-
1
-
-
84983741021
-
Comprehensive classification of retinal bipolar neurons by single-cell transcriptomics
-
Shekhar, K. et al. Comprehensive classification of retinal bipolar neurons by single-cell transcriptomics. Cell 166, 1308-1323 (2016).
-
(2016)
Cell
, vol.166
, pp. 1308-1323
-
-
Shekhar, K.1
-
2
-
-
84902668801
-
Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma
-
Patel, A. P. et al. Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science 344, 1396-1401 (2014).
-
(2014)
Science
, vol.344
, pp. 1396-1401
-
-
Patel, A.P.1
-
3
-
-
84963614956
-
Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq
-
Tirosh, I. et al. Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq. Science 352, 189-196 (2016).
-
(2016)
Science
, vol.352
, pp. 189-196
-
-
Tirosh, I.1
-
4
-
-
79953766940
-
Tumor evolution inferred by single cell sequencing
-
Navin, N. et al. Tumor evolution inferred by single cell sequencing. Nature 472, 90-94 (2011).
-
(2011)
Nature
, vol.472
, pp. 90-94
-
-
Navin, N.1
-
5
-
-
84891677425
-
Full-length RNA-seq from single cells using Smart-seq2
-
Picelli, S. et al. Full-length RNA-seq from single cells using Smart-seq2. Nat. Protoc. 9, 171-181 (2014).
-
(2014)
Nat. Protoc.
, vol.9
, pp. 171-181
-
-
Picelli, S.1
-
6
-
-
84893905629
-
Massively parallel single-cell RNA-seq for marker-free decomposition of tissues into cell types
-
Jaitin, D. A. et al. Massively parallel single-cell RNA-seq for marker-free decomposition of tissues into cell types. Science 343, 776-779 (2014).
-
(2014)
Science
, vol.343
, pp. 776-779
-
-
Jaitin, D.A.1
-
7
-
-
84895069488
-
Quantitative single-cell RNA-seq with unique molecular identifiers
-
Islam, S. et al. Quantitative single-cell RNA-seq with unique molecular identifiers. Nat. Methods 11, 163-166 (2014).
-
(2014)
Nat. Methods
, vol.11
, pp. 163-166
-
-
Islam, S.1
-
8
-
-
84930178333
-
G&T-seq: Parallel sequencing of single-cell genomes and transcriptomes
-
Macaulay, I. C. et al. G&T-seq: Parallel sequencing of single-cell genomes and transcriptomes. Nat. Methods 12, 519-522 (2015).
-
(2015)
Nat. Methods
, vol.12
, pp. 519-522
-
-
Macaulay, I.C.1
-
9
-
-
84929684999
-
Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets
-
Macosko, E. Z. et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 161, 1202-1214 (2015).
-
(2015)
Cell
, vol.161
, pp. 1202-1214
-
-
Macosko, E.Z.1
-
10
-
-
84929684998
-
Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells
-
Klein, A. M. et al. Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell 161, 1187-1201 (2015).
-
(2015)
Cell
, vol.161
, pp. 1187-1201
-
-
Klein, A.M.1
-
11
-
-
84964452502
-
Cel-seq2: Sensitive highly-multiplexed single-cell RNAseq
-
Hashimshony, T. et al. Cel-seq2: Sensitive highly-multiplexed single-cell RNAseq. Genome Biol. 17, 77 (2016).
-
(2016)
Genome Biol.
, vol.17
, pp. 77
-
-
Hashimshony, T.1
-
12
-
-
85012271992
-
Seq-Well: Portable, low-cost RNA sequencing of single cells at high throughput
-
Gierahn, T. M. et al. Seq-Well: Portable, low-cost RNA sequencing of single cells at high throughput. Nat. Methods 14, 395-398 (2017).
-
(2017)
Nat. Methods
, vol.14
, pp. 395-398
-
-
Gierahn, T.M.1
-
13
-
-
85009446777
-
Massively parallel digital transcriptional profiling of single cells
-
Zheng, G. X. et al. Massively parallel digital transcriptional profiling of single cells. Nat. Commun. 8, 14049 (2017).
-
(2017)
Nat. Commun.
, vol.8
, pp. 14049
-
-
Zheng, G.X.1
-
14
-
-
85028303209
-
Comprehensive single-cell transcriptional profiling of a multicellular organism
-
Cao, J. et al. Comprehensive single-cell transcriptional profiling of a multicellular organism. Science 357, 661-667 (2017).
