 scopus 로고    scopus 로고
    • Human MO subsets as defined by expression of CD64 and CD16 differ in phagocytic activity and generation of oxygen intermediates
    • Grage-Griebenow E, Flad HD, Ernst M, Bzowska M, Skrzeczynska J, Pryjma J. 2000. Human MO subsets as defined by expression of CD64 and CD16 differ in phagocytic activity and generation of oxygen intermediates. Immunobiology 202:42-50
    • (2000) Immunobiology , vol.202 , pp. 42-50
    • Grage-Griebenow, E.1    Flad, H.D.2    Ernst, M.3    Bzowska, M.4    Skrzeczynska, J.5    Pryjma, J.6
  • 102
    • 0033848101 scopus 로고    scopus 로고
    • Definition of human blood monocytes
    • Ziegler-Heitbrock HW. 2000. Definition of human blood monocytes. J. Leukoc. Biol. 67:603-6
    • (2000) J. Leukoc. Biol , vol.67 , pp. 603-606
    • Ziegler-Heitbrock, H.W.1
  • 103
    • 33845989083 scopus 로고    scopus 로고
    • Monocyte subsets differentially employ CCR2, CCR5, and CX3CR1 to accumulate within atherosclerotic plaques
    • Tacke F, Alvarez D, Kaplan TJ, Jakubzick C, Spanbroek R, et al. 2007. Monocyte subsets differentially employ CCR2, CCR5, and CX3CR1 to accumulate within atherosclerotic plaques. J. Clin. Invest. 117:185-94
    • (2007) J. Clin. Invest , vol.117 , pp. 185-194
    • Tacke, F.1    Alvarez, D.2    Kaplan, T.J.3    Jakubzick, C.4    Spanbroek, R.5
  • 104
    • 45549091996 scopus 로고    scopus 로고
    • Additive roles for MCP-1 and MCP-3 in CCR2-mediated recruitment of inflammatory monocytes during Listeria monocytogenes infection
    • Jia T, Serbina NV, Brandl K, Zhong MX, Leiner IM, et al. 2008. Additive roles for MCP-1 and MCP-3 in CCR2-mediated recruitment of inflammatory monocytes during Listeria monocytogenes infection. J. Immunol. 180:6846-53
    • (2008) J. Immunol , vol.180 , pp. 6846-6853
    • Jia, T.1    Serbina, N.V.2    Brandl, K.3    Zhong, M.X.4    Leiner, I.M.5
  • 105
    • 36549033197 scopus 로고    scopus 로고
    • The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions
    • Nahrendorf M, Swirski FK, Aikawa E, Stangenberg L, Wurdinger T, et al. 2007. The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions. J. Exp. Med. 204:3037-47
    • (2007) J. Exp. Med , vol.204 , pp. 3037-3047
    • Nahrendorf, M.1    Swirski, F.K.2    Aikawa, E.3    Stangenberg, L.4    Wurdinger, T.5
  • 106
    • 9244240285 scopus 로고    scopus 로고
    • Role of CCR8 and other chemokine pathways in the migration of monocyte-derived dendritic cells to lymph nodes
    • Qu C, Edwards EW, Tacke F, Angeli V, Llodra J, et al. 2004. Role of CCR8 and other chemokine pathways in the migration of monocyte-derived dendritic cells to lymph nodes. J. Exp. Med. 200:1231-41
    • (2004) J. Exp. Med , vol.200 , pp. 1231-1241
    • Qu, C.1    Edwards, E.W.2    Tacke, F.3    Angeli, V.4    Llodra, J.5
  • 107
    • 0020614131 scopus 로고
    • Relative efficacy of human monocytes and dendritic cells as accessory cells for T cell replication
    • Van Voorhis WC, Valinsky J, Hoffman E, Luban J, Hair LS, Steinman RM. 1983. Relative efficacy of human monocytes and dendritic cells as accessory cells for T cell replication. J. Exp. Med. 158:174-91
    • (1983) J. Exp. Med , vol.158 , pp. 174-191
    • Van Voorhis, W.C.1    Valinsky, J.2    Hoffman, E.3    Luban, J.4    Hair, L.S.5    Steinman, R.M.6
  • 108
    • 0034304003 scopus 로고    scopus 로고
    • Plasmacytoid dendritic cells activated by influenza virus and CD40L drive a potent TH1 polarization
    • Cella M, Facchetti F, Lanzavecchia A, Colonna M. 2000. Plasmacytoid dendritic cells activated by influenza virus and CD40L drive a potent TH1 polarization. Nat. Immunol. 1:305-10
    • (2000) Nat. Immunol , vol.1 , pp. 305-310
    • Cella, M.1    Facchetti, F.2    Lanzavecchia, A.3    Colonna, M.4
  • 109
    • 0033546053 scopus 로고    scopus 로고
    • The nature of the principal type 1 interferon-producing cells in human blood
