메뉴 건너뛰기




Volumn 37, Issue 6, 2019, Pages 685-691

Efficient integration of heterogeneous single-cell transcriptomes using Scanorama

Author keywords

[No Author keywords available]

Indexed keywords

CELLS; CYTOLOGY;

EID: 85065343062     PISSN: 10870156     EISSN: 15461696     Source Type: Journal    
DOI: 10.1038/s41587-019-0113-3     Document Type: Article
Times cited : (485)

References (59)
  • 1
    • 84941201582 scopus 로고    scopus 로고
    • Single-cell messenger RNA sequencing reveals rare intestinal cell types
    • Grün, D. et al. Single-cell messenger RNA sequencing reveals rare intestinal cell types. Nature 525, 251–255 (2015).
    • (2015) Nature , vol.525 , pp. 251-255
    • Grün, D.1
  • 2
    • 85018582872 scopus 로고    scopus 로고
    • Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors
    • Villani, A.-C. et al. Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors. Science 356, eaah4573 (2017).
    • (2017) Science , vol.356 , pp. eaah4573
    • Villani, A.C.1
  • 3
    • 84900873950 scopus 로고    scopus 로고
    • The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells
    • COI: 1:CAS:528:DC%2BC2cXks12ku7c%3D
    • Trapnell, C. et al. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat. Biotechnol. 32, 381–386 (2014).
    • (2014) Nat. Biotechnol. , vol.32 , pp. 381-386
    • Trapnell, C.1
  • 4
    • 84900529199 scopus 로고    scopus 로고
    • Reconstructing lineage hierarchies of the distal lung epithelium using single-cell RNA-seq
    • COI: 1:CAS:528:DC%2BC2cXotVyqtLk%3D
    • Treutlein, B. et al. Reconstructing lineage hierarchies of the distal lung epithelium using single-cell RNA-seq. Nature 509, 371–375 (2014).
    • (2014) Nature , vol.509 , pp. 371-375
    • Treutlein, B.1
  • 5
    • 85032583384 scopus 로고    scopus 로고
    • SCENIC: single-cell regulatory network inference and clustering
    • COI: 1:CAS:528:DC%2BC2sXhs1aitL7P
    • Aibar, S. et al. SCENIC: single-cell regulatory network inference and clustering. Nat. Methods 14, 1083–1086 (2017).
    • (2017) Nat. Methods , vol.14 , pp. 1083-1086
    • Aibar, S.1
  • 6
    • 85031017685 scopus 로고    scopus 로고
    • Reversed graph embedding resolves complex single-cell trajectories
    • COI: 1:CAS:528:DC%2BC2sXhtlKjtbbK
    • Qiu, X. et al. Reversed graph embedding resolves complex single-cell trajectories. Nat. Methods 14, 979–982 (2017).
    • (2017) Nat. Methods , vol.14 , pp. 979-982
    • Qiu, X.1
  • 7
    • 85050888767 scopus 로고    scopus 로고
    • From tissues to cell types and back: single-cell gene expression analysis of tissue architecture
    • Chen, X., Teichmann, S. A. & Meyer, K. B. From tissues to cell types and back: single-cell gene expression analysis of tissue architecture. Annu. Rev. Biomed. Data Sci 1, 29–51 (2018).
    • (2018) Annu. Rev. Biomed. Data Sci , vol.1 , pp. 29-51
    • Chen, X.1    Teichmann, S.A.2    Meyer, K.B.3
  • 9
    • 85046289733 scopus 로고    scopus 로고
    • Batch effects in single-cell RNA-sequencing data are corrected by matching mutual nearest neighbors
    • COI: 1:CAS:528:DC%2BC1cXmslKrtLo%3D
    • Haghverdi, L., Lun, A., Morgan, M. & Marioni, J. Batch effects in single-cell RNA-sequencing data are corrected by matching mutual nearest neighbors. Nat. Biotechnol. 36, 421–427 (2018).
    • (2018) Nat. Biotechnol. , vol.36 , pp. 421-427
    • Haghverdi, L.1    Lun, A.2    Morgan, M.3    Marioni, J.4
  • 10
    • 85046298440 scopus 로고    scopus 로고
    • Integrating single-cell transcriptomic data across different conditions, technologies, and species
    • COI: 1:CAS:528:DC%2BC1cXmslKrtL0%3D
    • Butler, A., Hoffman, P., Smibert, P., Papalexi, E. & Satija, R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat. Biotechnol. 36, 411–420 (2018).
