메뉴 건너뛰기




Volumn 20, Issue 4, 2018, Pages 1583-1589

Evaluation of tools for highly variable gene discovery from single-cell RNA-seq data

Author keywords

DEG analysis; highly variable gene; scRNA seq; single cell RNA seq; software

Indexed keywords

ARTICLE; CELL POPULATION; EMBRYONIC STEM CELL; GENE EXPRESSION; HUMAN CELL; INTERMETHOD COMPARISON; REPRODUCIBILITY; RNA SEQUENCE; SAMPLE SIZE; SOFTWARE; ANIMAL; BIOLOGY; CLUSTER ANALYSIS; COMPUTER SIMULATION; GENE EXPRESSION PROFILING; GENETIC VARIATION; HUMAN; NUCLEIC ACID DATABASE; SINGLE CELL ANALYSIS;

EID: 85072958522     PISSN: 14675463     EISSN: 14774054     Source Type: Journal    
DOI: 10.1093/bib/bby011     Document Type: Article
Times cited : (141)

References (30)
  • 1
    • 79959403670 scopus 로고    scopus 로고
    • Characterization of the single-cell transcriptional landscape by highly multiplex RNA-seq
    • Islam S, Kjallquist U, Moliner A, et al. Characterization of the single-cell transcriptional landscape by highly multiplex RNA-seq. Genome Res 2011;21(7):1160-7.
    • (2011) Genome Res , vol.21 , Issue.7 , pp. 1160-1167
    • Islam, S.1    Kjallquist, U.2    Moliner, A.3
  • 2
    • 67349146589 scopus 로고    scopus 로고
    • MRNA-Seq wholetranscriptome analysis of a single cell
    • Tang F, Barbacioru C, Wang Y, et al. mRNA-Seq wholetranscriptome analysis of a single cell. Nat Methods 2009;6(5): 377-82.
    • (2009) Nat Methods , vol.6 , Issue.5 , pp. 377-382
    • Tang, F.1    Barbacioru, C.2    Wang, Y.3
  • 3
    • 57749195712 scopus 로고    scopus 로고
    • RNA-Seq: A revolutionary tool for transcriptomics
    • Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 2009;10(1):57-63.
    • (2009) Nat Rev Genet , vol.10 , Issue.1 , pp. 57-63
    • Wang, Z.1    Gerstein, M.2    Snyder, M.3
  • 4
    • 84953226880 scopus 로고    scopus 로고
    • BASiCS: Bayesian analysis of single-cell sequencing data
    • Vallejos CA, Marioni JC, Richardson S. BASiCS: Bayesian analysis of single-cell sequencing data. PLoS Comput Biol 2015; 11(6):e1004333.
    • (2015) PLoS Comput Biol , vol.11 , Issue.6 , pp. e1004333
    • Vallejos, C.A.1    Marioni, J.C.2    Richardson, S.3
  • 5
    • 84887109584 scopus 로고    scopus 로고
    • Accounting for technical noise in single-cell RNA-seq experiments
    • Brennecke P, Anders S, Kim JK, et al. Accounting for technical noise in single-cell RNA-seq experiments. Nat Methods 2013; 10(11):1093-5.
    • (2013) Nat Methods , vol.10 , Issue.11 , pp. 1093-1095
    • Brennecke, P.1    Anders, S.2    Kim, J.K.3
  • 6
    • 84923292191 scopus 로고    scopus 로고
    • Computational analysis of cell-to-cell heterogeneity in single-cell RNA-sequencing data reveals hidden subpopulations of cells
    • Buettner F, Natarajan KN, Casale FP, et al. Computational analysis of cell-to-cell heterogeneity in single-cell RNA-sequencing data reveals hidden subpopulations of cells. Nat Biotechnol 2015;33(2):155-60.
    • (2015) Nat Biotechnol , vol.33 , Issue.2 , pp. 155-160
    • Buettner, F.1    Natarajan, K.N.2    Casale, F.P.3
  • 7
    • 85010931059 scopus 로고    scopus 로고
    • A step-by-step workflow for low-level analysis of single-cell RNA-seq data with Bioconductor
    • Lun AT, McCarthy DJ, Marioni JC. A step-by-step workflow for low-level analysis of single-cell RNA-seq data with Bioconductor. F1000Res 2016;5:2122.
    • (2016) F1000Res , vol.5 , pp. 2122
    • Lun, A.T.1    McCarthy, D.J.2    Marioni, J.C.3
  • 8
    • 84983239001 scopus 로고    scopus 로고
    • Detection of high variability in gene expression from single-cell RNA-seq profiling
    • Chen H-IH, Jin Y, Huang Y, et al. Detection of high variability in gene expression from single-cell RNA-seq profiling. BMC Genomics 2016;17(S7):508.
    • (2016) BMC Genomics , vol.17 , pp. 508
    • H-Ih, C.1    Jin, Y.2    Huang, Y.3
  • 9
    • 84929151009 scopus 로고    scopus 로고
    • Spatial reconstruction of single-cell gene expression data
