메뉴 건너뛰기




Volumn 64, Issue 3, 1998, Pages 383-396

Application example of neural networks for time series analysis: Rainfall-runoff modeling

Author keywords

Neural networks; Rainfall runoff; Sensitivity; Stepwise regression; Variable selection

Indexed keywords

MATHEMATICAL MODELS; RANDOM PROCESSES; REGRESSION ANALYSIS; TIME SERIES ANALYSIS;

EID: 0031998129     PISSN: 01651684     EISSN: None     Source Type: Journal    
DOI: 10.1016/s0165-1684(97)00203-x     Document Type: Article
Times cited : (66)

References (36)
  • 1
    • 0020970738 scopus 로고
    • Neuron-like adaptive elements that can solve difficult learning control problems
    • A. Barto, R. Sutton, C. Anderson, Neuron-like adaptive elements that can solve difficult learning control problems, IEEE Trans. Systems Man Cybernet. 13 (1983) 834-846.
    • (1983) IEEE Trans. Systems Man Cybernet. , vol.13 , pp. 834-846
    • Barto, A.1    Sutton, R.2    Anderson, C.3
  • 4
    • 0030286579 scopus 로고    scopus 로고
    • Neural network based short-term load forecasting using weather compansation
    • T.W.S. Chow, C.T. Leung, Neural network based short-term load forecasting using weather compansation, IEEE Trans. Power Systems 11 (4) (1996) 1736-1742.
    • (1996) IEEE Trans. Power Systems , vol.11 , Issue.4 , pp. 1736-1742
    • Chow, T.W.S.1    Leung, C.T.2
  • 5
    • 0029409251 scopus 로고
    • Neural modeling for time series: A statistical stepwise method for weight elimination
    • Nov.
    • M. Cotrell, B. Girard, Y. Girard, M. Mangeas, C. Muller, Neural modeling for time series: A statistical stepwise method for weight elimination, IEEE Trans. Neural Networks 6 (6) (Nov. 1995) 1335-1364.
    • (1995) IEEE Trans. Neural Networks , vol.6 , Issue.6 , pp. 1335-1364
    • Cotrell, M.1    Girard, B.2    Girard, Y.3    Mangeas, M.4    Muller, C.5
  • 6
    • 0026445234 scopus 로고
    • Effective and efficient global optimization for conceptual rainfall-runoff models
    • O. Duan, S. Sorooshian, V.K. Gupta, Effective and efficient global optimization for conceptual rainfall-runoff models, Water Resources Res. 28 (4) (1992) 1015-1031.
    • (1992) Water Resources Res. , vol.28 , Issue.4 , pp. 1015-1031
    • Duan, O.1    Sorooshian, S.2    Gupta, V.K.3
  • 8
    • 0024866495 scopus 로고
    • On the approximate realization of continuos mappings by neural networks
    • K. Funahashi, On the approximate realization of continuos mappings by neural networks, Neural Networks 2 (1989) 183-187.
    • (1989) Neural Networks , vol.2 , pp. 183-187
    • Funahashi, K.1
  • 9
    • 0000841115 scopus 로고    scopus 로고
    • A neural network approach to early breast carcinoma detection
    • Neural Networks, Elsevier, Amsterdam, to be published
    • D. Furundzic, A.J. Bekic, M. Djordjevic, A neural network approach to early breast carcinoma detection, J. Systems Architectures, Special Issue on Neural Networks, Elsevier, Amsterdam, 1998, to be published.
    • (1998) J. Systems Architectures , Issue.SPEC. ISSUE
    • Furundzic, D.1    Bekic, A.J.2    Djordjevic, M.3
  • 13
    • 0026818086 scopus 로고
    • Short term load forecasting using a multilayer neural network with an adaptive learning algorithm
    • February
    • K.L. Ho, Y.Y. Hsu, C.C. Yang, Short term load forecasting using a multilayer neural network with an adaptive learning algorithm, IEEE Trans. Power Systems 7 (1) (February 1992) 141-149.
    • (1992) IEEE Trans. Power Systems , vol.7 , Issue.1 , pp. 141-149
    • Ho, K.L.1    Hsu, Y.Y.2    Yang, C.C.3
  • 14
    • 0017280570 scopus 로고
    • The analysis and selection of variables in linear regression
    • R.R. Hocking, The analysis and selection of variables in linear regression, Biometrics 32 (1976) 1-50.
    • (1976) Biometrics , vol.32 , pp. 1-50
    • Hocking, R.R.1
  • 15
    • 85044383840 scopus 로고
    • Action potentials recorded from inside nerve fibre
    • A.L. Hodgkin, A.F. Huxley, Action potentials recorded from inside nerve fibre, Nature (London) (1939) 144-710
    • (1939) Nature (London) , pp. 144-710
    • Hodgkin, A.L.1    Huxley, A.F.2
  • 16
    • 0029413797 scopus 로고
    • Artificial neural network modeling of the rainfall-runoff process
    • October
    • K. Hsu, H.V. Gupta, S. Sorooshian, Artificial neural network modeling of the rainfall-runoff process, Water Resources Res. 31 (10) (October 1995) 2517-2530.
    • (1995) Water Resources Res. , vol.31 , Issue.10 , pp. 2517-2530
    • Hsu, K.1    Gupta, H.V.2    Sorooshian, S.3
  • 17
    • 0026220591 scopus 로고
    • Design of artificial neural networks for short-term load forecasting. Part I: Self-organizing feature maps for day type identification
    • September