    • (2018) Nat. Biotechnol. , vol.36 , pp. 411-420
    • Butler, A.1    Hoffman, P.2    Smibert, P.3    Papalexi, E.4    Satija, R.5
  • 11
    • 34247644569 scopus 로고    scopus 로고
    • Automatic panoramic image stitching using invariant features
    • Brown, M. & Lowe, D. G. Automatic panoramic image stitching using invariant features. Int. J. Comput. Vis. 74, 59–73 (2007).
    • (2007) Int. J. Comput. Vis. , vol.74 , pp. 59-73
    • Brown, M.1    Lowe, D.G.2
  • 13
    • 79960425522 scopus 로고    scopus 로고
    • Finding structure with randomness: probabilistic algorithms for constructing approximate matrix decompositions
    • Halko, N., Martinsson, P.-G. & Tropp, J. Finding structure with randomness: probabilistic algorithms for constructing approximate matrix decompositions. SIAM Rev. 53, 217–288 (2011).
    • (2011) SIAM Rev. , vol.53 , pp. 217-288
    • Halko, N.1    Martinsson, P.G.2    Tropp, J.3
  • 16
    • 85029212828 scopus 로고    scopus 로고
    • Splatter: simulation of single-cell RNA sequencing data
    • Zappia, L., Phipson, B. & Oshlack, A. Splatter: simulation of single-cell RNA sequencing data. Genome Biol. 18, 147 (2017).
    • (2017) Genome Biol. , vol.18
    • Zappia, L.1    Phipson, B.2    Oshlack, A.3
  • 17
    • 85009446777 scopus 로고    scopus 로고
    • Massively parallel digital transcriptional profiling of single cells
    • Zheng, G. X. Y. et al. Massively parallel digital transcriptional profiling of single cells. Nat. Commun. 8, 14049 (2017).
    • (2017) Nat. Commun. , vol.8
    • Zheng, G.X.Y.1
  • 18
    • 84950290139 scopus 로고    scopus 로고
    • Transcriptional heterogeneity and lineage commitment in myeloid progenitors
    • COI: 1:CAS:528:DC%2BC2MXhvFagur7P
    • Paul, F. et al. Transcriptional heterogeneity and lineage commitment in myeloid progenitors. Cell 163, 1663–1677 (2015).
    • (2015) Cell , vol.163 , pp. 1663-1677
    • Paul, F.1
  • 19
    • 85009113270 scopus 로고    scopus 로고
    • A single-cell resolution map of mouse hematopoietic stem and progenitor cell differentiation
    • COI: 1:CAS:528:DC%2BC28XhslOktrjE
    • Nestorowa, S. et al. A single-cell resolution map of mouse hematopoietic stem and progenitor cell differentiation. Blood 128, e20–e31 (2016).
    • (2016) Blood , vol.128 , pp. e20-e31
    • Nestorowa, S.1
  • 20
    • 84994641696 scopus 로고    scopus 로고
    • A single-cell transcriptomic map of the human and mouse pancreas reveals inter- and intra-cell population structure
    • COI: 1:CAS:528:DC%2BC2sXhtFalsrk%3D
    • Baron, M. et al. A single-cell transcriptomic map of the human and mouse pancreas reveals inter- and intra-cell population structure. Cell Syst. 3, 346–360 (2016).
    • (2016) Cell Syst. , vol.3 , pp. 346-360
    • Baron, M.1
  • 21
    • 84994589771 scopus 로고    scopus 로고
    • A single-cell transcriptome atlas of the human pancreas
    • COI: 1:CAS:528:DC%2BC2sXhtFamu74%3D
    • Muraro, M. J. et al. A single-cell transcriptome atlas of the human pancreas. Cell Syst. 3, 385–394 (2016).
    • (2016) Cell Syst. , vol.3 , pp. 385-394
    • Muraro, M.J.1
  • 22
    • 84990895380 scopus 로고    scopus 로고
    • De novo prediction of stem cell identity using single-cell transcriptome data
    • Grün, D. et al. De novo prediction of stem cell identity using single-cell transcriptome data. Cell Stem Cell 19, 266–277 (2016).
