메뉴 건너뛰기




Volumn 9, Issue 1, 2018, Pages

Interpretable dimensionality reduction of single cell transcriptome data with deep generative models

Author keywords

[No Author keywords available]

Indexed keywords

TRANSCRIPTOME; RNA;

EID: 85047423831     PISSN: None     EISSN: 20411723     Source Type: Journal    
DOI: 10.1038/s41467-018-04368-5     Document Type: Article
Times cited : (277)

References (63)
  • 1
    • 84983741021 scopus 로고    scopus 로고
    • Comprehensive classification of retinal bipolar neurons by single-cell transcriptomics
    • Shekhar, K. et al. Comprehensive classification of retinal bipolar neurons by single-cell transcriptomics. Cell 166, 1308-1323 (2016).
    • (2016) Cell , vol.166 , pp. 1308-1323
    • Shekhar, K.1
  • 2
    • 84902668801 scopus 로고    scopus 로고
    • Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma
    • Patel, A. P. et al. Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science 344, 1396-1401 (2014).
    • (2014) Science , vol.344 , pp. 1396-1401
    • Patel, A.P.1
  • 3
    • 84963614956 scopus 로고    scopus 로고
    • Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq
    • Tirosh, I. et al. Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq. Science 352, 189-196 (2016).
    • (2016) Science , vol.352 , pp. 189-196
    • Tirosh, I.1
  • 4
    • 79953766940 scopus 로고    scopus 로고
    • Tumor evolution inferred by single cell sequencing
    • Navin, N. et al. Tumor evolution inferred by single cell sequencing. Nature 472, 90-94 (2011).
    • (2011) Nature , vol.472 , pp. 90-94
    • Navin, N.1
  • 5
    • 84891677425 scopus 로고    scopus 로고
    • Full-length RNA-seq from single cells using Smart-seq2
    • Picelli, S. et al. Full-length RNA-seq from single cells using Smart-seq2. Nat. Protoc. 9, 171-181 (2014).
    • (2014) Nat. Protoc. , vol.9 , pp. 171-181
    • Picelli, S.1
  • 6
    • 84893905629 scopus 로고    scopus 로고
    • Massively parallel single-cell RNA-seq for marker-free decomposition of tissues into cell types
    • Jaitin, D. A. et al. Massively parallel single-cell RNA-seq for marker-free decomposition of tissues into cell types. Science 343, 776-779 (2014).
    • (2014) Science , vol.343 , pp. 776-779
    • Jaitin, D.A.1
  • 7
    • 84895069488 scopus 로고    scopus 로고
    • Quantitative single-cell RNA-seq with unique molecular identifiers
    • Islam, S. et al. Quantitative single-cell RNA-seq with unique molecular identifiers. Nat. Methods 11, 163-166 (2014).
    • (2014) Nat. Methods , vol.11 , pp. 163-166
    • Islam, S.1
  • 8
    • 84930178333 scopus 로고    scopus 로고
    • G&T-seq: Parallel sequencing of single-cell genomes and transcriptomes
    • Macaulay, I. C. et al. G&T-seq: Parallel sequencing of single-cell genomes and transcriptomes. Nat. Methods 12, 519-522 (2015).
    • (2015) Nat. Methods , vol.12 , pp. 519-522
    • Macaulay, I.C.1
  • 9
    • 84929684999 scopus 로고    scopus 로고
    • Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets
    • Macosko, E. Z. et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 161, 1202-1214 (2015).
    • (2015) Cell , vol.161 , pp. 1202-1214
    • Macosko, E.Z.1
  • 10
    • 84929684998 scopus 로고    scopus 로고
    • Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells
    • Klein, A. M. et al. Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell 161, 1187-1201 (2015).
    • (2015) Cell , vol.161 , pp. 1187-1201
    • Klein, A.M.1
  • 11
    • 84964452502 scopus 로고    scopus 로고
    • Cel-seq2: Sensitive highly-multiplexed single-cell RNAseq
    • Hashimshony, T. et al. Cel-seq2: Sensitive highly-multiplexed single-cell RNAseq. Genome Biol. 17, 77 (2016).
    • (2016) Genome Biol. , vol.17 , pp. 77
    • Hashimshony, T.1
  • 12
    • 85012271992 scopus 로고    scopus 로고
    • Seq-Well: Portable, low-cost RNA sequencing of single cells at high throughput
    • Gierahn, T. M. et al. Seq-Well: Portable, low-cost RNA sequencing of single cells at high throughput. Nat. Methods 14, 395-398 (2017).