    • Y.Y. Hsu, C.C. Yang, Design of artificial neural networks for short-term load forecasting. Part I: Self-organizing feature maps for day type identification, IEE Proc.-C 138 (5) (September 1991) 407-413.
    • (1991) IEE Proc.-C , vol.138 , Issue.5 , pp. 407-413
    • Hsu, Y.Y.1    Yang, C.C.2
  • 18
    • 0025447562 scopus 로고
    • A simple procedure for pruning back-propagation trained neural networks
    • June
    • E.D. Karnin, A simple procedure for pruning back-propagation trained neural networks, IEEE Trans. Neural Networks 1 (2) (June 1990) 239-245.
    • (1990) IEEE Trans. Neural Networks , vol.1 , Issue.2 , pp. 239-245
    • Karnin, E.D.1
  • 20
    • 0001321136 scopus 로고
    • On the representation of continuous functions of many variables by superposition of continuous function of one variable and addition
    • in Russian
    • A.N. Kolmogorov, On the representation of continuous functions of many variables by superposition of continuous function of one variable and addition, Dokl. Ak ad. Nauk USSR 114 (1957) 953-956 (in Russian).
    • (1957) Dokl. Ak Ad. Nauk USSR , vol.114 , pp. 953-956
    • Kolmogorov, A.N.1
  • 23
    • 0026821995 scopus 로고
    • Short-term load forecasting using an artificial neural network
    • February
    • K.Y. Lee, Y.T. Cha, J.H. Park, Short-term load forecasting using an artificial neural network, IEEE Trans. Power Systems 7 (1) (February 1992) 124-132.
    • (1992) IEEE Trans. Power Systems , vol.7 , Issue.1 , pp. 124-132
    • Lee, K.Y.1    Cha, Y.T.2    Park, J.H.3
  • 24
    • 0024771475 scopus 로고
    • Pattern classification using neural networks
    • R.P. Lipman, Pattern classification using neural networks, IEEE Commun. Mag. 11 (27) (1989) 47-64.
    • (1989) IEEE Commun. Mag. , vol.11 , Issue.27 , pp. 47-64
    • Lipman, R.P.1
  • 26
    • 0026106848 scopus 로고
    • Time series prediction by adaptive networks: A dynamical systems perspective
    • February
    • D. Lowe, A.R. Webb, Time series prediction by adaptive networks: A dynamical systems perspective, IEE Proc.-F 138 (February 1991) 17-24.
    • (1991) IEE Proc.-F , vol.138 , pp. 17-24
    • Lowe, D.1    Webb, A.R.2
  • 27
    • 0029748915 scopus 로고    scopus 로고
    • A neural network model of rainfall-runoff using radial basis functions
    • J.C. Mason, R.K. Price, A. Tem'me, A neural network model of rainfall-runoff using radial basis functions, J. Hydraulic Res. 34 (4) (1996).
    • (1996) J. Hydraulic Res. , vol.34 , Issue.4
    • Mason, J.C.1    Price, R.K.2    Tem'me, A.3
  • 28
    • 0025399567 scopus 로고
    • Identification and control of dynamical systems using neural networks
    • March
    • K.S. Narendra, K. Parthasarathy, Identification and control of dynamical systems using neural networks, IEEE Trans. Neural Networks 1 (March 1990) 4-27.
    • (1990) IEEE Trans. Neural Networks , vol.1 , pp. 4-27
    • Narendra, K.S.1    Parthasarathy, K.2
  • 30
    • 0027662338 scopus 로고
    • Pruning algorithms - A survey
    • September
    • R. Reed, Pruning algorithms - A survey, IEEE Trans. Neural Networks 4 (5) (September 1993) 740-747.
    • (1993) IEEE Trans. Neural Networks , vol.4 , Issue.5 , pp. 740-747
    • Reed, R.1
  • 31
    • 0028174533 scopus 로고
    • Optimization of groundwater remediation using artificial neural networks with parallel solute transport modeling
    • February
    • L.L. Rogers, F.U. Dowla, Optimization of groundwater remediation using artificial neural networks with parallel solute transport modeling, Water Resources Res. 30 (2) (February 1994) 457-481.
    • (1994) Water Resources Res. , vol.30 , Issue.2 , pp. 457-481
    • Rogers, L.L.1    Dowla, F.U.2
  • 32
    • 0028193610 scopus 로고
    • Characterization of aquifer properties using artificial neural networks: Neural kriging
    • February
    • D.M. Rizzo, D.E. Dougerty, Characterization of aquifer properties using artificial neural networks: Neural kriging, Water Resources Res. 30 (2) (February 1994) 483-497.
    • (1994) Water Resources Res. , vol.30 , Issue.2 , pp. 483-497
    • Rizzo, D.M.1    Dougerty, D.E.2
  • 33
    • 0022471098 scopus 로고
    • Learning representations by back-propagating errors
    • D.E. Rumelhart, G.E. Hinton, R.J. Williams, Learning representations by back-propagating errors, Nature (323) (1986) 533-536.
    • (1986) Nature , Issue.323 , pp. 533-536
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 35
    • 0030248249 scopus 로고    scopus 로고
    • Improved feature screening in feedforward neural networks
    • J.M. Steppe, K.W. Bauer, Jr., Improved feature screening in feedforward neural networks, Neurocomputing 13 (1996) 47-58.
    • (1996) Neurocomputing , vol.13 , pp. 47-58
    • Steppe, J.M.1    Bauer K.W., Jr.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.