    • (2016) Cell Stem Cell , vol.19 , pp. 266-277
    • Grün, D.1
  • 23
    • 85012994420 scopus 로고    scopus 로고
    • Single-cell transcriptomes identify human islet cell signatures and reveal cell-type-specific expression changes in type 2 diabetes
    • COI: 1:CAS:528:DC%2BC2sXpsF2gtr8%3D
    • Lawlor, N. et al. Single-cell transcriptomes identify human islet cell signatures and reveal cell-type-specific expression changes in type 2 diabetes. Genome Res. 27, 208–222 (2017).
    • (2017) Genome Res. , vol.27 , pp. 208-222
    • Lawlor, N.1
  • 24
    • 84992364302 scopus 로고    scopus 로고
    • Single-cell transcriptome profiling of human pancreatic islets in health and type 2 diabetes
    • COI: 1:CAS:528:DC%2BC28XhsFGru7zN
    • Segerstolpe, Å. et al. Single-cell transcriptome profiling of human pancreatic islets in health and type 2 diabetes. Cell Metab. 24, 593–607 (2016).
    • (2016) Cell Metab. , vol.24 , pp. 593-607
    • Segerstolpe, A.1
  • 25
    • 0023453329 scopus 로고
    • Silhouettes: a graphical aid to the interpretation and validation of cluster analysis
    • Rousseeuw, P. J. Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 20, 53–65 (1987).
    • (1987) J. Comput. Appl. Math. , vol.20 , pp. 53-65
    • Rousseeuw, P.J.1
  • 26
    • 85050885385 scopus 로고    scopus 로고
    • Molecular diversity and specializations among the cells of the adult mouse brain
    • COI: 1:CAS:528:DC%2BC1cXhsVyltrrK
    • Saunders, A. et al. Molecular diversity and specializations among the cells of the adult mouse brain. Cell 174, 1015–1030.e16 (2018).
    • (2018) Cell , vol.174 , pp. 1015-1030.e16
    • Saunders, A.1
  • 27
    • 85044434871 scopus 로고    scopus 로고
    • Single-cell profiling of the developing mouse brain and spinal cord with split-pool barcoding
    • COI: 1:CAS:528:DC%2BC1cXnt1GhtbY%3D
    • Rosenberg, A. B. et al. Single-cell profiling of the developing mouse brain and spinal cord with split-pool barcoding. Science 360, 176–182 (2018).
    • (2018) Science , vol.360 , pp. 176-182
    • Rosenberg, A.B.1
  • 28
    • 84903185013 scopus 로고    scopus 로고
    • Single-cell RNA seq reveals dynamic paracrine control of cellular variation
    • COI: 1:CAS:528:DC%2BC2cXpslGhs7g%3D
    • Shalek, A. K. et al. Single-cell RNA seq reveals dynamic paracrine control of cellular variation. Nature 510, 363–369 (2014).
    • (2014) Nature , vol.510 , pp. 363-369
    • Shalek, A.K.1
  • 29
    • 85048501088 scopus 로고    scopus 로고
    • A single-cell transcriptome atlas of the aging Drosophila brain
    • COI: 1:CAS:528:DC%2BC1cXhtFCqtL3O
    • Davie, K. et al. A single-cell transcriptome atlas of the aging Drosophila brain. Cell 174, 982–998.e20 (2018).
    • (2018) Cell , vol.174 , pp. 982-998.e20
    • Davie, K.1
  • 30
    • 85045314028 scopus 로고    scopus 로고
    • An accurate and robust imputation method scImpute for single-cell RNA-seq data
    • Li, W. V. & Li, J. J. An accurate and robust imputation method scImpute for single-cell RNA-seq data. Nat. Commun. 9, 997 (2018).
    • (2018) Nat. Commun. , vol.9
    • Li, W.V.1    Li, J.J.2
  • 31
    • 85042152598 scopus 로고    scopus 로고
    • netSmooth: Network-smoothing based imputation for single cell RNA-seq
    • Ronen, J. & Akalin, A. netSmooth: Network-smoothing based imputation for single cell RNA-seq. F1000Research 7, 8 (2018).
    • (2018) F1000Research , vol.7 , pp. 8
    • Ronen, J.1    Akalin, A.2
  • 32
    • 85072958522 scopus 로고    scopus 로고
    • Evaluation of tools for highly variable gene discovery from single-cell RNA-seq data
    • Yip, S. H., Sham, P. C. & Wang, J. Evaluation of tools for highly variable gene discovery from single-cell RNA-seq data. Brief. Bioinform. 10.1093/bib/bby011 (2018).
