-
1
-
-
79959403670
-
Characterization of the single-cell transcriptional landscape by highly multiplex RNA-seq
-
Islam S, Kjallquist U, Moliner A, et al. Characterization of the single-cell transcriptional landscape by highly multiplex RNA-seq. Genome Res 2011;21(7):1160-7.
-
(2011)
Genome Res
, vol.21
, Issue.7
, pp. 1160-1167
-
-
Islam, S.1
Kjallquist, U.2
Moliner, A.3
-
2
-
-
67349146589
-
MRNA-Seq wholetranscriptome analysis of a single cell
-
Tang F, Barbacioru C, Wang Y, et al. mRNA-Seq wholetranscriptome analysis of a single cell. Nat Methods 2009;6(5): 377-82.
-
(2009)
Nat Methods
, vol.6
, Issue.5
, pp. 377-382
-
-
Tang, F.1
Barbacioru, C.2
Wang, Y.3
-
3
-
-
57749195712
-
RNA-Seq: A revolutionary tool for transcriptomics
-
Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 2009;10(1):57-63.
-
(2009)
Nat Rev Genet
, vol.10
, Issue.1
, pp. 57-63
-
-
Wang, Z.1
Gerstein, M.2
Snyder, M.3
-
4
-
-
84953226880
-
BASiCS: Bayesian analysis of single-cell sequencing data
-
Vallejos CA, Marioni JC, Richardson S. BASiCS: Bayesian analysis of single-cell sequencing data. PLoS Comput Biol 2015; 11(6):e1004333.
-
(2015)
PLoS Comput Biol
, vol.11
, Issue.6
, pp. e1004333
-
-
Vallejos, C.A.1
Marioni, J.C.2
Richardson, S.3
-
5
-
-
84887109584
-
Accounting for technical noise in single-cell RNA-seq experiments
-
Brennecke P, Anders S, Kim JK, et al. Accounting for technical noise in single-cell RNA-seq experiments. Nat Methods 2013; 10(11):1093-5.
-
(2013)
Nat Methods
, vol.10
, Issue.11
, pp. 1093-1095
-
-
Brennecke, P.1
Anders, S.2
Kim, J.K.3
-
6
-
-
84923292191
-
Computational analysis of cell-to-cell heterogeneity in single-cell RNA-sequencing data reveals hidden subpopulations of cells
-
Buettner F, Natarajan KN, Casale FP, et al. Computational analysis of cell-to-cell heterogeneity in single-cell RNA-sequencing data reveals hidden subpopulations of cells. Nat Biotechnol 2015;33(2):155-60.
-
(2015)
Nat Biotechnol
, vol.33
, Issue.2
, pp. 155-160
-
-
Buettner, F.1
Natarajan, K.N.2
Casale, F.P.3
-
7
-
-
85010931059
-
A step-by-step workflow for low-level analysis of single-cell RNA-seq data with Bioconductor
-
Lun AT, McCarthy DJ, Marioni JC. A step-by-step workflow for low-level analysis of single-cell RNA-seq data with Bioconductor. F1000Res 2016;5:2122.
-
(2016)
F1000Res
, vol.5
, pp. 2122
-
-
Lun, A.T.1
McCarthy, D.J.2
Marioni, J.C.3
-
8
-
-
84983239001
-
Detection of high variability in gene expression from single-cell RNA-seq profiling
-
Chen H-IH, Jin Y, Huang Y, et al. Detection of high variability in gene expression from single-cell RNA-seq profiling. BMC Genomics 2016;17(S7):508.
-
(2016)
BMC Genomics
, vol.17
, pp. 508
-
-
H-Ih, C.1
Jin, Y.2
Huang, Y.3
-
9
-
-
84929151009
-
Spatial reconstruction of single-cell gene expression data
-
Satija R, Farrell JA, Gennert D, et al. Spatial reconstruction of single-cell gene expression data. Nat Biotechnol 2015;33(5):495-502.
-
(2015)
Nat Biotechnol
, vol.33
, Issue.5
, pp. 495-502
-
-
Satija, R.1
Farrell, J.A.2
Gennert, D.3
-
10
-
-
84951574149
-
MAST: A flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data
-
Finak G, McDavid A, Yajima M, et al. MAST: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data. Genome Biol 2015;16(1):278.