    • (2017) Nat. Methods , vol.14 , pp. 395-398
    • Gierahn, T.M.1
  • 13
    • 85009446777 scopus 로고    scopus 로고
    • Massively parallel digital transcriptional profiling of single cells
    • Zheng, G. X. et al. Massively parallel digital transcriptional profiling of single cells. Nat. Commun. 8, 14049 (2017).
    • (2017) Nat. Commun. , vol.8 , pp. 14049
    • Zheng, G.X.1
  • 14
    • 85028303209 scopus 로고    scopus 로고
    • Comprehensive single-cell transcriptional profiling of a multicellular organism
    • Cao, J. et al. Comprehensive single-cell transcriptional profiling of a multicellular organism. Science 357, 661-667 (2017).
    • (2017) Science , vol.357 , pp. 661-667
    • Cao, J.1
  • 15
    • 85044434871 scopus 로고    scopus 로고
    • Single-cell profiling of the developing mouse brain and spinal cord with split-pool barcoding
    • Rosenberg, A. B. et al. Single-cell profiling of the developing mouse brain and spinal cord with split-pool barcoding. Science 360, 176-182 (2018).
    • (2018) Science , vol.360 , pp. 176-182
    • Rosenberg, A.B.1
  • 16
    • 79955750055 scopus 로고    scopus 로고
    • Single-cell mass cytometry of differential immune and drug responses across a human hematopoietic continuum
    • Bendall, S. C. et al. Single-cell mass cytometry of differential immune and drug responses across a human hematopoietic continuum. Science 332, 687-696 (2011).
    • (2011) Science , vol.332 , pp. 687-696
    • Bendall, S.C.1
  • 17
    • 84934442835 scopus 로고    scopus 로고
    • Data-driven phenotypic dissection of AML reveals progenitor-like cells that correlate with prognosis
    • Levine, J. H. et al. Data-driven phenotypic dissection of AML reveals progenitor-like cells that correlate with prognosis. Cell 162, 184-197 (2015).
    • (2015) Cell , vol.162 , pp. 184-197
    • Levine, J.H.1
  • 18
    • 85040459896 scopus 로고    scopus 로고
    • The human cell atlas
    • Regev, A. et al. The human cell atlas. Elife https://doi.org/10.7554/eLife.27041 (2017).
    • (2017) Elife
    • Regev, A.1
  • 19
    • 84994860357 scopus 로고    scopus 로고
    • Revealing the vectors of cellular identity with single-cell genomics
    • Wagner, A., Regev, A. & Yosef, N. Revealing the vectors of cellular identity with single-cell genomics. Nat. Biotechnol. 34, 1145-1160 (2016).
    • (2016) Nat. Biotechnol. , vol.34 , pp. 1145-1160
    • Wagner, A.1    Regev, A.2    Yosef, N.3
  • 20
    • 84923292191 scopus 로고    scopus 로고
    • Computational analysis of cell-to-cell heterogeneity in single-cell RNA-sequencing data reveals hidden subpopulations of cells
    • Buettner, F. et al. Computational analysis of cell-to-cell heterogeneity in single-cell RNA-sequencing data reveals hidden subpopulations of cells. Nat. Biotechnol. 33, 155-160 (2015).
    • (2015) Nat. Biotechnol. , vol.33 , pp. 155-160
    • Buettner, F.1
  • 21
    • 85021816036 scopus 로고    scopus 로고
    • Normalizing single-cell RNA sequencing data: Challenges and opportunities
    • Vallejos, C. A., Risso, D., Scialdone, A., Dudoit, S. & Marioni, J. C. Normalizing single-cell RNA sequencing data: Challenges and opportunities. Nat. Methods 14, 565-571 (2017).
    • (2017) Nat. Methods , vol.14 , pp. 565-571
    • Vallejos, C.A.1    Risso, D.2    Scialdone, A.3    Dudoit, S.4    Marioni, J.C.5
  • 22
    • 85017522016 scopus 로고    scopus 로고
    • SCnorm: Robust normalization of single-cell RNA-seq data
    • Bacher, R. et al. SCnorm: Robust normalization of single-cell RNA-seq data. Nat. Methods 14, 584-586 (2017).
    • (2017) Nat. Methods , vol.14 , pp. 584-586
    • Bacher, R.1
  • 23
    • 85010878111 scopus 로고    scopus 로고
    • Single-cell mRNA quantification and differential analysis with Census
    • Qiu, X. et al. Single-cell mRNA quantification and differential analysis with Census. Nat. Methods 14, 309-315 (2017).
