-
1
-
-
84941201582
-
Single-cell messenger RNA sequencing reveals rare intestinal cell types
-
Grün, D. et al. Single-cell messenger RNA sequencing reveals rare intestinal cell types. Nature 525, 251–255 (2015).
-
(2015)
Nature
, vol.525
, pp. 251-255
-
-
Grün, D.1
-
2
-
-
85018582872
-
Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors
-
Villani, A.-C. et al. Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors. Science 356, eaah4573 (2017).
-
(2017)
Science
, vol.356
, pp. eaah4573
-
-
Villani, A.C.1
-
3
-
-
84900873950
-
The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells
-
COI: 1:CAS:528:DC%2BC2cXks12ku7c%3D
-
Trapnell, C. et al. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat. Biotechnol. 32, 381–386 (2014).
-
(2014)
Nat. Biotechnol.
, vol.32
, pp. 381-386
-
-
Trapnell, C.1
-
4
-
-
84900529199
-
Reconstructing lineage hierarchies of the distal lung epithelium using single-cell RNA-seq
-
COI: 1:CAS:528:DC%2BC2cXotVyqtLk%3D
-
Treutlein, B. et al. Reconstructing lineage hierarchies of the distal lung epithelium using single-cell RNA-seq. Nature 509, 371–375 (2014).
-
(2014)
Nature
, vol.509
, pp. 371-375
-
-
Treutlein, B.1
-
5
-
-
85032583384
-
SCENIC: single-cell regulatory network inference and clustering
-
COI: 1:CAS:528:DC%2BC2sXhs1aitL7P
-
Aibar, S. et al. SCENIC: single-cell regulatory network inference and clustering. Nat. Methods 14, 1083–1086 (2017).
-
(2017)
Nat. Methods
, vol.14
, pp. 1083-1086
-
-
Aibar, S.1
-
6
-
-
85031017685
-
Reversed graph embedding resolves complex single-cell trajectories
-
COI: 1:CAS:528:DC%2BC2sXhtlKjtbbK
-
Qiu, X. et al. Reversed graph embedding resolves complex single-cell trajectories. Nat. Methods 14, 979–982 (2017).
-
(2017)
Nat. Methods
, vol.14
, pp. 979-982
-
-
Qiu, X.1
-
7
-
-
85050888767
-
From tissues to cell types and back: single-cell gene expression analysis of tissue architecture
-
Chen, X., Teichmann, S. A. & Meyer, K. B. From tissues to cell types and back: single-cell gene expression analysis of tissue architecture. Annu. Rev. Biomed. Data Sci 1, 29–51 (2018).
-
(2018)
Annu. Rev. Biomed. Data Sci
, vol.1
, pp. 29-51
-
-
Chen, X.1
Teichmann, S.A.2
Meyer, K.B.3
-
8
-
-
85032448109
-
The Human Cell Atlas: from vision to reality
-
COI: 1:CAS:528:DC%2BC2sXhslajtr7M
-
Rozenblatt-Rosen, O., Stubbington, M. J. T., Regev, A. & Teichmann, S. A. The Human Cell Atlas: from vision to reality. Nature 550, 451–453 (2017).
-
(2017)
Nature
, vol.550
, pp. 451-453
-
-
Rozenblatt-Rosen, O.1
Stubbington, M.J.T.2
Regev, A.3
Teichmann, S.A.4
-
9
-
-
85046289733
-
Batch effects in single-cell RNA-sequencing data are corrected by matching mutual nearest neighbors
-
COI: 1:CAS:528:DC%2BC1cXmslKrtLo%3D
-
Haghverdi, L., Lun, A., Morgan, M. & Marioni, J. Batch effects in single-cell RNA-sequencing data are corrected by matching mutual nearest neighbors. Nat. Biotechnol. 36, 421–427 (2018).
-
(2018)
Nat. Biotechnol.
, vol.36
, pp. 421-427
-
-
Haghverdi, L.1
Lun, A.2
Morgan, M.3
Marioni, J.4
-
10
-
-
85046298440
-
Integrating single-cell transcriptomic data across different conditions, technologies, and species
-
COI: 1:CAS:528:DC%2BC1cXmslKrtL0%3D
-
Butler, A., Hoffman, P., Smibert, P., Papalexi, E. & Satija, R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat. Biotechnol. 36, 411–420 (2018).
-
(2018)
Nat. Biotechnol.