    • Siegal FP, Kadowaki N, Shodell M, Fitzgerald-Bocarsly PA, Shah K, et al. 1999. The nature of the principal type 1 interferon-producing cells in human blood. Science 284:1835-37
    • (1999) Science , vol.284 , pp. 1835-1837
    • Siegal, F.P.1    Kadowaki, N.2    Shodell, M.3    Fitzgerald-Bocarsly, P.A.4    Shah, K.5
  • 110
    • 0037867044 scopus 로고    scopus 로고
    • Fractalkine preferentially mediates arrest and migration of CD16+ monocytes
    • Ancuta P, Rao R, Moses A, Mehle A, Shaw SK, et al. 2003. Fractalkine preferentially mediates arrest and migration of CD16+ monocytes. J. Exp. Med. 197:1701-7
    • (2003) J. Exp. Med , vol.197 , pp. 1701-1707
    • Ancuta, P.1    Rao, R.2    Moses, A.3    Mehle, A.4    Shaw, S.K.5
  • 112
    • 0019955814 scopus 로고
    • Isolation of functionally different human monocytes by counterflow centrifugation elutriation
    • Figdor CG, Bont WS, Touw I, de Roos J, Roosnek EE, de Vries JE. 1982. Isolation of functionally different human monocytes by counterflow centrifugation elutriation. Blood 60:46-53
    • (1982) Blood , vol.60 , pp. 46-53
    • Figdor, C.G.1    Bont, W.S.2    Touw, I.3    de Roos, J.4    Roosnek, E.E.5    de Vries, J.E.6
  • 113
    • 0019413559 scopus 로고
    • Functions of human monocyte and lymphocyte subsets obtained by countercurrent centrifugal elutriation: Differing functional capacities of human monocyte subsets
    • Yasaka T, Mantich NM, Boxer LA, Baehner RL. 1981. Functions of human monocyte and lymphocyte subsets obtained by countercurrent centrifugal elutriation: differing functional capacities of human monocyte subsets. J. Immunol. 127:1515-18
    • (1981) J. Immunol , vol.127 , pp. 1515-1518
    • Yasaka, T.1    Mantich, N.M.2    Boxer, L.A.3    Baehner, R.L.4
  • 114
    • 0021047834 scopus 로고
    • Characterization of a human blood monocyte subset with low peroxidase activity
    • Akiyama Y, Miller PJ, Thurman GB, Neubauer RH, Oliver C, et al. 1983. Characterization of a human blood monocyte subset with low peroxidase activity. J. Clin. Invest. 72:1093-105
    • (1983) J. Clin. Invest , vol.72 , pp. 1093-1105
    • Akiyama, Y.1    Miller, P.J.2    Thurman, G.B.3    Neubauer, R.H.4    Oliver, C.5
  • 116
    • 0021748677 scopus 로고
    • Subfractionation of human blood monocyte subsets with Percoll
    • Weiner RS, Mason RR. 1984. Subfractionation of human blood monocyte subsets with Percoll. Exp. Hematol. 12:800-4
    • (1984) Exp. Hematol , vol.12 , pp. 800-804
    • Weiner, R.S.1    Mason, R.R.2
  • 117
    • 0021819995 scopus 로고
    • Differential interleukin-1 elaboration by densitydefined human monocyte subpopulations
    • Elias JA, Chien P, Gustilo KM, Schreiber AD. 1985. Differential interleukin-1 elaboration by densitydefined human monocyte subpopulations. Blood 66:298-301
    • (1985) Blood , vol.66 , pp. 298-301
    • Elias, J.A.1    Chien, P.2    Gustilo, K.M.3    Schreiber, A.D.4
  • 118
    • 0026500855 scopus 로고
    • Differential expression of cytokines in human blood monocyte subpopulations
    • Ziegler-Heitbrock HW, Strobel M, Kieper D, Fingerle G, Schlunck T, et al. 1992. Differential expression of cytokines in human blood monocyte subpopulations. Blood 79:503-11
    • (1992) Blood , vol.79 , pp. 503-511
    • Ziegler-Heitbrock, H.W.1    Strobel, M.2    Kieper, D.3    Fingerle, G.4    Schlunck, T.5
  • 119
    • 0033844802 scopus 로고    scopus 로고
    • Differential chemokine receptor expression and function in human monocyte subpopulations
    • Weber C, Belge KU, von Hundelshausen P, Draude G, Steppich B, et al. 2000. Differential chemokine receptor expression and function in human monocyte subpopulations. J. Leukoc. Biol. 67:699-704
    • (2000) J. Leukoc. Biol , vol.67 , pp. 699-704
    • Weber, C.1    Belge, K.U.2    von Hundelshausen, P.3    Draude, G.4    Steppich, B.5
  • 121
    • 28344437694 scopus 로고    scopus 로고
    • - subpopulation of circulating monocytes with preferential production of haem oxygenase (HO)-1 in response to acute inflammation