    • (2017) Nat. Methods , vol.14 , pp. 309-315
    • Qiu, X.1
  • 24
    • 85014524493 scopus 로고    scopus 로고
    • Power analysis of single-cell RNA-sequencing experiments
    • Svensson, V. et al. Power analysis of single-cell RNA-sequencing experiments. Nat. Methods 14, 381-387 (2017).
    • (2017) Nat. Methods , vol.14 , pp. 381-387
    • Svensson, V.1
  • 25
    • 85013200683 scopus 로고    scopus 로고
    • Comparative analysis of single-cell RNA sequencing methods
    • Ziegenhain, C. et al. Comparative analysis of single-cell RNA sequencing methods. Mol. Cell 65, 631-643 (2017).
    • (2017) Mol. Cell , vol.65 , pp. 631-643
    • Ziegenhain, C.1
  • 26
    • 84923647450 scopus 로고    scopus 로고
    • Computational and analytical challenges in single-cell transcriptomics
    • Stegle, O., Teichmann, S. A. & Marioni, J. C. Computational and analytical challenges in single-cell transcriptomics. Nat. Rev. Genet. 16, 133-145 (2015).
    • (2015) Nat. Rev. Genet. , vol.16 , pp. 133-145
    • Stegle, O.1    Teichmann, S.A.2    Marioni, J.C.3
  • 27
    • 84966667709 scopus 로고    scopus 로고
    • Destiny: Diffusion maps for large-scale single-cell data in R
    • Angerer, P. et al. destiny: Diffusion maps for large-scale single-cell data in R. Bioinformatics 32, 1241-1243 (2015).
    • (2015) Bioinformatics , vol.32 , pp. 1241-1243
    • Angerer, P.1
  • 28
    • 84955706109 scopus 로고    scopus 로고
    • ZIFA: Dimensionality reduction for zero-inflated singlecell gene expression analysis
    • Pierson, E. & Yau, C. ZIFA: Dimensionality reduction for zero-inflated singlecell gene expression analysis. Genome Biol. 16, 241 (2015).
    • (2015) Genome Biol. , vol.16 , pp. 241
    • Pierson, E.1    Yau, C.2
  • 29
    • 84983250200 scopus 로고    scopus 로고
    • FastProject: A tool for low-dimensional analysis of single-cell RNA-seq data
    • DeTomaso, D. & Yosef, N. FastProject: A tool for low-dimensional analysis of single-cell RNA-seq data. BMC Bioinforma. 17, 315 (2016).
    • (2016) BMC Bioinforma. , vol.17 , pp. 315
    • DeTomaso, D.1    Yosef, N.2
  • 30
    • 84900873950 scopus 로고    scopus 로고
    • The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells
    • Trapnell, C. et al. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat. Biotechnol. 32, 381-386 (2014).
    • (2014) Nat. Biotechnol. , vol.32 , pp. 381-386
    • Trapnell, C.1
  • 31
    • 84974587998 scopus 로고    scopus 로고
    • Wishbone identifies bifurcating developmental trajectories from single-cell data
    • Setty, M. et al. Wishbone identifies bifurcating developmental trajectories from single-cell data. Nat. Biotechnol. 34, 637-645 (2016).
    • (2016) Nat. Biotechnol. , vol.34 , pp. 637-645
    • Setty, M.1
  • 32
    • 85039160886 scopus 로고    scopus 로고
    • Probabilistic modeling of bifurcations in single-cell gene expression data using a Bayesian mixture of factor analyzers
    • Campbell, K. R. & Yau, C. Probabilistic modeling of bifurcations in single-cell gene expression data using a bayesian mixture of factor analyzers. Wellcome Open Res. 2, 19 (2017).
    • (2017) Wellcome Open Res. , vol.2 , pp. 19
    • Campbell, K.R.1    Yau, C.2
  • 33
    • 85027990252 scopus 로고    scopus 로고
    • Slingshot: Cell lineage and pseudotime inference for single-cell transcriptomics
    • Street, K. et al. Slingshot: Cell lineage and pseudotime inference for single-cell transcriptomics. bioRxiv https://doi.org/10.1101/128843 (2017).
    • (2017) BioRxiv
    • Street, K.1
  • 35
    • 84898964829 scopus 로고    scopus 로고
    • Stochastic neighbor embedding
    • (eds Becker, S., Thrun, S. & Obermayer, K.) , (MIT Press, Cambridge).