-
(2015)
Genome Biol
, vol.16
, Issue.1
, pp. 278
-
-
Finak, G.1
McDavid, A.2
Yajima, M.3
-
11
-
-
85040554215
-
Linnorm: Improved statistical analysis for single cell RNA-seq expression data
-
Yip SH, Wang P, Kocher J-PA, et al. Linnorm: improved statistical analysis for single cell RNA-seq expression data. Nucleic Acids Res 2017;45(22):e179.
-
(2017)
Nucleic Acids Res
, vol.45
, Issue.22
, pp. e179
-
-
Yip, S.H.1
Wang, P.2
J-Pa, K.3
-
12
-
-
84896735766
-
Voom: Precision weights unlock linear model analysis tools for RNA-seq read counts
-
Law CW, Chen Y, Shi W, et al. voom: precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biol 2014;15:R29.
-
(2014)
Genome Biol
, vol.15
, pp. R29
-
-
Law, C.W.1
Chen, Y.2
Shi, W.3
-
13
-
-
84992327075
-
A statistical approach for identifying differential distributions in single-cell RNA-seq experiments
-
Korthauer KD, Chu LF, Newton MA, et al. A statistical approach for identifying differential distributions in single-cell RNA-seq experiments. Genome Biol 2016;17(1):222.
-
(2016)
Genome Biol
, vol.17
, Issue.1
, pp. 222
-
-
Korthauer, K.D.1
Chu, L.F.2
Newton, M.A.3
-
14
-
-
84964556059
-
Pooling across cells to normalize single-cell RNA sequencing data with many zero counts
-
Lun AT, Bach K, Marioni JC. Pooling across cells to normalize single-cell RNA sequencing data with many zero counts. Genome Biol 2016;17:75.
-
(2016)
Genome Biol
, vol.17
, pp. 75
-
-
Lun, A.T.1
Bach, K.2
Marioni, J.C.3
-
15
-
-
85012271992
-
Seq-well: Portable, low-cost RNA sequencing of single cells at high throughput
-
Gierahn TM, Wadsworth MH, II, Hughes TK, et al. Seq-well: portable, low-cost RNA sequencing of single cells at high throughput. Nat Methods 2017;14(4):395-8.
-
(2017)
Nat Methods
, vol.14
, Issue.4
, pp. 395-398
-
-
Gierahn, T.M.1
Wadsworth, M.H.2
Hughes, T.K.3
-
16
-
-
84929684998
-
Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells
-
Klein AM, Mazutis L, Akartuna I, et al. Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell 2015;161(5):1187-201.
-
(2015)
Cell
, vol.161
, Issue.5
, pp. 1187-1201
-
-
Klein, A.M.1
Mazutis, L.2
Akartuna, I.3
-
17
-
-
84892179132
-
Single-cell RNA-seq reveals dynamic, random monoallelic gene expression in mammalian cells
-
Deng Q, Ramskold D, Reinius B, et al. Single-cell RNA-seq reveals dynamic, random monoallelic gene expression in mammalian cells. Science 2014;343(6167):193-6.
-
(2014)
Science
, vol.343
, Issue.6167
, pp. 193-196
-
-
Deng, Q.1
Ramskold, D.2
Reinius, B.3
-
18
-
-
84883743509
-
Single-cell RNA-seq profiling of human preimplantation embryos and embryonic stem cells
-
Yan L, Yang M, Guo H, et al. Single-cell RNA-seq profiling of human preimplantation embryos and embryonic stem cells. Nat Struct Mol Biol 2013;20(9):1131-9.
-
(2013)
Nat Struct Mol Biol
, vol.20
, Issue.9
, pp. 1131-1139
-
-
Yan, L.1
Yang, M.2
Guo, H.3
-
19
-
-
84905049901
-
Trimmomatic: A flexible trimmer for Illumina sequence data
-
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 2014;30(15): 2114-20.
-
(2014)
Bioinformatics
, vol.30
, Issue.15
, pp. 2114-2120
-
-
Bolger, A.M.1
Lohse, M.2
Usadel, B.3
-
20
-
-
84966283954
-
Near-optimal probabilistic RNA-seq quantification
-
Bray NL, Pimentel H, Melsted P, et al. Near-optimal probabilistic RNA-seq quantification. Nat Biotechnol 2016;34(8): 888-527.
