메뉴 건너뛰기




Volumn 32, Issue 4, 1996, Pages 1013-1022

The use of artificial neural networks for the prediction of water quality parameters

Author keywords

[No Author keywords available]

Indexed keywords

FORECASTING; NEURAL NETWORK; RIVER WATER QUALITY; WATER QUALITY;

EID: 0029663621     PISSN: 00431397     EISSN: None     Source Type: Journal    
DOI: 10.1029/96WR03529     Document Type: Article
Times cited : (499)

References (40)
  • 1
    • 0001160588 scopus 로고
    • What size net gives valid generalization?
    • Baum, E. B., and D. Haussler, What size net gives valid generalization?, Neural Comput., 1, 151-160, 1989.
    • (1989) Neural Comput. , vol.1 , pp. 151-160
    • Baum, E.B.1    Haussler, D.2
  • 2
    • 0000133998 scopus 로고
    • An analysis of transformations
    • Box, G. E. P., and D. R. Cox, An analysis of transformations, J. R. Statistic. Soc. B, 26, 211-243, 1964.
    • (1964) J. R. Statistic. Soc. B , vol.26 , pp. 211-243
    • Box, G.E.P.1    Cox, D.R.2
  • 4
    • 0025791270 scopus 로고
    • Introduction to artificial neural systems for pattern recognition
    • Burke, L. I., Introduction to artificial neural systems for pattern recognition, Comput. Oper. Res., 18(2), 211-220, 1991.
    • (1991) Comput. Oper. Res. , vol.18 , Issue.2 , pp. 211-220
    • Burke, L.I.1
  • 5
    • 0026852344 scopus 로고
    • Neural networks and operations research: An overview
    • Burke, L. I., and J. P. Ignizio, Neural networks and operations research: An overview, Comput. Oper. Res., 19(3/4), 179-189, 1992.
    • (1992) Comput. Oper. Res. , vol.19 , Issue.3-4 , pp. 179-189
    • Burke, L.I.1    Ignizio, J.P.2
  • 6
    • 0026954346 scopus 로고
    • Forecasting the behaviour of multivariate time series using neural networks
    • Chakraborty, K., K. Mehrotra, C. K. Mohan, and S. Ranka, Forecasting the behaviour of multivariate time series using neural networks, Neural Networks, 5, 961-970, 1992.
    • (1992) Neural Networks , vol.5 , pp. 961-970
    • Chakraborty, K.1    Mehrotra, K.2    Mohan, C.K.3    Ranka, S.4
  • 7
    • 2842607639 scopus 로고
    • Optimization of multiple reservoir systems including salinity effects
    • Dandy, G. C., and P. D. Crawley, Optimization of multiple reservoir systems including salinity effects. Water Resour. Res., 28(4), 979-990, 1992.
    • (1992) Water Resour. Res. , vol.28 , Issue.4 , pp. 979-990
    • Dandy, G.C.1    Crawley, P.D.2
  • 8
    • 0000436568 scopus 로고
    • Neural networks - Applications in hydrology and water resources engineering
    • paper presented Inst. of Eng., Perth, Australia, October 2-4
    • Daniell, T. M., Neural networks - Applications in hydrology and water resources engineering, paper presented at International Hydrology and Water Resources Symposium, Inst. of Eng., Perth, Australia, October 2-4, 1991.
    • (1991) International Hydrology and Water Resources Symposium
    • Daniell, T.M.1
  • 9
    • 0026853106 scopus 로고
    • Predicting salinity in the Chesapeake Bay using backpropagation
    • DeSilets, L., B. Golden, Q. Wang, and R. Kumar, Predicting salinity in the Chesapeake Bay using backpropagation, Comput. Oper. Res., 19(3/4), 277-285, 1992.
    • (1992) Comput. Oper. Res. , vol.19 , Issue.3-4 , pp. 277-285
    • DeSilets, L.1    Golden, B.2    Wang, Q.3    Kumar, R.4
  • 10
    • 9544242893 scopus 로고
    • The economic impacts of salinised water supply
    • working papers E and F Melbourne, Australia, Nov.
    • Dwyer Leslie Pty. Ltd., The economic impacts of salinised water supply, working papers E and F of The River Murray Water Quality Management Study, Melbourne, Australia, Nov. 1984.
    • (1984) The River Murray Water Quality Management Study
  • 11
    • 0000155950 scopus 로고
    • The cascade-correlation learning architecture
    • edited by D. Touretzky, Morgan Kaufmann, San Mateo, Calif.
    • Fahlman, S. E., and C. Lebiere, The cascade-correlation learning architecture, in Advances in Neural Information Processing Systems 2, edited by D. Touretzky, pp. 524-532, Morgan Kaufmann, San Mateo, Calif., 1990.