, vol.36
, pp. 411-420
-
-
Butler, A.1
Hoffman, P.2
Smibert, P.3
Papalexi, E.4
Satija, R.5
-
11
-
-
34247644569
-
Automatic panoramic image stitching using invariant features
-
Brown, M. & Lowe, D. G. Automatic panoramic image stitching using invariant features. Int. J. Comput. Vis. 74, 59–73 (2007).
-
(2007)
Int. J. Comput. Vis.
, vol.74
, pp. 59-73
-
-
Brown, M.1
Lowe, D.G.2
-
12
-
-
84959201130
-
Best-Buddies Similarity for robust template matching
-
(eds. Grauman, K. et al.), IEEE
-
Dekel, T., Oron, S., Rubinstein, M., Avidan, S. & Freeman, W. T. Best-Buddies Similarity for robust template matching. in Proc. IEEE Computer Society Conference on Computer Vision and Pattern Recognition (eds. Grauman, K. et al.) 2021–2029 (IEEE, 2015).
-
(2015)
Proc. IEEE Computer Society Conference on Computer Vision and Pattern Recognition
, pp. 2021-2029
-
-
Dekel, T.1
Oron, S.2
Rubinstein, M.3
Avidan, S.4
Freeman, W.T.5
-
13
-
-
79960425522
-
Finding structure with randomness: probabilistic algorithms for constructing approximate matrix decompositions
-
Halko, N., Martinsson, P.-G. & Tropp, J. Finding structure with randomness: probabilistic algorithms for constructing approximate matrix decompositions. SIAM Rev. 53, 217–288 (2011).
-
(2011)
SIAM Rev.
, vol.53
, pp. 217-288
-
-
Halko, N.1
Martinsson, P.G.2
Tropp, J.3
-
15
-
-
57049122948
-
Random projection trees and low dimensional manifolds
-
(ed. Ladner, R. & Dwork, C.), ACM
-
Dasgupta, S. & Freund, Y. Random projection trees and low dimensional manifolds. in Proc. Fourtieth Annual ACM Symposium on Theory of Computing (ed. Ladner, R. & Dwork, C.) 537–546 (ACM, 2008).
-
(2008)
Proc. Fourtieth Annual ACM Symposium on Theory of Computing
, pp. 537-546
-
-
Dasgupta, S.1
Freund, Y.2
-
16
-
-
85029212828
-
Splatter: simulation of single-cell RNA sequencing data
-
Zappia, L., Phipson, B. & Oshlack, A. Splatter: simulation of single-cell RNA sequencing data. Genome Biol. 18, 147 (2017).
-
(2017)
Genome Biol.
, vol.18
-
-
Zappia, L.1
Phipson, B.2
Oshlack, A.3
-
17
-
-
85009446777
-
Massively parallel digital transcriptional profiling of single cells
-
Zheng, G. X. Y. et al. Massively parallel digital transcriptional profiling of single cells. Nat. Commun. 8, 14049 (2017).
-
(2017)
Nat. Commun.
, vol.8
-
-
Zheng, G.X.Y.1
-
18
-
-
84950290139
-
Transcriptional heterogeneity and lineage commitment in myeloid progenitors
-
COI: 1:CAS:528:DC%2BC2MXhvFagur7P
-
Paul, F. et al. Transcriptional heterogeneity and lineage commitment in myeloid progenitors. Cell 163, 1663–1677 (2015).
-
(2015)
Cell
, vol.163
, pp. 1663-1677
-
-
Paul, F.1
-
19
-
-
85009113270
-
A single-cell resolution map of mouse hematopoietic stem and progenitor cell differentiation
-
COI: 1:CAS:528:DC%2BC28XhslOktrjE
-
Nestorowa, S. et al. A single-cell resolution map of mouse hematopoietic stem and progenitor cell differentiation. Blood 128, e20–e31 (2016).
-
(2016)
Blood
, vol.128
, pp. e20-e31
-
-
Nestorowa, S.1
-
20
-
-
84994641696
-
A single-cell transcriptomic map of the human and mouse pancreas reveals inter- and intra-cell population structure
-
COI: 1:CAS:528:DC%2BC2sXhtFalsrk%3D
-
Baron, M. et al. A single-cell transcriptomic map of the human and mouse pancreas reveals inter- and intra-cell population structure. Cell Syst. 3, 346–360 (2016).