-
(2017)
Science
, vol.357
, pp. 661-667
-
-
Cao, J.1
-
15
-
-
85044434871
-
Single-cell profiling of the developing mouse brain and spinal cord with split-pool barcoding
-
Rosenberg, A. B. et al. Single-cell profiling of the developing mouse brain and spinal cord with split-pool barcoding. Science 360, 176-182 (2018).
-
(2018)
Science
, vol.360
, pp. 176-182
-
-
Rosenberg, A.B.1
-
16
-
-
79955750055
-
Single-cell mass cytometry of differential immune and drug responses across a human hematopoietic continuum
-
Bendall, S. C. et al. Single-cell mass cytometry of differential immune and drug responses across a human hematopoietic continuum. Science 332, 687-696 (2011).
-
(2011)
Science
, vol.332
, pp. 687-696
-
-
Bendall, S.C.1
-
17
-
-
84934442835
-
Data-driven phenotypic dissection of AML reveals progenitor-like cells that correlate with prognosis
-
Levine, J. H. et al. Data-driven phenotypic dissection of AML reveals progenitor-like cells that correlate with prognosis. Cell 162, 184-197 (2015).
-
(2015)
Cell
, vol.162
, pp. 184-197
-
-
Levine, J.H.1
-
18
-
-
85040459896
-
The human cell atlas
-
Regev, A. et al. The human cell atlas. Elife https://doi.org/10.7554/eLife.27041 (2017).
-
(2017)
Elife
-
-
Regev, A.1
-
19
-
-
84994860357
-
Revealing the vectors of cellular identity with single-cell genomics
-
Wagner, A., Regev, A. & Yosef, N. Revealing the vectors of cellular identity with single-cell genomics. Nat. Biotechnol. 34, 1145-1160 (2016).
-
(2016)
Nat. Biotechnol.
, vol.34
, pp. 1145-1160
-
-
Wagner, A.1
Regev, A.2
Yosef, N.3
-
20
-
-
84923292191
-
Computational analysis of cell-to-cell heterogeneity in single-cell RNA-sequencing data reveals hidden subpopulations of cells
-
Buettner, F. et al. Computational analysis of cell-to-cell heterogeneity in single-cell RNA-sequencing data reveals hidden subpopulations of cells. Nat. Biotechnol. 33, 155-160 (2015).
-
(2015)
Nat. Biotechnol.
, vol.33
, pp. 155-160
-
-
Buettner, F.1
-
21
-
-
85021816036
-
Normalizing single-cell RNA sequencing data: Challenges and opportunities
-
Vallejos, C. A., Risso, D., Scialdone, A., Dudoit, S. & Marioni, J. C. Normalizing single-cell RNA sequencing data: Challenges and opportunities. Nat. Methods 14, 565-571 (2017).
-
(2017)
Nat. Methods
, vol.14
, pp. 565-571
-
-
Vallejos, C.A.1
Risso, D.2
Scialdone, A.3
Dudoit, S.4
Marioni, J.C.5
-
22
-
-
85017522016
-
SCnorm: Robust normalization of single-cell RNA-seq data
-
Bacher, R. et al. SCnorm: Robust normalization of single-cell RNA-seq data. Nat. Methods 14, 584-586 (2017).
-
(2017)
Nat. Methods
, vol.14
, pp. 584-586
-
-
Bacher, R.1
-
23
-
-
85010878111
-
Single-cell mRNA quantification and differential analysis with Census
-
Qiu, X. et al. Single-cell mRNA quantification and differential analysis with Census. Nat. Methods 14, 309-315 (2017).
-
(2017)
Nat. Methods
, vol.14
, pp. 309-315
-
-
Qiu, X.1
-
24
-
-
85014524493
-
Power analysis of single-cell RNA-sequencing experiments
-
Svensson, V. et al. Power analysis of single-cell RNA-sequencing experiments. Nat. Methods 14, 381-387 (2017).
-
(2017)
Nat. Methods
, vol.14
, pp. 381-387
-
-
Svensson, V.1
-
25
-
-
85013200683
-
Comparative analysis of single-cell RNA sequencing methods
-
Ziegenhain, C. et al. Comparative analysis of single-cell RNA sequencing methods. Mol. Cell 65, 631-643 (2017).
-
(2017)
Mol. Cell
, vol.65
, pp. 631-643
-
-
Ziegenhain, C.1
-
26
-
-
84923647450
-
Computational and analytical challenges in single-cell transcriptomics
-
Stegle, O., Teichmann, S. A. & Marioni, J. C. Computational and analytical challenges in single-cell transcriptomics. Nat. Rev. Genet. 16, 133-145 (2015).