    • (2018) Brief. Bioinform.
    • Yip, S.H.1    Sham, P.C.2    Wang, J.3
  • 33
    • 85008384488 scopus 로고    scopus 로고
    • Batch effects and the effective design of single-cell gene expression studies
    • COI: 1:CAS:528:DC%2BC2sXkslChtg%3D%3D
    • Tung, P. Y. et al. Batch effects and the effective design of single-cell gene expression studies. Sci. Rep. 7, 39921 (2017).
    • (2017) Sci. Rep. , vol.7 , pp. 39921
    • Tung, P.Y.1
  • 34
    • 84923647450 scopus 로고    scopus 로고
    • Computational and analytical challenges in single-cell transcriptomics
    • COI: 1:CAS:528:DC%2BC2MXhs1Shur4%3D
    • Stegle, O., Teichmann, S. A. & Marioni, J. C. Computational and analytical challenges in single-cell transcriptomics. Nat. Rev. Genet. 16, 133–145 (2015).
    • (2015) Nat. Rev. Genet. , vol.16 , pp. 133-145
    • Stegle, O.1    Teichmann, S.A.2    Marioni, J.C.3
  • 35
    • 85046289245 scopus 로고    scopus 로고
    • scmap: projection of single-cell RNA-seq data across datasets
    • COI: 1:CAS:528:DC%2BC1cXmslKrurw%3D
    • Kiselev, V. Y., Yiu, A. & Hemberg, M. scmap: projection of single-cell RNA-seq data across datasets. Nat. Methods 15, 359–362 (2018).
    • (2018) Nat. Methods , vol.15 , pp. 359-362
    • Kiselev, V.Y.1    Yiu, A.2    Hemberg, M.3
  • 36
    • 85016121177 scopus 로고    scopus 로고
    • SC3: consensus clustering of single-cell RNA-seq data
    • COI: 1:CAS:528:DC%2BC2sXltVWgtLY%3D
    • Kiselev, V. Y. et al. SC3: consensus clustering of single-cell RNA-seq data. Nat. Methods 14, 483–486 (2017).
    • (2017) Nat. Methods , vol.14 , pp. 483-486
    • Kiselev, V.Y.1
  • 37
    • 85043484245 scopus 로고    scopus 로고
    • An interpretable framework for clustering single-cell RNA-Seq datasets
    • Zhang, J. M., Fan, J., Fan, H. C., Rosenfeld, D. & Tse, D. N. An interpretable framework for clustering single-cell RNA-Seq datasets. BMC Bioinformatics 19, 93 (2018).
    • (2018) BMC Bioinformatics , vol.19
    • Zhang, J.M.1    Fan, J.2    Fan, H.C.3    Rosenfeld, D.4    Tse, D.N.5
  • 38
    • 85048928895 scopus 로고    scopus 로고
    • Generalizable and scalable visualization of single-cell data using neural networks
    • COI: 1:CAS:528:DC%2BC1cXhsFykt7jE
    • Cho, H., Berger, B. & Peng, J. Generalizable and scalable visualization of single-cell data using neural networks. Cell Syst. 7, 185–191 (2018).
    • (2018) Cell Syst. , vol.7 , pp. 185-191
    • Cho, H.1    Berger, B.2    Peng, J.3
  • 39
    • 85048881841 scopus 로고    scopus 로고
    • Recovering gene interactions from single-cell data using data diffusion
    • Van Dijk, D. et al. Recovering gene interactions from single-cell data using data diffusion. Cell 174, 716–729.e27 (2018).
    • (2018) Cell , vol.174 , pp. 716-729.e27
    • Van Dijk, D.1
  • 40
    • 85047423831 scopus 로고    scopus 로고
    • Interpretable dimensionality reduction of single cell transcriptome data with deep generative models
    • Ding, J., Condon, A. & Shah, S. P. Interpretable dimensionality reduction of single cell transcriptome data with deep generative models. Nat. Commun. 9, 2002 (2018).
    • (2018) Nat. Commun. , vol.9
    • Ding, J.1    Condon, A.2    Shah, S.P.3
  • 41
    • 84929151009 scopus 로고    scopus 로고
    • Spatial reconstruction of single-cell gene expression data
    • COI: 1:CAS:528:DC%2BC2MXmtlKktLo%3D
    • Satija, R., Farrell, J. A., Gennert, D., Schier, A. F. & Regev, A. Spatial reconstruction of single-cell gene expression data. Nat. Biotechnol. 33, 495–502 (2015).
