-
1
-
-
84931262272
-
Short-term wind power prediction based on LSSVM–GSA model
-
Yuan, X.; Chen, C.; Yuan, Y.; Huang, Y.; Tan, Q. Short-term wind power prediction based on LSSVM–GSA model. Energy Convers. Manag. 2015, 101, 393–401. [CrossRef]
-
(2015)
Energy Convers. Manag.
, vol.101
, pp. 393-401
-
-
Yuan, X.1
Chen, C.2
Yuan, Y.3
Huang, Y.4
Tan, Q.5
-
2
-
-
84859612787
-
Short-term wind speed forecasting for power system operations
-
Zhu, X.; Genton, M.G. Short-Term Wind Speed Forecasting for Power System Operations. Int. Stat. Rev. 2012, 80, 2–23. [CrossRef]
-
(2012)
Int. Stat. Rev.
, vol.80
, pp. 2-23
-
-
Zhu, X.1
Genton, M.G.2
-
3
-
-
78650562310
-
ARMA based approaches for forecasting the tuple of wind speed and direction
-
Erdem, E.; Shi, J. ARMA based approaches for forecasting the tuple of wind speed and direction. Appl. Energy 2011, 88, 1405–1414. [CrossRef]
-
(2011)
Appl. Energy
, vol.88
, pp. 1405-1414
-
-
Erdem, E.1
Shi, J.2
-
4
-
-
84887970293
-
A comprehensive review on wind turbine power curve modeling techniques
-
Lydia, M.; Kumar, S.S.; Selvakumar, A.I.; Kumar, G.E.P. A comprehensive review on wind turbine power curve modeling techniques. Renew. Sustain. Energy Rev. 2014, 30, 452–460. [CrossRef]
-
(2014)
Renew. Sustain. Energy Rev.
, vol.30
, pp. 452-460
-
-
Lydia, M.1
Kumar, S.S.2
Selvakumar, A.I.3
Kumar, G.E.P.4
-
5
-
-
84873693418
-
Review of power curve modelling for wind turbines
-
Carrillo, C.; Montaño, A.O.; Cidrás, J.; Díaz-Dorado, E. Review of power curve modelling for wind turbines. Renew. Sustain. Energy Rev. 2013, 21, 572–581. [CrossRef]
-
(2013)
Renew. Sustain. Energy Rev.
, vol.21
, pp. 572-581
-
-
Carrillo, C.1
Montaño, A.O.2
Cidrás, J.3
Díaz-Dorado, E.4
-
6
-
-
79951847299
-
Short-term wind power generation forecasting: Direct versus indirect arima-based approaches
-
Shi, J.; Qu, X.; Zeng, S. Short-term wind power generation forecasting: Direct versus indirect arima-based approaches. Int. J. Green Energy 2011, 8, 100–112. [CrossRef]
-
(2011)
Int. J. Green Energy
, vol.8
, pp. 100-112
-
-
Shi, J.1
Qu, X.2
Zeng, S.3
-
7
-
-
84890167160
-
Hour-ahead wind speed and power forecasting using empirical mode decomposition
-
Hong, Y.Y.; Yu, T.H.; Liu, C.Y. Hour-ahead wind speed and power forecasting using empirical mode decomposition. Energies 2013, 6, 6137–6152. [CrossRef]
-
(2013)
Energies
, vol.6
, pp. 6137-6152
-
-
Hong, Y.Y.1
Yu, T.H.2
Liu, C.Y.3
-
8
-
-
84863508830
-
A hybrid model for wind speed prediction using empirical mode decomposition and artificial neural networks
-
Liu, H.; Chen, C.; Tian, H.Q.; Li, Y.F. A hybrid model for wind speed prediction using empirical mode decomposition and artificial neural networks. Renew. Energy 2012, 48, 545–556. [CrossRef]
-
(2012)
Renew. Energy
, vol.48
, pp. 545-556
-
-
Liu, H.1
Chen, C.2
Tian, H.Q.3
Li, Y.F.4
-
9
-
-
84946689999
-
Empirical mode decomposition based adaboost-backpropagation neural network method for wind speed forecasting
-
Orlando, FL, USA, 9–12 December
-
Ren, Y.; Qiu, X.; Suganthan, P.N. Empirical mode decomposition based adaboost-backpropagation neural network method for wind speed forecasting. In Proceedings of the 2014 IEEE Symposium on Computational Intelligence in Ensemble Learning, Orlando, FL, USA, 9–12 December 2014; pp. 1–6.