    • Hinton, G. E. & Roweis, S. T. Stochastic neighbor embedding. In Advances in Neural Information Processing Systems 15 (eds Becker, S., Thrun, S. & Obermayer, K.) 857-864 (MIT Press, Cambridge, 2003).
    • (2003) Advances in Neural Information Processing Systems , vol.15 , pp. 857-864
    • Hinton, G.E.1    Roweis, S.T.2
  • 38
    • 84908488425 scopus 로고    scopus 로고
    • Scalable optimization of neighbor embedding for visualization
    • (eds Dasgupta, S. & McAllester, D.), (PMLR, Atlanta, Georgia).
    • Yang, Z., Peltonen, J. & Kaski, S. Scalable optimization of neighbor embedding for visualization. In Proc. 30th International Conference on Machine Learning (eds Dasgupta, S. & McAllester, D.) 127-135 (PMLR, Atlanta, Georgia, 2013).
    • (2013) Proc. 30th International Conference on Machine Learning , pp. 127-135
    • Yang, Z.1    Peltonen, J.2    Kaski, S.3
  • 39
    • 84919775831 scopus 로고    scopus 로고
    • Accelerating t-SNE using tree-based algorithms
    • Maaten, L. v. d. Accelerating t-SNE using tree-based algorithms. J. Mach. Learn. Res. 15, 3221-3245 (2014).
    • (2014) J. Mach. Learn. Res. , vol.15 , pp. 3221-3245
    • Maaten, L.V.D.1
  • 40
    • 84880280631 scopus 로고    scopus 로고
    • ViSNE enables visualization of high dimensional single-cell data and reveals phenotypic heterogeneity of leukemia
    • Amir, E.-a.D. et al. viSNE enables visualization of high dimensional single-cell data and reveals phenotypic heterogeneity of leukemia. Nat. Biotechnol. 31, 545-552 (2013).
    • (2013) Nat. Biotechnol. , vol.31 , pp. 545-552
    • Amir, E.-A.D.1
  • 41
    • 84977499231 scopus 로고    scopus 로고
    • PcaReduce: Hierarchical clustering of single cell transcriptional profiles
    • Zurauskiene, J. & Yau, C. pcaReduce: Hierarchical clustering of single cell transcriptional profiles. BMC Bioinformatics 17, 140 (2016).
    • (2016) BMC Bioinformatics , vol.17 , pp. 140
    • Zurauskiene, J.1    Yau, C.2
  • 44
    • 85016091925 scopus 로고    scopus 로고
    • Single-cell RNA-seq supports a developmental hierarchy in human oligodendroglioma
    • Tirosh, I. et al. Single-cell RNA-seq supports a developmental hierarchy in human oligodendroglioma. Nature 539, 309-313 (2016).
    • (2016) Nature , vol.539 , pp. 309-313
    • Tirosh, I.1
  • 48
    • 84975773169 scopus 로고    scopus 로고
    • Rtsne: T-distributed stochastic neighbor embedding using Barnes-Hut implementation
    • Krijthe, J. H. Rtsne: T-distributed stochastic neighbor embedding using Barnes-Hut implementation. https://github.com/jkrijthe/Rtsne, R package version 0.13 (2015).
    • (2015) R Package Version 0.13
    • Krijthe, J.H.1
  • 49
    • 84898980901 scopus 로고    scopus 로고
    • Gaussian process latent variable models for visualisation of high dimensional data
    • (eds Thrun, S., Saul, L. K. & Schölkopf, B.) (Cambridge, MIT Press).
    • Lawrence, N. D. Gaussian process latent variable models for visualisation of high dimensional data. In Advances in Neural Information Processing Systems 16 (eds Thrun, S., Saul, L. K. & Schölkopf, B.) 329-336 (Cambridge, MIT Press, 2004).
    • (2004) Advances in Neural Information Processing Systems , vol.16 , pp. 329-336
    • Lawrence, N.D.1
  • 52
    • 84990931723 scopus 로고    scopus 로고
    • DensityCut: An efficient and versatile topological approach for automatic clustering of biological data
    • Ding, J., Shah, S. & Condon, A. densityCut: An efficient and versatile topological approach for automatic clustering of biological data. Bioinformatics 32, 2567-2576 (2016).