    • (2015) Nat. Biotechnol. , vol.33 , pp. 495-502
    • Satija, R.1    Farrell, J.A.2    Gennert, D.3    Schier, A.F.4    Regev, A.5
  • 42
    • 85041394976 scopus 로고    scopus 로고
    • SCANPY: large-scale single-cell gene expression data analysis
    • Wolf, F. A., Angerer, P. & Theis, F. J. SCANPY: large-scale single-cell gene expression data analysis. Genome Biol. 19, 15 (2018).
    • (2018) Genome Biol. , vol.19
    • Wolf, F.A.1    Angerer, P.2    Theis, F.J.3
  • 43
    • 85044944299 scopus 로고    scopus 로고
    • Bias, robustness and scalability in single-cell differential expression analysis
    • COI: 1:CAS:528:DC%2BC1cXjtlyhsbg%3D
    • Soneson, C. & Robinson, M. D. Bias, robustness and scalability in single-cell differential expression analysis. Nat. Methods 15, 255–261 (2018).
    • (2018) Nat. Methods , vol.15 , pp. 255-261
    • Soneson, C.1    Robinson, M.D.2
  • 44
    • 85034441714 scopus 로고    scopus 로고
    • Efficient generation of transcriptomic profiles by random composite measurements
    • COI: 1:CAS:528:DC%2BC2sXhvValur%2FI
    • Cleary, B., Cong, L., Cheung, A., Lander, E. S. & Regev, A. Efficient generation of transcriptomic profiles by random composite measurements. Cell 171, 1424–1436.e18 (2017).
    • (2017) Cell , vol.171 , pp. 1424-1436.e18
    • Cleary, B.1    Cong, L.2    Cheung, A.3    Lander, E.S.4    Regev, A.5
  • 45
    • 85042801480 scopus 로고    scopus 로고
    • Characterizing the replicability of cell types defined by single cell RNA-sequencing data using MetaNeighbor
    • Crow, M., Paul, A., Ballouz, S., Huang, Z. J. & Gillis, J. Characterizing the replicability of cell types defined by single cell RNA-sequencing data using MetaNeighbor. Nat. Commun. 9, 884 (2018).
    • (2018) Nat. Commun. , vol.9
    • Crow, M.1    Paul, A.2    Ballouz, S.3    Huang, Z.J.4    Gillis, J.5
  • 46
    • 85066969466 scopus 로고    scopus 로고
    • Geometric sketching compactly summarizes the single-cell transcriptomic landscape
    • (in the press); preprint at
    • Hie, B., Cho, H., DeMeo, B., Bryson, B. & Berger, B. Geometric sketching compactly summarizes the single-cell transcriptomic landscape. Cell Syst. (in the press); preprint at https://doi.org/10.1101/536730
    • Cell Syst
    • Hie, B.1    Cho, H.2    Demeo, B.3    Bryson, B.4    Berger, B.5
  • 48
    • 85012271992 scopus 로고    scopus 로고
    • Seq-Well: portable, low-cost RNA sequencing of single cells at high throughput
    • COI: 1:CAS:528:DC%2BC2sXitlGisbo%3D
    • Gierahn, T. M. et al. Seq-Well: portable, low-cost RNA sequencing of single cells at high throughput. Nat. Methods 14, 395–398 (2017).
    • (2017) Nat. Methods , vol.14 , pp. 395-398
    • Gierahn, T.M.1
  • 49
    • 85040446434 scopus 로고    scopus 로고
    • Multiplexed droplet single-cell RNA-sequencing using natural genetic variation
    • COI: 1:CAS:528:DC%2BC2sXhvFGmur3F
    • Kang, H. M. et al. Multiplexed droplet single-cell RNA-sequencing using natural genetic variation. Nat. Biotechnol. 36, 89–94 (2018).
    • (2018) Nat. Biotechnol. , vol.36 , pp. 89-94
    • Kang, H.M.1
  • 50
    • 34247500374 scopus 로고    scopus 로고
    • SciPy: open source scientific tools for Python
    • COI: 1:CAS:528:DC%2BD2sXltVWiurw%3D
    • Oliphant, T. E. SciPy: open source scientific tools for Python. Comput. Sci. Eng. 9, 10–20 (2007).