    • Satija R, Farrell JA, Gennert D, et al. Spatial reconstruction of single-cell gene expression data. Nat Biotechnol 2015;33(5):495-502.
    • (2015) Nat Biotechnol , vol.33 , Issue.5 , pp. 495-502
    • Satija, R.1    Farrell, J.A.2    Gennert, D.3
  • 10
    • 84951574149 scopus 로고    scopus 로고
    • MAST: A flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data
    • Finak G, McDavid A, Yajima M, et al. MAST: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data. Genome Biol 2015;16(1):278.
    • (2015) Genome Biol , vol.16 , Issue.1 , pp. 278
    • Finak, G.1    McDavid, A.2    Yajima, M.3
  • 11
    • 85040554215 scopus 로고    scopus 로고
    • Linnorm: Improved statistical analysis for single cell RNA-seq expression data
    • Yip SH, Wang P, Kocher J-PA, et al. Linnorm: improved statistical analysis for single cell RNA-seq expression data. Nucleic Acids Res 2017;45(22):e179.
    • (2017) Nucleic Acids Res , vol.45 , Issue.22 , pp. e179
    • Yip, S.H.1    Wang, P.2    J-Pa, K.3
  • 12
    • 84896735766 scopus 로고    scopus 로고
    • Voom: Precision weights unlock linear model analysis tools for RNA-seq read counts
    • Law CW, Chen Y, Shi W, et al. voom: precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biol 2014;15:R29.
    • (2014) Genome Biol , vol.15 , pp. R29
    • Law, C.W.1    Chen, Y.2    Shi, W.3
  • 13
    • 84992327075 scopus 로고    scopus 로고
    • A statistical approach for identifying differential distributions in single-cell RNA-seq experiments
    • Korthauer KD, Chu LF, Newton MA, et al. A statistical approach for identifying differential distributions in single-cell RNA-seq experiments. Genome Biol 2016;17(1):222.
    • (2016) Genome Biol , vol.17 , Issue.1 , pp. 222
    • Korthauer, K.D.1    Chu, L.F.2    Newton, M.A.3
  • 14
    • 84964556059 scopus 로고    scopus 로고
    • Pooling across cells to normalize single-cell RNA sequencing data with many zero counts
    • Lun AT, Bach K, Marioni JC. Pooling across cells to normalize single-cell RNA sequencing data with many zero counts. Genome Biol 2016;17:75.
    • (2016) Genome Biol , vol.17 , pp. 75
    • Lun, A.T.1    Bach, K.2    Marioni, J.C.3
  • 15
    • 85012271992 scopus 로고    scopus 로고
    • Seq-well: Portable, low-cost RNA sequencing of single cells at high throughput
    • Gierahn TM, Wadsworth MH, II, Hughes TK, et al. Seq-well: portable, low-cost RNA sequencing of single cells at high throughput. Nat Methods 2017;14(4):395-8.
    • (2017) Nat Methods , vol.14 , Issue.4 , pp. 395-398
    • Gierahn, T.M.1    Wadsworth, M.H.2    Hughes, T.K.3
  • 16
    • 84929684998 scopus 로고    scopus 로고
    • Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells
    • Klein AM, Mazutis L, Akartuna I, et al. Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell 2015;161(5):1187-201.
    • (2015) Cell , vol.161 , Issue.5 , pp. 1187-1201
    • Klein, A.M.1    Mazutis, L.2    Akartuna, I.3
  • 17
    • 84892179132 scopus 로고    scopus 로고
    • Single-cell RNA-seq reveals dynamic, random monoallelic gene expression in mammalian cells
    • Deng Q, Ramskold D, Reinius B, et al. Single-cell RNA-seq reveals dynamic, random monoallelic gene expression in mammalian cells. Science 2014;343(6167):193-6.
    • (2014) Science , vol.343 , Issue.6167 , pp. 193-196
    • Deng, Q.1    Ramskold, D.2    Reinius, B.3
  • 18
    • 84883743509 scopus 로고    scopus 로고
    • Single-cell RNA-seq profiling of human preimplantation embryos and embryonic stem cells
    • Yan L, Yang M, Guo H, et al. Single-cell RNA-seq profiling of human preimplantation embryos and embryonic stem cells. Nat Struct Mol Biol 2013;20(9):1131-9.
    • (2013) Nat Struct Mol Biol , vol.20 , Issue.9 , pp. 1131-1139
    • Yan, L.1    Yang, M.2    Guo, H.3
  • 19
    • 84905049901 scopus 로고    scopus 로고
    • Trimmomatic: A flexible trimmer for Illumina sequence data
    • Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 2014;30(15): 2114-20.
    • (2014) Bioinformatics , vol.30 , Issue.15 , pp. 2114-2120