-
(2015)
Nat. Rev. Genet.
, vol.16
, pp. 133-145
-
-
Stegle, O.1
Teichmann, S.A.2
Marioni, J.C.3
-
27
-
-
84966667709
-
Destiny: Diffusion maps for large-scale single-cell data in R
-
Angerer, P. et al. destiny: Diffusion maps for large-scale single-cell data in R. Bioinformatics 32, 1241-1243 (2015).
-
(2015)
Bioinformatics
, vol.32
, pp. 1241-1243
-
-
Angerer, P.1
-
28
-
-
84955706109
-
ZIFA: Dimensionality reduction for zero-inflated singlecell gene expression analysis
-
Pierson, E. & Yau, C. ZIFA: Dimensionality reduction for zero-inflated singlecell gene expression analysis. Genome Biol. 16, 241 (2015).
-
(2015)
Genome Biol.
, vol.16
, pp. 241
-
-
Pierson, E.1
Yau, C.2
-
29
-
-
84983250200
-
FastProject: A tool for low-dimensional analysis of single-cell RNA-seq data
-
DeTomaso, D. & Yosef, N. FastProject: A tool for low-dimensional analysis of single-cell RNA-seq data. BMC Bioinforma. 17, 315 (2016).
-
(2016)
BMC Bioinforma.
, vol.17
, pp. 315
-
-
DeTomaso, D.1
Yosef, N.2
-
30
-
-
84900873950
-
The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells
-
Trapnell, C. et al. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat. Biotechnol. 32, 381-386 (2014).
-
(2014)
Nat. Biotechnol.
, vol.32
, pp. 381-386
-
-
Trapnell, C.1
-
31
-
-
84974587998
-
Wishbone identifies bifurcating developmental trajectories from single-cell data
-
Setty, M. et al. Wishbone identifies bifurcating developmental trajectories from single-cell data. Nat. Biotechnol. 34, 637-645 (2016).
-
(2016)
Nat. Biotechnol.
, vol.34
, pp. 637-645
-
-
Setty, M.1
-
32
-
-
85039160886
-
Probabilistic modeling of bifurcations in single-cell gene expression data using a Bayesian mixture of factor analyzers
-
Campbell, K. R. & Yau, C. Probabilistic modeling of bifurcations in single-cell gene expression data using a bayesian mixture of factor analyzers. Wellcome Open Res. 2, 19 (2017).
-
(2017)
Wellcome Open Res.
, vol.2
, pp. 19
-
-
Campbell, K.R.1
Yau, C.2
-
33
-
-
85027990252
-
Slingshot: Cell lineage and pseudotime inference for single-cell transcriptomics
-
Street, K. et al. Slingshot: Cell lineage and pseudotime inference for single-cell transcriptomics. bioRxiv https://doi.org/10.1101/128843 (2017).
-
(2017)
BioRxiv
-
-
Street, K.1
-
35
-
-
84898964829
-
Stochastic neighbor embedding
-
(eds Becker, S., Thrun, S. & Obermayer, K.) , (MIT Press, Cambridge).
-
Hinton, G. E. & Roweis, S. T. Stochastic neighbor embedding. In Advances in Neural Information Processing Systems 15 (eds Becker, S., Thrun, S. & Obermayer, K.) 857-864 (MIT Press, Cambridge, 2003).
-
(2003)
Advances in Neural Information Processing Systems
, vol.15
, pp. 857-864
-
-
Hinton, G.E.1
Roweis, S.T.2
-
36
-
-
84862287340
-
Visualizing similarity data with a mixture of maps
-
(eds Meila, M. & Shen, X.) (PMLR, San Juan, Puerto Rico).
-
Cook, J., Sutskever, I., Mnih, A. & Hinton, G. E. Visualizing similarity data with a mixture of maps. In Proc. Eleventh International Conference on Artificial Intelligence and Statistics, vol. 2 of Proceedings of Machine Learning Research (eds Meila, M. & Shen, X.) 67-74 (PMLR, San Juan, Puerto Rico, 2007).
-
(2007)
Proc. Eleventh International Conference on Artificial Intelligence and Statistics, Vol. 2 of Proceedings of Machine Learning Research
, pp. 67-74
-
-
Cook, J.1
Sutskever, I.2
Mnih, A.3
Hinton, G.E.4
-
38
-
-
84908488425
-
Scalable optimization of neighbor embedding for visualization
-
(eds Dasgupta, S. & McAllester, D.), (PMLR, Atlanta, Georgia).