    • (1990) Advances in Neural Information Processing Systems , vol.2 , pp. 524-532
    • Fahlman, S.E.1    Lebiere, C.2
  • 12
    • 0024092569 scopus 로고
    • Short-term forecasting of snowmelt runoff using ARMAX models
    • Haltiner, J. P., and J. D. Salas, Short-term forecasting of snowmelt runoff using ARMAX models, Water Resour. Bull., 24(5), 1083-1089, 1988.
    • (1988) Water Resour. Bull. , vol.24 , Issue.5 , pp. 1083-1089
    • Haltiner, J.P.1    Salas, J.D.2
  • 13
    • 0023566098 scopus 로고
    • Kolmogorov's mapping neural network existence theorem
    • paper presented Inst. of Electr. and Electron. Eng., San Diego, Calif., June 21-24
    • Hecht-Nielsen, R., Kolmogorov's mapping neural network existence theorem, paper presented at First IEEE International Joint Conference on Neural Networks, Inst. of Electr. and Electron. Eng., San Diego, Calif., June 21-24, 1987.
    • (1987) First IEEE International Joint Conference on Neural Networks
    • Hecht-Nielsen, R.1
  • 14
    • 0023984443 scopus 로고
    • Neurocomputing: Picking the human brain
    • Hecht-Nielsen, R., Neurocomputing: Picking the human brain, IEEE Spectrum, 25(3), 36-41, 1988.
    • (1988) IEEE Spectrum , vol.25 , Issue.3 , pp. 36-41
    • Hecht-Nielsen, R.1
  • 15
    • 0022112280 scopus 로고
    • Time series analysis in perspective
    • Hipel, K. W., Time series analysis in perspective. Water Resour. Bull., 27(4), 609-624, 1985.
    • (1985) Water Resour. Bull. , vol.27 , Issue.4 , pp. 609-624
    • Hipel, K.W.1
  • 17
    • 0026838551 scopus 로고
    • Multiplicative, seasonal ARIMA models for Lake Erie and Lake Ontario water levels
    • Irvine, K. N., and A. J. Eberhardt, Multiplicative, seasonal ARIMA models for Lake Erie and Lake Ontario water levels, Water Resour. Bull., 28(2), 385-396, 1992.
    • (1992) Water Resour. Bull. , vol.28 , Issue.2 , pp. 385-396
    • Irvine, K.N.1    Eberhardt, A.J.2
  • 21
    • 0022111048 scopus 로고
    • Some simple models for continuous variate time series
    • Lewis, P. A. W., Some simple models for continuous variate time series, Water Resour. Bull., 21(4), 635-644, 1985.
    • (1985) Water Resour. Bull. , vol.21 , Issue.4 , pp. 635-644
    • Lewis, P.A.W.1
  • 22
    • 0023331258 scopus 로고
    • An introduction to computing with neural nets
    • April
    • Lippmann, R. P., An introduction to computing with neural nets, IEEE ASSP Mag., April, 4-22, 1987.
    • (1987) IEEE ASSP Mag. , pp. 4-22
    • Lippmann, R.P.1
  • 23
    • 9544258421 scopus 로고
    • Comparison of the Box-Jenkins procedure with artificial neural network methods for univariate time series modelling
    • Dep. of Civ. and Environ. Eng., Univ. of Adelaide, Adelaide, Australia
    • Maier, H. R., and G. C. Dandy, Comparison of the Box-Jenkins procedure with artificial neural network methods for univariate time series modelling, Res. Rep. R127, Dep. of Civ. and Environ. Eng., Univ. of Adelaide, Adelaide, Australia, 1995.
    • (1995) Res. Rep. R127
    • Maier, H.R.1    Dandy, G.C.2
  • 26
    • 0027464578 scopus 로고
    • Neural network-based screening for groundwater reclamation under uncertainty
    • Ranjithan, S., J. W. Eheart, and J. H. Garrett Jr., Neural network-based screening for groundwater reclamation under uncertainty, Water Resour. Res., 29(3), 563-574, 1993.
    • (1993) Water Resour. Res. , vol.29 , Issue.3 , pp. 563-574
    • Ranjithan, S.1    Eheart, J.W.2    Garrett Jr., J.H.3
  • 27
    • 0028174533 scopus 로고
    • Optimization of groundwater remediation using artificial neural networks with parallel solute transport modeling
    • Rogers, L. L., and F. U. Dowla, Optimization of groundwater remediation using artificial neural networks with parallel solute transport modeling, Water Resour. Res., 30(2), 457-481, 1994.
    • (1994) Water Resour. Res. , vol.30 , Issue.2 , pp. 457-481
    • Rogers, L.L.1    Dowla, F.U.2
  • 28