    • - subpopulation of circulating monocytes with preferential production of haem oxygenase (HO)-1 in response to acute inflammation. Clin. Exp. Immunol. 142:461-70
    • (2005) Clin. Exp. Immunol , vol.142 , pp. 461-470
    • Mizuno, K.1    Toma, T.2    Tsukiji, H.3    Okamoto, H.4    Yamazaki, H.5
  • 126
    • 0034662159 scopus 로고    scopus 로고
    • Insertion of enhanced green fluorescent protein into the lysozyme gene creates mice with green fluorescent granulocytes and macrophages
    • Faust N, Varas F, Kelly LM, Heck S, Graf T. 2000. Insertion of enhanced green fluorescent protein into the lysozyme gene creates mice with green fluorescent granulocytes and macrophages. Blood 96:719-26
    • (2000) Blood , vol.96 , pp. 719-726
    • Faust, N.1    Varas, F.2    Kelly, L.M.3    Heck, S.4    Graf, T.5
  • 127
    • 0034028817 scopus 로고    scopus 로고
    • Analysis of fractalkine receptor CX(3)CR1 function by targeted deletion and green fluorescent protein reporter gene insertion
    • Jung S, Aliberti J, Graemmel P, Sunshine MJ, Kreutzberg GW, et al. 2000. Analysis of fractalkine receptor CX(3)CR1 function by targeted deletion and green fluorescent protein reporter gene insertion. Mol. Cell. Biol. 20:4106-14
    • (2000) Mol. Cell. Biol , vol.20 , pp. 4106-4114
    • Jung, S.1    Aliberti, J.2    Graemmel, P.3    Sunshine, M.J.4    Kreutzberg, G.W.5
  • 129
    • 0035158575 scopus 로고    scopus 로고
    • Palframan RT, Jung S, Cheng G, Weninger W, Luo Y, et al. 2001. Inflammatory chemokine transport and presentation in HEV: a remote control mechanism for monocyte recruitment to lymph nodes in inflamed tissues. J. Exp. Med. 194:1361-73
    • Palframan RT, Jung S, Cheng G, Weninger W, Luo Y, et al. 2001. Inflammatory chemokine transport and presentation in HEV: a remote control mechanism for monocyte recruitment to lymph nodes in inflamed tissues. J. Exp. Med. 194:1361-73
  • 130
    • 34347405754 scopus 로고    scopus 로고
    • Mouse neutrophilic granulocytes express mRNA encoding the macrophage colony-stimulating factor receptor (CSF-1R) as well as many other macrophage-specific transcripts and can transdifferentiate into macrophages in vitro in response to CSF-1
    • Sasmono RT, Ehrnsperger A, Cronau SL, Ravasi T, Kandane R, et al. 2007. Mouse neutrophilic granulocytes express mRNA encoding the macrophage colony-stimulating factor receptor (CSF-1R) as well as many other macrophage-specific transcripts and can transdifferentiate into macrophages in vitro in response to CSF-1. J. Leukoc. Biol. 82:111-23
    • (2007) J. Leukoc. Biol , vol.82 , pp. 111-123
    • Sasmono, R.T.1    Ehrnsperger, A.2    Cronau, S.L.3    Ravasi, T.4    Kandane, R.5
  • 131
    • 0346849667 scopus 로고    scopus 로고
    • Sequential MyD88-independent and -dependent activation of innate immune responses to intracellular bacterial infection
    • Serbina NV, Kuziel W, Flavell R, Akira S, Rollins B, Pamer EG. 2003. Sequential MyD88-independent and -dependent activation of innate immune responses to intracellular bacterial infection. Immunity 19:891-901
    • (2003) Immunity , vol.19 , pp. 891-901
    • Serbina, N.V.1    Kuziel, W.2    Flavell, R.3    Akira, S.4    Rollins, B.5    Pamer, E.G.6
  • 133
    • 35748957798 scopus 로고    scopus 로고
    • Lung macrophages serve as obligatory intermediate between blood monocytes and alveolar macrophages
    • Landsman L, Jung S. 2007. Lung macrophages serve as obligatory intermediate between blood monocytes and alveolar macrophages. J. Immunol. 179:3488-94
    • (2007) J. Immunol , vol.179 , pp. 3488-3494
    • Landsman, L.1    Jung, S.2
  • 134
    • 33846414364 scopus 로고    scopus 로고
    • Distinct differentiation potential of blood monocyte subsets in the lung
    • Landsman L, Varol C, Jung S. 2007. Distinct differentiation potential of blood monocyte subsets in the lung. J. Immunol. 178:2000-7
    • (2007) J. Immunol , vol.178 , pp. 2000-2007
    • Landsman, L.1    Varol, C.2    Jung, S.3
  • 140