-
(2014)
Proceedings of The 2014 IEEE Symposium on Computational Intelligence in Ensemble Learning
, pp. 1-6
-
-
Ren, Y.1
Qiu, X.2
Suganthan, P.N.3
-
10
-
-
79961127156
-
Multi-step forecasting for wind speed using a modified EMD-based artificial neural network model
-
Guo, Z.; Zhao, W.; Lu, H.; Wang, J. Multi-step forecasting for wind speed using a modified EMD-based artificial neural network model. Renew. Energy 2012, 37, 241–249. [CrossRef]
-
(2012)
Renew. Energy
, vol.37
, pp. 241-249
-
-
Guo, Z.1
Zhao, W.2
Lu, H.3
Wang, J.4
-
11
-
-
84919905288
-
A comparative study of empirical mode decomposition-based short-term wind speed forecasting methods
-
Ren, Y.; Suganthan, P.; Srikanth, N. A comparative study of empirical mode decomposition-based short-term wind speed forecasting methods. IEEE Trans. Sustain. Energy 2015, 6, 236–244. [CrossRef]
-
(2015)
IEEE Trans. Sustain. Energy
, vol.6
, pp. 236-244
-
-
Ren, Y.1
Suganthan, P.2
Srikanth, N.3
-
12
-
-
85010282413
-
A combined model based on CEEMDAN and modified flower pollination algorithm for wind speed forecasting
-
Zhang, W.; Qu, Z.; Zhang, K.; Mao, W.; Ma, Y.; Fan, X. A combined model based on CEEMDAN and modified flower pollination algorithm for wind speed forecasting. Energy Convers. Manag. 2017, 136, 439–451. [CrossRef]
-
(2017)
Energy Convers. Manag.
, vol.136
, pp. 439-451
-
-
Zhang, W.1
Qu, Z.2
Zhang, K.3
Mao, W.4
Ma, Y.5
Fan, X.6
-
13
-
-
84907704597
-
A novel empirical mode decomposition with support vector regression for wind speed forecasting
-
Ren, Y.; Suganthan, P.N.; Srikanth, N. A novel empirical mode decomposition with support vector regression for wind speed forecasting. IEEE Trans. Neural Netw. Learn. Syst. 2016, 27, 1793–1798. [CrossRef] [PubMed]
-
(2016)
IEEE Trans. Neural Netw. Learn. Syst.
, vol.27
, pp. 1793-1798
-
-
Ren, Y.1
Suganthan, P.N.2
Srikanth, N.3
-
14
-
-
84969170236
-
Short-term wind speed forecasting using empirical mode decomposition and feature selection
-
Zhang, C.; Wei, H.; Zhao, J.; Liu, T.; Zhu, T.; Zhang, K. Short-term wind speed forecasting using empirical mode decomposition and feature selection. Renew. Energy 2016, 96, 727–737. [CrossRef]
-
(2016)
Renew. Energy
, vol.96
, pp. 727-737
-
-
Zhang, C.1
Wei, H.2
Zhao, J.3
Liu, T.4
Zhu, T.5
Zhang, K.6
-
15
-
-
84980335318
-
Short-term wind speed forecasting using the data processing approach and the support vector machine model optimized by the improved cuckoo search parameter estimation algorithm
-
Wang, C.; Wu, J.; Wang, J.; Hu, Z. Short-Term Wind Speed Forecasting Using the Data Processing Approach and the Support Vector Machine Model Optimized by the Improved Cuckoo Search Parameter Estimation Algorithm. Math. Probl. Eng. 2016, 2016, 4896854. [CrossRef]
-
(2016)
Math. Probl. Eng.