    • 0000646059 scopus 로고
    • Learning internal representations by error propagation
    • chap. 8, edited by D. E. Rumelhart and J. L. McClelland, MIT Press, Cambridge, Mass.
    • Rumelhart, D. E., G. E. Hinton, and R. J. Williams, Learning internal representations by error propagation, in Parallel Distributed Processing, vol. 1, chap. 8, edited by D. E. Rumelhart and J. L. McClelland, MIT Press, Cambridge, Mass., 1986.
    • (1986) Parallel Distributed Processing , vol.1
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 29
    • 0022111962 scopus 로고
    • Approaches to multivariate modeling of water resources time series
    • Salas, J. D., G. Q. Tabioas III, and P. Bartolini, Approaches to multivariate modeling of water resources time series, Water Resour. Bull., 27(4), 683-708, 1985.
    • (1985) Water Resour. Bull. , vol.27 , Issue.4 , pp. 683-708
    • Salas, J.D.1    Tabioas III, G.Q.2    Bartolini, P.3
  • 30
    • 0001432606 scopus 로고
    • Forecasting minimum temperature with short time-length data using artificial neural networks
    • Schizas, C. N., C. S. Pattichis, and S. C. Michaelides, Forecasting minimum temperature with short time-length data using artificial neural networks, Neural Network World, 4(2), 219-230, 1994.
    • (1994) Neural Network World , vol.4 , Issue.2 , pp. 219-230
    • Schizas, C.N.1    Pattichis, C.S.2    Michaelides, S.C.3
  • 31
    • 0026017007 scopus 로고
    • Creating artificial neural networks that generalize
    • Sietsma, J., and R. J. F. Dow, Creating artificial neural networks that generalize, Neural Networks, 4, 67-79, 1991.
    • (1991) Neural Networks , vol.4 , pp. 67-79
    • Sietsma, J.1    Dow, R.J.F.2
  • 32
    • 0026258339 scopus 로고
    • Time series forecasting using neural networks vs. Box-Jenkins methodology
    • Tang, Z., C. deAlmeida, and P. A. Fishwick, Time series forecasting using neural networks vs. Box-Jenkins methodology, Simulation, 57(5), 303-310, 1991.
    • (1991) Simulation , vol.57 , Issue.5 , pp. 303-310
    • Tang, Z.1    DeAlmeida, C.2    Fishwick, P.A.3
  • 34
    • 9544239512 scopus 로고
    • Threshold time series modeling of two Icelandic riverflow systems
    • Tong, H., B. Thanoon, and G. Gudmundsson, Threshold time series modeling of two Icelandic riverflow systems, Water Resour. Bull., 27(4), 721-730, 1985.
    • (1985) Water Resour. Bull. , vol.27 , Issue.4 , pp. 721-730
    • Tong, H.1    Thanoon, B.2    Gudmundsson, G.3
  • 35
    • 0003443127 scopus 로고
    • Artificial neural networks: An introduction
    • edited by V. Vemuri, Comput. Soc. Press, Inst. of Electr. and Electron. Eng., N. Y.
    • Vemuri, V., Artificial neural networks: An introduction, in Artificial Neural Networks: Theoretical Concepts, edited by V. Vemuri, pp. 1-12, Comput. Soc. Press, Inst. of Electr. and Electron. Eng., N. Y., 1988.
    • (1988) Artificial Neural Networks: Theoretical Concepts , pp. 1-12
    • Vemuri, V.1
  • 36
    • 9544224297 scopus 로고
    • summary rep. 92\12, Brisbane, Australia
    • Water Studies Pty. Ltd., River Murray flow model, vol. 1, summary rep. 92\12, Brisbane, Australia, 1992.
    • (1992) River Murray Flow Model , vol.1
  • 38
    • 0347457535 scopus 로고
    • Multi-variate financial index prediction - A neural network study
    • Kluwer Acad., Norwell, Mass.
    • Windsor, C. G., and A. H. Harker, Multi-variate financial index prediction - A neural network study, in International Neural Network Conference, vol. 1, Kluwer Acad., Norwell, Mass., 1990.
    • (1990) International Neural Network Conference , vol.1
    • Windsor, C.G.1    Harker, A.H.2
  • 40
    • 84979406592 scopus 로고
    • Time-variable parameter and trend estimation in non-stationary economic time series
    • Young, P. C., Time-variable parameter and trend estimation in non-stationary economic time series, J. Forecasting, 13, 179-210, 1994.
    • (1994) J. Forecasting , vol.13 , pp. 179-210
    • Young, P.C.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.