-
(2016)
Nat Biotechnol
, vol.34
, Issue.8
, pp. 888-927
-
-
Bray, N.L.1
Pimentel, H.2
Melsted, P.3
-
22
-
-
84919672097
-
Rediscovery rate estimation for assessing the validation of significant findings in highthroughput studies
-
Ganna A, Lee D, Ingelsson E, et al. Rediscovery rate estimation for assessing the validation of significant findings in highthroughput studies. Brief Bioinform 2015;16(4):563-75.
-
(2015)
Brief Bioinform
, vol.16
, Issue.4
, pp. 563-575
-
-
Ganna, A.1
Lee, D.2
Ingelsson, E.3
-
23
-
-
84974625379
-
The contribution of cell cycle to heterogeneity in single-cell RNA-seq data
-
McDavid A, Finak G, Gottardo R. The contribution of cell cycle to heterogeneity in single-cell RNA-seq data. Nat Biotechnol 2016;34(6):591-3.
-
(2016)
Nat Biotechnol
, vol.34
, Issue.6
, pp. 591-593
-
-
McDavid, A.1
Finak, G.2
Gottardo, R.3
-
24
-
-
84939501639
-
EBSeq-HMM: A Bayesian approach for identifying gene-expression changes in ordered RNA-seq experiments
-
Leng N, Li Y, McIntosh BE, et al. EBSeq-HMM: a Bayesian approach for identifying gene-expression changes in ordered RNA-seq experiments. Bioinformatics 2015;31(16): 2614-22.
-
(2015)
Bioinformatics
, vol.31
, Issue.16
, pp. 2614-2622
-
-
Leng, N.1
Li, Y.2
McIntosh, B.E.3
-
25
-
-
84903146127
-
Robustly detecting differential expression in RNA sequencing data using observation weights
-
Zhou X, Lindsay H, Robinson MD. Robustly detecting differential expression in RNA sequencing data using observation weights. Nucleic Acids Res 2014;42(11):e91.
-
(2014)
Nucleic Acids Res
, vol.42
, Issue.11
, pp. e91
-
-
Zhou, X.1
Lindsay, H.2
Robinson, M.D.3
-
26
-
-
84924629414
-
Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2
-
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 2014;15(12):550.
-
(2014)
Genome Biol
, vol.15
, Issue.12
, pp. 550
-
-
Love, M.I.1
Huber, W.2
Anders, S.3
-
27
-
-
75249087100
-
EdgeR: A bioconductor package for differential expression analysis of digital gene expression data
-
Robinson MD, McCarthy DJ, Smyth GK. edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2010;26(1): 139-40.
-
(2010)
Bioinformatics
, vol.26
, Issue.1
, pp. 139-140
-
-
Robinson, M.D.1
McCarthy, D.J.2
Smyth, G.K.3
-
28
-
-
77955298482
-
BaySeq: Empirical Bayesian methods for identifying differential expression in sequence count data
-
Hardcastle TJ, Kelly KA. baySeq: empirical Bayesian methods for identifying differential expression in sequence count data. BMC Bioinformatics 2010;11(1):422.
-
(2010)
BMC Bioinformatics
, vol.11
, Issue.1
, pp. 422
-
-
Hardcastle, T.J.1
Kelly, K.A.2
-
29
-
-
77958471357
-
Differential expression analysis for sequence count data
-
Anders S, Huber W. Differential expression analysis for sequence count data. Genome Biol 2010;11(10):R106.
-
(2010)
Genome Biol
, vol.11
, Issue.10
, pp. R106
-
-
Anders, S.1
Huber, W.2
-
30
-
-
85016121177
-
SC3: Consensus clustering of single-cell RNA-seq data
-
Kiselev VY, Kirschner K, Schaub MT, et al. SC3: consensus clustering of single-cell RNA-seq data. Nat Methods 2017;14(5): 483-6.
-
(2017)
Nat Methods
, vol.14
, Issue.5
, pp. 483-486
-
-
Kiselev, V.Y.1
Kirschner, K.2
Schaub, M.T.3
|