-
(2016)
Cell Syst.
, vol.3
, pp. 346-360
-
-
Baron, M.1
-
21
-
-
84994589771
-
A single-cell transcriptome atlas of the human pancreas
-
COI: 1:CAS:528:DC%2BC2sXhtFamu74%3D
-
Muraro, M. J. et al. A single-cell transcriptome atlas of the human pancreas. Cell Syst. 3, 385–394 (2016).
-
(2016)
Cell Syst.
, vol.3
, pp. 385-394
-
-
Muraro, M.J.1
-
22
-
-
84990895380
-
De novo prediction of stem cell identity using single-cell transcriptome data
-
Grün, D. et al. De novo prediction of stem cell identity using single-cell transcriptome data. Cell Stem Cell 19, 266–277 (2016).
-
(2016)
Cell Stem Cell
, vol.19
, pp. 266-277
-
-
Grün, D.1
-
23
-
-
85012994420
-
Single-cell transcriptomes identify human islet cell signatures and reveal cell-type-specific expression changes in type 2 diabetes
-
COI: 1:CAS:528:DC%2BC2sXpsF2gtr8%3D
-
Lawlor, N. et al. Single-cell transcriptomes identify human islet cell signatures and reveal cell-type-specific expression changes in type 2 diabetes. Genome Res. 27, 208–222 (2017).
-
(2017)
Genome Res.
, vol.27
, pp. 208-222
-
-
Lawlor, N.1
-
24
-
-
84992364302
-
Single-cell transcriptome profiling of human pancreatic islets in health and type 2 diabetes
-
COI: 1:CAS:528:DC%2BC28XhsFGru7zN
-
Segerstolpe, Å. et al. Single-cell transcriptome profiling of human pancreatic islets in health and type 2 diabetes. Cell Metab. 24, 593–607 (2016).
-
(2016)
Cell Metab.
, vol.24
, pp. 593-607
-
-
Segerstolpe, A.1
-
25
-
-
0023453329
-
Silhouettes: a graphical aid to the interpretation and validation of cluster analysis
-
Rousseeuw, P. J. Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 20, 53–65 (1987).
-
(1987)
J. Comput. Appl. Math.
, vol.20
, pp. 53-65
-
-
Rousseeuw, P.J.1
-
26
-
-
85050885385
-
Molecular diversity and specializations among the cells of the adult mouse brain
-
COI: 1:CAS:528:DC%2BC1cXhsVyltrrK
-
Saunders, A. et al. Molecular diversity and specializations among the cells of the adult mouse brain. Cell 174, 1015–1030.e16 (2018).
-
(2018)
Cell
, vol.174
, pp. 1015-1030.e16
-
-
Saunders, A.1
-
27
-
-
85044434871
-
Single-cell profiling of the developing mouse brain and spinal cord with split-pool barcoding
-
COI: 1:CAS:528:DC%2BC1cXnt1GhtbY%3D
-
Rosenberg, A. B. et al. Single-cell profiling of the developing mouse brain and spinal cord with split-pool barcoding. Science 360, 176–182 (2018).
-
(2018)
Science
, vol.360
, pp. 176-182
-
-
Rosenberg, A.B.1
-
28
-
-
84903185013
-
Single-cell RNA seq reveals dynamic paracrine control of cellular variation
-
COI: 1:CAS:528:DC%2BC2cXpslGhs7g%3D
-
Shalek, A. K. et al. Single-cell RNA seq reveals dynamic paracrine control of cellular variation. Nature 510, 363–369 (2014).
-
(2014)
Nature
, vol.510
, pp. 363-369
-
-
Shalek, A.K.1
-
29
-
-
85048501088
-
A single-cell transcriptome atlas of the aging Drosophila brain
-
COI: 1:CAS:528:DC%2BC1cXhtFCqtL3O
-
Davie, K. et al. A single-cell transcriptome atlas of the aging Drosophila brain. Cell 174, 982–998.e20 (2018).
-
(2018)
Cell
, vol.174
, pp. 982-998.e20
-
-
Davie, K.1
-
30
-
-
85045314028
-
An accurate and robust imputation method scImpute for single-cell RNA-seq data
-
Li, W. V. & Li, J. J. An accurate and robust imputation method scImpute for single-cell RNA-seq data. Nat. Commun. 9, 997 (2018).
-
(2018)
Nat. Commun.