-
Yang, Z., Peltonen, J. & Kaski, S. Scalable optimization of neighbor embedding for visualization. In Proc. 30th International Conference on Machine Learning (eds Dasgupta, S. & McAllester, D.) 127-135 (PMLR, Atlanta, Georgia, 2013).
-
(2013)
Proc. 30th International Conference on Machine Learning
, pp. 127-135
-
-
Yang, Z.1
Peltonen, J.2
Kaski, S.3
-
39
-
-
84919775831
-
Accelerating t-SNE using tree-based algorithms
-
Maaten, L. v. d. Accelerating t-SNE using tree-based algorithms. J. Mach. Learn. Res. 15, 3221-3245 (2014).
-
(2014)
J. Mach. Learn. Res.
, vol.15
, pp. 3221-3245
-
-
Maaten, L.V.D.1
-
40
-
-
84880280631
-
ViSNE enables visualization of high dimensional single-cell data and reveals phenotypic heterogeneity of leukemia
-
Amir, E.-a.D. et al. viSNE enables visualization of high dimensional single-cell data and reveals phenotypic heterogeneity of leukemia. Nat. Biotechnol. 31, 545-552 (2013).
-
(2013)
Nat. Biotechnol.
, vol.31
, pp. 545-552
-
-
Amir, E.-A.D.1
-
41
-
-
84977499231
-
PcaReduce: Hierarchical clustering of single cell transcriptional profiles
-
Zurauskiene, J. & Yau, C. pcaReduce: Hierarchical clustering of single cell transcriptional profiles. BMC Bioinformatics 17, 140 (2016).
-
(2016)
BMC Bioinformatics
, vol.17
, pp. 140
-
-
Zurauskiene, J.1
Yau, C.2
-
44
-
-
85016091925
-
Single-cell RNA-seq supports a developmental hierarchy in human oligodendroglioma
-
Tirosh, I. et al. Single-cell RNA-seq supports a developmental hierarchy in human oligodendroglioma. Nature 539, 309-313 (2016).
-
(2016)
Nature
, vol.539
, pp. 309-313
-
-
Tirosh, I.1
-
46
-
-
85083953568
-
Fast and accurate deep network learning by exponential linear units (elus)
-
(San Juan, Puerto Rico).
-
Clevert, D.-A., Unterthiner, T. & Hochreiter, S. Fast and accurate deep network learning by exponential linear units (elus). In 4th International Conference for Learning Representations (San Juan, Puerto Rico, 2016).
-
(2016)
4th International Conference for Learning Representations
-
-
Clevert, D.-A.1
Unterthiner, T.2
Hochreiter, S.3
-
48
-
-
84975773169
-
Rtsne: T-distributed stochastic neighbor embedding using Barnes-Hut implementation
-
Krijthe, J. H. Rtsne: T-distributed stochastic neighbor embedding using Barnes-Hut implementation. https://github.com/jkrijthe/Rtsne, R package version 0.13 (2015).
-
(2015)
R Package Version 0.13
-
-
Krijthe, J.H.1
-
49
-
-
84898980901
-
Gaussian process latent variable models for visualisation of high dimensional data
-
(eds Thrun, S., Saul, L. K. & Schölkopf, B.) (Cambridge, MIT Press).
-
Lawrence, N. D. Gaussian process latent variable models for visualisation of high dimensional data. In Advances in Neural Information Processing Systems 16 (eds Thrun, S., Saul, L. K. & Schölkopf, B.) 329-336 (Cambridge, MIT Press, 2004).
-
(2004)
Advances in Neural Information Processing Systems
, vol.16
, pp. 329-336
-
-
Lawrence, N.D.1
-
51
-
-
78049412906
-
Learning a parametric embedding by preserving local structure
-
(eds van Dyk, D. & Welling, M.) (PMLR, Clearwater Beach, Florida,).
-
Maaten, L. Learning a parametric embedding by preserving local structure. In Proceedings of the Twelth International Conference on Artificial Intelligence and Statistics, vol. 5 of Proceedings of Machine Learning Research (eds van Dyk, D. & Welling, M.) 384-391 (PMLR, Clearwater Beach, Florida, 2009).
-
(2009)
Proceedings of the Twelth International Conference on Artificial Intelligence and Statistics, Vol. 5 of Proceedings of Machine Learning Research
, pp. 384-391
-
-
Maaten, L.1
-
52
-
-
84990931723
-
DensityCut: An efficient and versatile topological approach for automatic clustering of biological data
-
Ding, J., Shah, S. & Condon, A. densityCut: An efficient and versatile topological approach for automatic clustering of biological data. Bioinformatics 32, 2567-2576 (2016).