    • Bolger, A.M.1    Lohse, M.2    Usadel, B.3
  • 20
    • 84966283954 scopus 로고    scopus 로고
    • Near-optimal probabilistic RNA-seq quantification
    • Bray NL, Pimentel H, Melsted P, et al. Near-optimal probabilistic RNA-seq quantification. Nat Biotechnol 2016;34(8): 888-527.
    • (2016) Nat Biotechnol , vol.34 , Issue.8 , pp. 888-927
    • Bray, N.L.1    Pimentel, H.2    Melsted, P.3
  • 22
    • 84919672097 scopus 로고    scopus 로고
    • Rediscovery rate estimation for assessing the validation of significant findings in highthroughput studies
    • Ganna A, Lee D, Ingelsson E, et al. Rediscovery rate estimation for assessing the validation of significant findings in highthroughput studies. Brief Bioinform 2015;16(4):563-75.
    • (2015) Brief Bioinform , vol.16 , Issue.4 , pp. 563-575
    • Ganna, A.1    Lee, D.2    Ingelsson, E.3
  • 23
    • 84974625379 scopus 로고    scopus 로고
    • The contribution of cell cycle to heterogeneity in single-cell RNA-seq data
    • McDavid A, Finak G, Gottardo R. The contribution of cell cycle to heterogeneity in single-cell RNA-seq data. Nat Biotechnol 2016;34(6):591-3.
    • (2016) Nat Biotechnol , vol.34 , Issue.6 , pp. 591-593
    • McDavid, A.1    Finak, G.2    Gottardo, R.3
  • 24
    • 84939501639 scopus 로고    scopus 로고
    • EBSeq-HMM: A Bayesian approach for identifying gene-expression changes in ordered RNA-seq experiments
    • Leng N, Li Y, McIntosh BE, et al. EBSeq-HMM: a Bayesian approach for identifying gene-expression changes in ordered RNA-seq experiments. Bioinformatics 2015;31(16): 2614-22.
    • (2015) Bioinformatics , vol.31 , Issue.16 , pp. 2614-2622
    • Leng, N.1    Li, Y.2    McIntosh, B.E.3
  • 25
    • 84903146127 scopus 로고    scopus 로고
    • Robustly detecting differential expression in RNA sequencing data using observation weights
    • Zhou X, Lindsay H, Robinson MD. Robustly detecting differential expression in RNA sequencing data using observation weights. Nucleic Acids Res 2014;42(11):e91.
    • (2014) Nucleic Acids Res , vol.42 , Issue.11 , pp. e91
    • Zhou, X.1    Lindsay, H.2    Robinson, M.D.3
  • 26
    • 84924629414 scopus 로고    scopus 로고
    • Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2
    • Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 2014;15(12):550.
    • (2014) Genome Biol , vol.15 , Issue.12 , pp. 550
    • Love, M.I.1    Huber, W.2    Anders, S.3
  • 27
    • 75249087100 scopus 로고    scopus 로고
    • EdgeR: A bioconductor package for differential expression analysis of digital gene expression data
    • Robinson MD, McCarthy DJ, Smyth GK. edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2010;26(1): 139-40.
    • (2010) Bioinformatics , vol.26 , Issue.1 , pp. 139-140
    • Robinson, M.D.1    McCarthy, D.J.2    Smyth, G.K.3
  • 28
    • 77955298482 scopus 로고    scopus 로고
    • BaySeq: Empirical Bayesian methods for identifying differential expression in sequence count data
    • Hardcastle TJ, Kelly KA. baySeq: empirical Bayesian methods for identifying differential expression in sequence count data. BMC Bioinformatics 2010;11(1):422.
    • (2010) BMC Bioinformatics , vol.11 , Issue.1 , pp. 422
    • Hardcastle, T.J.1    Kelly, K.A.2
  • 29
    • 77958471357 scopus 로고    scopus 로고
    • Differential expression analysis for sequence count data
    • Anders S, Huber W. Differential expression analysis for sequence count data. Genome Biol 2010;11(10):R106.
    • (2010) Genome Biol , vol.11 , Issue.10 , pp. R106
    • Anders, S.1    Huber, W.2
  • 30
    • 85016121177 scopus 로고    scopus 로고
    • SC3: Consensus clustering of single-cell RNA-seq data
    • Kiselev VY, Kirschner K, Schaub MT, et al. SC3: consensus clustering of single-cell RNA-seq data. Nat Methods 2017;14(5): 483-6.
    • (2017) Nat Methods , vol.14 , Issue.5 , pp. 483-486
    • Kiselev, V.Y.1    Kirschner, K.2    Schaub, M.T.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.