, vol.9
-
-
Li, W.V.1
Li, J.J.2
-
31
-
-
85042152598
-
netSmooth: Network-smoothing based imputation for single cell RNA-seq
-
Ronen, J. & Akalin, A. netSmooth: Network-smoothing based imputation for single cell RNA-seq. F1000Research 7, 8 (2018).
-
(2018)
F1000Research
, vol.7
, pp. 8
-
-
Ronen, J.1
Akalin, A.2
-
32
-
-
85072958522
-
Evaluation of tools for highly variable gene discovery from single-cell RNA-seq data
-
Yip, S. H., Sham, P. C. & Wang, J. Evaluation of tools for highly variable gene discovery from single-cell RNA-seq data. Brief. Bioinform. 10.1093/bib/bby011 (2018).
-
(2018)
Brief. Bioinform.
-
-
Yip, S.H.1
Sham, P.C.2
Wang, J.3
-
33
-
-
85008384488
-
Batch effects and the effective design of single-cell gene expression studies
-
COI: 1:CAS:528:DC%2BC2sXkslChtg%3D%3D
-
Tung, P. Y. et al. Batch effects and the effective design of single-cell gene expression studies. Sci. Rep. 7, 39921 (2017).
-
(2017)
Sci. Rep.
, vol.7
, pp. 39921
-
-
Tung, P.Y.1
-
34
-
-
84923647450
-
Computational and analytical challenges in single-cell transcriptomics
-
COI: 1:CAS:528:DC%2BC2MXhs1Shur4%3D
-
Stegle, O., Teichmann, S. A. & Marioni, J. C. Computational and analytical challenges in single-cell transcriptomics. Nat. Rev. Genet. 16, 133–145 (2015).
-
(2015)
Nat. Rev. Genet.
, vol.16
, pp. 133-145
-
-
Stegle, O.1
Teichmann, S.A.2
Marioni, J.C.3
-
35
-
-
85046289245
-
scmap: projection of single-cell RNA-seq data across datasets
-
COI: 1:CAS:528:DC%2BC1cXmslKrurw%3D
-
Kiselev, V. Y., Yiu, A. & Hemberg, M. scmap: projection of single-cell RNA-seq data across datasets. Nat. Methods 15, 359–362 (2018).
-
(2018)
Nat. Methods
, vol.15
, pp. 359-362
-
-
Kiselev, V.Y.1
Yiu, A.2
Hemberg, M.3
-
36
-
-
85016121177
-
SC3: consensus clustering of single-cell RNA-seq data
-
COI: 1:CAS:528:DC%2BC2sXltVWgtLY%3D
-
Kiselev, V. Y. et al. SC3: consensus clustering of single-cell RNA-seq data. Nat. Methods 14, 483–486 (2017).
-
(2017)
Nat. Methods
, vol.14
, pp. 483-486
-
-
Kiselev, V.Y.1
-
37
-
-
85043484245
-
An interpretable framework for clustering single-cell RNA-Seq datasets
-
Zhang, J. M., Fan, J., Fan, H. C., Rosenfeld, D. & Tse, D. N. An interpretable framework for clustering single-cell RNA-Seq datasets. BMC Bioinformatics 19, 93 (2018).
-
(2018)
BMC Bioinformatics
, vol.19
-
-
Zhang, J.M.1
Fan, J.2
Fan, H.C.3
Rosenfeld, D.4
Tse, D.N.5
-
38
-
-
85048928895
-
Generalizable and scalable visualization of single-cell data using neural networks
-
COI: 1:CAS:528:DC%2BC1cXhsFykt7jE
-
Cho, H., Berger, B. & Peng, J. Generalizable and scalable visualization of single-cell data using neural networks. Cell Syst. 7, 185–191 (2018).
-
(2018)
Cell Syst.
, vol.7
, pp. 185-191
-
-
Cho, H.1
Berger, B.2
Peng, J.3
-
39
-
-
85048881841
-
Recovering gene interactions from single-cell data using data diffusion
-
Van Dijk, D. et al. Recovering gene interactions from single-cell data using data diffusion. Cell 174, 716–729.e27 (2018).
-
(2018)
Cell
, vol.174
, pp. 716-729.e27
-
-
Van Dijk, D.1
-
40
-
-
85047423831
-
Interpretable dimensionality reduction of single cell transcriptome data with deep generative models
-
Ding, J., Condon, A. & Shah, S. P. Interpretable dimensionality reduction of single cell transcriptome data with deep generative models. Nat. Commun. 9, 2002 (2018).