-
(2016)
Bioinformatics
, vol.32
, pp. 2567-2576
-
-
Ding, J.1
Shah, S.2
Condon, A.3
-
53
-
-
33644872577
-
Limma: Linear models for microarray data
-
(eds Gentleman, R., Carey, V. J., Huber, W., Irizarry, R. A. & Dudoit, S.) (Springer, New York).
-
Smyth, G. Limma: Linear models for microarray data. In Bioinformatics and computational biology solutions using R and Bioconductor (eds Gentleman, R., Carey, V. J., Huber, W., Irizarry, R. A. & Dudoit, S.) 397-420 (Springer, New York, 2005).
-
(2005)
Bioinformatics and Computational Biology Solutions Using R and Bioconductor
, pp. 397-420
-
-
Smyth, G.1
-
54
-
-
85014528252
-
Visualization and analysis of single-cell RNA-seq data by kernel-based similarity learning
-
Wang, B., Zhu, J., Pierson, E. & Batzoglou, S. Visualization and analysis of single-cell RNA-seq data by kernel-based similarity learning. Nat. Methods 14, 414-416 (2017).
-
(2017)
Nat. Methods
, vol.14
, pp. 414-416
-
-
Wang, B.1
Zhu, J.2
Pierson, E.3
Batzoglou, S.4
-
55
-
-
85047386289
-
Gating mass cytometry data by deep learning
-
Li, H. et al. Gating mass cytometry data by deep learning. Bioinformatics 33, 3423-3430 (2017).
-
(2017)
Bioinformatics
, vol.33
, pp. 3423-3430
-
-
Li, H.1
-
57
-
-
84919908080
-
Stochastic backpropagation and approximate inference in deep generative models
-
(eds Xing E. P. & Jebara, T.) PMLR, Beijing,).
-
Rezende, D. J., Mohamed, S. & Wierstra, D. Stochastic backpropagation and approximate inference in deep generative models. In Proc. 31st International Conference on Machine Learning (eds Xing, E. P. & Jebara, T.) 1278-1286 (PMLR, Beijing, 2014).
-
(2014)
Proc. 31st International Conference on Machine Learning
, pp. 1278-1286
-
-
Rezende, D.J.1
Mohamed, S.2
Wierstra, D.3
-
59
-
-
85047428946
-
-
10X Genomics
-
10X Genomics. 1.3 million brain cells from E18 mice. https:// support.10xgenomics.com/single-cell-gene-expression/datasets/1.3.0/ 1M-neurons (2017).
-
(2017)
1.3 Million Brain Cells from E18 Mice
-
-
-
60
-
-
84872033704
-
Measurement of mRNA abundance using RNA-seq data: RPKM measure is inconsistent among samples
-
Wagner, G. P., Kin, K. & Lynch, V. J. Measurement of mRNA abundance using RNA-seq data: RPKM measure is inconsistent among samples. Theory Biosci. 131, 281-285 (2012).
-
(2012)
Theory Biosci.
, vol.131
, pp. 281-285
-
-
Wagner, G.P.1
Kin, K.2
Lynch, V.J.3
-
61
-
-
0000550189
-
A density-based algorithm for discovering clusters in large spatial databases with noise
-
(eds Simoudis, E., Han, J. & Fayyad, U.) (AAAI Press, Portland, Oregon,).
-
Ester, M. et al. A density-based algorithm for discovering clusters in large spatial databases with noise. In KDD'96 Proc. Second International Conference on Knowledge Discovery and Data Mining (eds Simoudis, E., Han, J. & Fayyad, U.) 226-231 (AAAI Press, Portland, Oregon, 1996).
-
(1996)
KDD'96 Proc. Second International Conference on Knowledge Discovery and Data Mining
, pp. 226-231
-
-
Ester, M.1
-
62
-
-
0001677717
-
Controlling the false discovery rate: A practical and powerful approach to multiple testing
-
Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B (Methodol.) 57, 289-300 (1995).
-
(1995)
J. R. Stat. Soc. Ser. B (Methodol.)
, vol.57
, pp. 289-300
-
-
Benjamini, Y.1
Hochberg, Y.2
-
63
-
-
85047440599
-
-
Levine, J. H. et al. Phenograph. https://www.cytobank.org/nolanlab/reports/ Levine2015.html (2015).
-
(2015)
Phenograph
-
-
Levine, J.H.1
|