    • 43249130187 scopus 로고    scopus 로고
    • Identification of discrete tumor-induced myeloid-derived suppressor cell subpopulations with distinct T cell-suppressive activity
    • Movahedi K, Guilliams M, Van Den Bossche J, Van Den Bergh R, Gysemans C, et al. 2008. Identification of discrete tumor-induced myeloid-derived suppressor cell subpopulations with distinct T cell-suppressive activity. Blood 111:4233-44
    • (2008) Blood , vol.111 , pp. 4233-4244
    • Movahedi, K.1    Guilliams, M.2    Van Den Bossche, J.3    Van Den Bergh, R.4    Gysemans, C.5
  • 141
    • 31544446571 scopus 로고    scopus 로고
    • + immature myeloid suppressor cells mediate the development of tumor-induced T regulatory cells and T-cell anergy in tumor-bearing host
    • + immature myeloid suppressor cells mediate the development of tumor-induced T regulatory cells and T-cell anergy in tumor-bearing host. Cancer Res. 66:1123-31
    • (2006) Cancer Res , vol.66 , pp. 1123-1131
    • Huang, B.1    Pan, P.Y.2    Li, Q.3    Sato, A.I.4    Levy, D.E.5
  • 143
    • 1642536454 scopus 로고    scopus 로고
    • Antigen-specific inhibition of CD8+ T cell response by immature myeloid cells in cancer is mediated by reactive oxygen species
    • Kusmartsev S, Nefedova Y, Yoder D, Gabrilovich DI. 2004. Antigen-specific inhibition of CD8+ T cell response by immature myeloid cells in cancer is mediated by reactive oxygen species. J. Immunol. 172:989-99
    • (2004) J. Immunol , vol.172 , pp. 989-999
    • Kusmartsev, S.1    Nefedova, Y.2    Yoder, D.3    Gabrilovich, D.I.4
  • 147
    • 0035313238 scopus 로고    scopus 로고
    • Polymorphism in the fractalkine receptor CX3CR1 as a genetic risk factor for coronary artery disease
    • Moatti D, Faure S, Fumeron F, Amara MelW, Seknadji P, et al. 2001. Polymorphism in the fractalkine receptor CX3CR1 as a genetic risk factor for coronary artery disease. Blood 97:1925-28
    • (2001) Blood , vol.97 , pp. 1925-1928
    • Moatti, D.1    Faure, S.2    Fumeron, F.3    MelW, A.4    Seknadji, P.5
  • 149
    • 0037465557 scopus 로고    scopus 로고
    • Decreased atherosclerotic lesion formation in CX3CR1/apolipoprotein E double knockout mice
    • Combadiere C, Potteaux S, Gao JL, Esposito B, Casanova S, et al. 2003. Decreased atherosclerotic lesion formation in CX3CR1/apolipoprotein E double knockout mice. Circulation 107:1009-16
    • (2003) Circulation , vol.107 , pp. 1009-1016
    • Combadiere, C.1    Potteaux, S.2    Gao, J.L.3    Esposito, B.4    Casanova, S.5
  • 150
    • 9444219628 scopus 로고    scopus 로고
    • RelB regulates human dendritic cell subset development by promoting monocyte intermediates
    • Platzer B, Jorgl A, Taschner S, Hocher B, Strobl H. 2004. RelB regulates human dendritic cell subset development by promoting monocyte intermediates. Blood 104:3655-63
    • (2004) Blood , vol.104 , pp. 3655-3663
    • Platzer, B.1    Jorgl, A.2    Taschner, S.3    Hocher, B.4    Strobl, H.5
  • 151
    • 0026762988 scopus 로고
    • Interleukin 4 potently enhances murine macrophage mannose receptor activity: A marker of alternative immunologic macrophage activation
    • Stein M, Keshav S, Harris N, Gordon S. 1992. Interleukin 4 potently enhances murine macrophage mannose receptor activity: a marker of alternative immunologic macrophage activation. J. Exp. Med. 176:287-92
    • (1992) J. Exp. Med , vol.176 , pp. 287-292
    • Stein, M.1    Keshav, S.2    Harris, N.3    Gordon, S.4
  • 152
    • 34248997759 scopus 로고    scopus 로고
    • Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory macrophages to support myogenesis
    • Arnold L, Henry A, Poron F, Baba-Amer Y, van Rooijen N, et al. 2007. Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory macrophages to support myogenesis. J. Exp. Med. 204:1057-69
    • (2007) J. Exp. Med , vol.204 , pp. 1057-1069
    • Arnold, L.1    Henry, A.2    Poron, F.3    Baba-Amer, Y.4    van Rooijen, N.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.