-
(2018)
Nat. Commun.
, vol.9
-
-
Ding, J.1
Condon, A.2
Shah, S.P.3
-
41
-
-
84929151009
-
Spatial reconstruction of single-cell gene expression data
-
COI: 1:CAS:528:DC%2BC2MXmtlKktLo%3D
-
Satija, R., Farrell, J. A., Gennert, D., Schier, A. F. & Regev, A. Spatial reconstruction of single-cell gene expression data. Nat. Biotechnol. 33, 495–502 (2015).
-
(2015)
Nat. Biotechnol.
, vol.33
, pp. 495-502
-
-
Satija, R.1
Farrell, J.A.2
Gennert, D.3
Schier, A.F.4
Regev, A.5
-
42
-
-
85041394976
-
SCANPY: large-scale single-cell gene expression data analysis
-
Wolf, F. A., Angerer, P. & Theis, F. J. SCANPY: large-scale single-cell gene expression data analysis. Genome Biol. 19, 15 (2018).
-
(2018)
Genome Biol.
, vol.19
-
-
Wolf, F.A.1
Angerer, P.2
Theis, F.J.3
-
43
-
-
85044944299
-
Bias, robustness and scalability in single-cell differential expression analysis
-
COI: 1:CAS:528:DC%2BC1cXjtlyhsbg%3D
-
Soneson, C. & Robinson, M. D. Bias, robustness and scalability in single-cell differential expression analysis. Nat. Methods 15, 255–261 (2018).
-
(2018)
Nat. Methods
, vol.15
, pp. 255-261
-
-
Soneson, C.1
Robinson, M.D.2
-
44
-
-
85034441714
-
Efficient generation of transcriptomic profiles by random composite measurements
-
COI: 1:CAS:528:DC%2BC2sXhvValur%2FI
-
Cleary, B., Cong, L., Cheung, A., Lander, E. S. & Regev, A. Efficient generation of transcriptomic profiles by random composite measurements. Cell 171, 1424–1436.e18 (2017).
-
(2017)
Cell
, vol.171
, pp. 1424-1436.e18
-
-
Cleary, B.1
Cong, L.2
Cheung, A.3
Lander, E.S.4
Regev, A.5
-
45
-
-
85042801480
-
Characterizing the replicability of cell types defined by single cell RNA-sequencing data using MetaNeighbor
-
Crow, M., Paul, A., Ballouz, S., Huang, Z. J. & Gillis, J. Characterizing the replicability of cell types defined by single cell RNA-sequencing data using MetaNeighbor. Nat. Commun. 9, 884 (2018).
-
(2018)
Nat. Commun.
, vol.9
-
-
Crow, M.1
Paul, A.2
Ballouz, S.3
Huang, Z.J.4
Gillis, J.5
-
46
-
-
85066969466
-
Geometric sketching compactly summarizes the single-cell transcriptomic landscape
-
(in the press); preprint at
-
Hie, B., Cho, H., DeMeo, B., Bryson, B. & Berger, B. Geometric sketching compactly summarizes the single-cell transcriptomic landscape. Cell Syst. (in the press); preprint at https://doi.org/10.1101/536730
-
Cell Syst
-
-
Hie, B.1
Cho, H.2
Demeo, B.3
Bryson, B.4
Berger, B.5
-
47
-
-
85041172723
-
-
RStudio
-
Allaire, J., Ushey, K., Tang, Y. & Eddelbuettel, D. Reticulate: R interface to Python (RStudio, 2017).
-
(2017)
Reticulate: R Interface to Python
-
-
Allaire, J.1
Ushey, K.2
Tang, Y.3
Eddelbuettel, D.4
-
48
-
-
85012271992
-
Seq-Well: portable, low-cost RNA sequencing of single cells at high throughput
-
COI: 1:CAS:528:DC%2BC2sXitlGisbo%3D
-
Gierahn, T. M. et al. Seq-Well: portable, low-cost RNA sequencing of single cells at high throughput. Nat. Methods 14, 395–398 (2017).