    • (2016) Bioinformatics , vol.32 , pp. 2567-2576
    • Ding, J.1    Shah, S.2    Condon, A.3
  • 53
    • 33644872577 scopus 로고    scopus 로고
    • Limma: Linear models for microarray data
    • (eds Gentleman, R., Carey, V. J., Huber, W., Irizarry, R. A. & Dudoit, S.) (Springer, New York).
    • Smyth, G. Limma: Linear models for microarray data. In Bioinformatics and computational biology solutions using R and Bioconductor (eds Gentleman, R., Carey, V. J., Huber, W., Irizarry, R. A. & Dudoit, S.) 397-420 (Springer, New York, 2005).
    • (2005) Bioinformatics and Computational Biology Solutions Using R and Bioconductor , pp. 397-420
    • Smyth, G.1
  • 54
    • 85014528252 scopus 로고    scopus 로고
    • Visualization and analysis of single-cell RNA-seq data by kernel-based similarity learning
    • Wang, B., Zhu, J., Pierson, E. & Batzoglou, S. Visualization and analysis of single-cell RNA-seq data by kernel-based similarity learning. Nat. Methods 14, 414-416 (2017).
    • (2017) Nat. Methods , vol.14 , pp. 414-416
    • Wang, B.1    Zhu, J.2    Pierson, E.3    Batzoglou, S.4
  • 55
    • 85047386289 scopus 로고    scopus 로고
    • Gating mass cytometry data by deep learning
    • Li, H. et al. Gating mass cytometry data by deep learning. Bioinformatics 33, 3423-3430 (2017).
    • (2017) Bioinformatics , vol.33 , pp. 3423-3430
    • Li, H.1
  • 57
    • 84919908080 scopus 로고    scopus 로고
    • Stochastic backpropagation and approximate inference in deep generative models
    • (eds Xing E. P. & Jebara, T.) PMLR, Beijing,).
    • Rezende, D. J., Mohamed, S. & Wierstra, D. Stochastic backpropagation and approximate inference in deep generative models. In Proc. 31st International Conference on Machine Learning (eds Xing, E. P. & Jebara, T.) 1278-1286 (PMLR, Beijing, 2014).
    • (2014) Proc. 31st International Conference on Machine Learning , pp. 1278-1286
    • Rezende, D.J.1    Mohamed, S.2    Wierstra, D.3
  • 58
  • 59
    • 85047428946 scopus 로고    scopus 로고
    • 10X Genomics
    • 10X Genomics. 1.3 million brain cells from E18 mice. https:// support.10xgenomics.com/single-cell-gene-expression/datasets/1.3.0/ 1M-neurons (2017).
    • (2017) 1.3 Million Brain Cells from E18 Mice
  • 60
    • 84872033704 scopus 로고    scopus 로고
    • Measurement of mRNA abundance using RNA-seq data: RPKM measure is inconsistent among samples
    • Wagner, G. P., Kin, K. & Lynch, V. J. Measurement of mRNA abundance using RNA-seq data: RPKM measure is inconsistent among samples. Theory Biosci. 131, 281-285 (2012).
    • (2012) Theory Biosci. , vol.131 , pp. 281-285
    • Wagner, G.P.1    Kin, K.2    Lynch, V.J.3
  • 61
    • 0000550189 scopus 로고    scopus 로고
    • A density-based algorithm for discovering clusters in large spatial databases with noise
    • (eds Simoudis, E., Han, J. & Fayyad, U.) (AAAI Press, Portland, Oregon,).
    • Ester, M. et al. A density-based algorithm for discovering clusters in large spatial databases with noise. In KDD'96 Proc. Second International Conference on Knowledge Discovery and Data Mining (eds Simoudis, E., Han, J. & Fayyad, U.) 226-231 (AAAI Press, Portland, Oregon, 1996).
    • (1996) KDD'96 Proc. Second International Conference on Knowledge Discovery and Data Mining , pp. 226-231
    • Ester, M.1
  • 62
    • 0001677717 scopus 로고
    • Controlling the false discovery rate: A practical and powerful approach to multiple testing
    • Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B (Methodol.) 57, 289-300 (1995).
    • (1995) J. R. Stat. Soc. Ser. B (Methodol.) , vol.57 , pp. 289-300
    • Benjamini, Y.1    Hochberg, Y.2
  • 63
    • 85047440599 scopus 로고    scopus 로고
    • Levine, J. H. et al. Phenograph. https://www.cytobank.org/nolanlab/reports/ Levine2015.html (2015).
    • (2015) Phenograph
    • Levine, J.H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.