    • (2007) Comput. Sci. Eng. , vol.9 , pp. 10-20
    • Oliphant, T.E.1
  • 51
    • 84863702145 scopus 로고    scopus 로고
    • Compressive genomics
    • COI: 1:CAS:528:DC%2BC38XpvFCrtrk%3D
    • Loh, P. R., Baym, M. & Berger, B. Compressive genomics. Nature Biotech. 30, 627–630 (2012).
    • (2012) Nature Biotech. , vol.30 , pp. 627-630
    • Loh, P.R.1    Baym, M.2    Berger, B.3
  • 52
    • 57249084011 scopus 로고    scopus 로고
    • Visualizing high-dimensional data using t-SNE
    • Van Der Maaten, L. J. P. & Hinton, G. E. Visualizing high-dimensional data using t-SNE. J. Mach. Learn. Res. 9, 2579–2605 (2008).
    • (2008) J. Mach. Learn. Res. , vol.9 , pp. 2579-2605
    • Van Der Maaten, L.J.P.1    Hinton, G.E.2
  • 53
    • 80555140075 scopus 로고    scopus 로고
    • Scikit-learn: machine learning in Python
    • Pedregosa F. & Varoquaux G. Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011).
    • (2011) J. Mach. Learn. Res. , vol.12 , pp. 2825-2830
    • Pedregosa, F.1    Varoquaux, G.2
  • 54
    • 85058910761 scopus 로고    scopus 로고
    • A test metric for assessing single-cell RNA-seq batch correction
    • Buttner, M., Miao, Z., Wolf, A., Teichmann, S. A. & Theis, F. J. A test metric for assessing single-cell RNA-seq batch correction. Nat. Methods 16, 43–49 (2017).
    • (2017) Nat. Methods , vol.16 , pp. 43-49
    • Buttner, M.1    Miao, Z.2    Wolf, A.3    Teichmann, S.A.4    Theis, F.J.5
  • 55
    • 84929684999 scopus 로고    scopus 로고
    • Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets
    • COI: 1:CAS:528:DC%2BC2MXpt1Sgt7o%3D
    • Macosko, E. Z. et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 161, 1202–1214 (2015).
    • (2015) Cell , vol.161 , pp. 1202-1214
    • Macosko, E.Z.1
  • 56
    • 67249148362 scopus 로고    scopus 로고
    • Exploring network structure, dynamics, and function using NetworkX
    • ed. Varoquaux, G. et al, SciPy
    • Hagberg, A. A., Schult, D. A. & Swart, P. J. Exploring network structure, dynamics, and function using NetworkX. in Proc. 7th Python Sci. Conf. (ed. Varoquaux, G. et al.) 11–15 (SciPy, 2008).
    • (2008) Proc. 7Th Python Sci. Conf , pp. 11-15
    • Hagberg, A.A.1    Schult, D.A.2    Swart, P.J.3
  • 57
    • 60849139395 scopus 로고    scopus 로고
    • GOrilla: a tool for discovery and visualization of enriched GO terms in ranked gene lists
    • Eden, E., Navon, R., Steinfeld, I., Lipson, D. & Yakhini, Z. GOrilla: a tool for discovery and visualization of enriched GO terms in ranked gene lists. BMC Bioinformatics 10, 48 (2009).
    • (2009) BMC Bioinformatics , vol.10
    • Eden, E.1    Navon, R.2    Steinfeld, I.3    Lipson, D.4    Yakhini, Z.5
  • 58
    • 84866451908 scopus 로고    scopus 로고
    • Statsmodels: Econometric and statistical modeling with Python
    • (eds. van der Walt, S. & Millman, J.), SciPy
    • Skipper, S. & Perktold, J. Statsmodels: econometric and statistical modeling with Python. in Proc. 9th Python Sci. Conf. (eds. van der Walt, S. & Millman, J.) 57–61 (SciPy, 2010).
    • (2010) Proc. 9Th Python Sci. Conf , pp. 57-61
    • Skipper, S.1    Perktold, J.2
  • 59
    • 34247493236 scopus 로고    scopus 로고
    • Matplotlib: a 2D graphics environment
    • Hunter, J. D. Matplotlib: a 2D graphics environment. Comput. Sci. Eng. 9, 90–95 (2007).
    • (2007) Comput. Sci. Eng. , vol.9 , pp. 90-95
    • Hunter, J.D.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.