-
(2017)
Nat. Methods
, vol.14
, pp. 395-398
-
-
Gierahn, T.M.1
-
49
-
-
85040446434
-
Multiplexed droplet single-cell RNA-sequencing using natural genetic variation
-
COI: 1:CAS:528:DC%2BC2sXhvFGmur3F
-
Kang, H. M. et al. Multiplexed droplet single-cell RNA-sequencing using natural genetic variation. Nat. Biotechnol. 36, 89–94 (2018).
-
(2018)
Nat. Biotechnol.
, vol.36
, pp. 89-94
-
-
Kang, H.M.1
-
50
-
-
34247500374
-
SciPy: open source scientific tools for Python
-
COI: 1:CAS:528:DC%2BD2sXltVWiurw%3D
-
Oliphant, T. E. SciPy: open source scientific tools for Python. Comput. Sci. Eng. 9, 10–20 (2007).
-
(2007)
Comput. Sci. Eng.
, vol.9
, pp. 10-20
-
-
Oliphant, T.E.1
-
51
-
-
84863702145
-
Compressive genomics
-
COI: 1:CAS:528:DC%2BC38XpvFCrtrk%3D
-
Loh, P. R., Baym, M. & Berger, B. Compressive genomics. Nature Biotech. 30, 627–630 (2012).
-
(2012)
Nature Biotech.
, vol.30
, pp. 627-630
-
-
Loh, P.R.1
Baym, M.2
Berger, B.3
-
53
-
-
80555140075
-
Scikit-learn: machine learning in Python
-
Pedregosa F. & Varoquaux G. Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011).
-
(2011)
J. Mach. Learn. Res.
, vol.12
, pp. 2825-2830
-
-
Pedregosa, F.1
Varoquaux, G.2
-
54
-
-
85058910761
-
A test metric for assessing single-cell RNA-seq batch correction
-
Buttner, M., Miao, Z., Wolf, A., Teichmann, S. A. & Theis, F. J. A test metric for assessing single-cell RNA-seq batch correction. Nat. Methods 16, 43–49 (2017).
-
(2017)
Nat. Methods
, vol.16
, pp. 43-49
-
-
Buttner, M.1
Miao, Z.2
Wolf, A.3
Teichmann, S.A.4
Theis, F.J.5
-
55
-
-
84929684999
-
Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets
-
COI: 1:CAS:528:DC%2BC2MXpt1Sgt7o%3D
-
Macosko, E. Z. et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 161, 1202–1214 (2015).
-
(2015)
Cell
, vol.161
, pp. 1202-1214
-
-
Macosko, E.Z.1
-
56
-
-
67249148362
-
Exploring network structure, dynamics, and function using NetworkX
-
ed. Varoquaux, G. et al, SciPy
-
Hagberg, A. A., Schult, D. A. & Swart, P. J. Exploring network structure, dynamics, and function using NetworkX. in Proc. 7th Python Sci. Conf. (ed. Varoquaux, G. et al.) 11–15 (SciPy, 2008).
-
(2008)
Proc. 7Th Python Sci. Conf
, pp. 11-15
-
-
Hagberg, A.A.1
Schult, D.A.2
Swart, P.J.3
-
57
-
-
60849139395
-
GOrilla: a tool for discovery and visualization of enriched GO terms in ranked gene lists
-
Eden, E., Navon, R., Steinfeld, I., Lipson, D. & Yakhini, Z. GOrilla: a tool for discovery and visualization of enriched GO terms in ranked gene lists. BMC Bioinformatics 10, 48 (2009).
-
(2009)
BMC Bioinformatics
, vol.10
-
-
Eden, E.1
Navon, R.2
Steinfeld, I.3
Lipson, D.4
Yakhini, Z.5
-
58
-
-
84866451908
-
Statsmodels: Econometric and statistical modeling with Python
-
(eds. van der Walt, S. & Millman, J.), SciPy
-
Skipper, S. & Perktold, J. Statsmodels: econometric and statistical modeling with Python. in Proc. 9th Python Sci. Conf. (eds. van der Walt, S. & Millman, J.) 57–61 (SciPy, 2010).
-
(2010)
Proc. 9Th Python Sci. Conf
, pp. 57-61
-
-
Skipper, S.1
Perktold, J.2
-
59
-
-
34247493236
-
Matplotlib: a 2D graphics environment
-
Hunter, J. D. Matplotlib: a 2D graphics environment. Comput. Sci. Eng. 9, 90–95 (2007).
-
(2007)
Comput. Sci. Eng.
, vol.9
, pp. 90-95
-
-
Hunter, J.D.1
|