, vol.2016
, pp. 4896854
-
-
Wang, C.1
Wu, J.2
Wang, J.3
Hu, Z.4
-
16
-
-
85049497845
-
A hybrid EMD-SVM based short-term wind power forecasting model
-
Brisbane, QLD, Australia, 15–18 November
-
Zhang, W.; Liu, F.; Zheng, X.; Li, Y. A hybrid EMD-SVM based short-term wind power forecasting model. In Proceedings of the 2015 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC), Brisbane, QLD, Australia, 15–18 November 2015; pp. 1–5.
-
(2015)
Proceedings of The 2015 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC)
, pp. 1-5
-
-
Zhang, W.1
Liu, F.2
Zheng, X.3
Li, Y.4
-
17
-
-
79955841701
-
Training set of support vector regression extracted by empirical mode decomposition
-
Wuhan, China, 25–28 March
-
Han, Z.H.; Zhu, X.X. Training set of support vector regression extracted by empirical mode decomposition. In Proceedings of the 2011 IEEE Asia-Pacific Power and Energy Engineering Conference (APPEEC), Wuhan, China, 25–28 March 2011; pp. 1–4.
-
(2011)
Proceedings of The 2011 IEEE Asia-Pacific Power and Energy Engineering Conference (APPEEC)
, pp. 1-4
-
-
Han, Z.H.1
Zhu, X.X.2
-
18
-
-
82055184071
-
Combined model based on EMD-SVM for short-term wind power prediction
-
Lin, Y.; Peng, L. Combined model based on EMD-SVM for short-term wind power prediction. Proc. Chin. Soc. Electr. Eng. 2011, 31, 102–108.
-
(2011)
Proc. Chin. Soc. Electr. Eng.
, vol.31
, pp. 102-108
-
-
Lin, Y.1
Peng, L.2
-
19
-
-
84878854403
-
A hybrid forecasting approach applied to wind speed time series
-
Hu, J.; Wang, J.; Zeng, G. A hybrid forecasting approach applied to wind speed time series. Renew. Energy 2013, 60, 185–194. [CrossRef]
-
(2013)
Renew. Energy
, vol.60
, pp. 185-194
-
-
Hu, J.1
Wang, J.2
Zeng, G.3
-
21
-
-
84896341262
-
A hybrid approach for short-term forecasting of wind speed
-
Tatinati, S.; Veluvolu, K.C. A hybrid approach for short-term forecasting of wind speed. Sci. World J. 2013, 2013, 548370. [CrossRef] [PubMed]
-
(2013)
Sci. World J.
, vol.2013
, pp. 548370
-
-
Tatinati, S.1
Veluvolu, K.C.2
-
22
-
-
85010023016
-
An indirect short-term wind power forecast approach with multi-variable inputs
-
Melbourne, VIC, Australia, 28 November–1 December
-
Hong, D.; Ji, T.; Zhang, L.; Li, M.; Wu, Q. An indirect short-term wind power forecast approach with multi-variable inputs. In Proceedings of the Innovative Smart Grid Technologies-Asia (ISGT-Asia), Melbourne, VIC, Australia, 28 November–1 December 2016; pp. 793–798.
-
(2016)
Proceedings of The Innovative Smart Grid Technologies-Asia (ISGT-Asia)
, pp. 793-798
-
-
Hong, D.1
Ji, T.2
Zhang, L.3
Li, M.4
Wu, Q.5
-
23
-
-
84925012310
-
An EMD-recursive ARIMA method to predict wind speed for railway strong wind warning system
-
Liu, H.; Tian, H.Q.; Li, Y.F. An EMD-recursive ARIMA method to predict wind speed for railway strong wind warning system. J. Wind Eng. Ind. Aerodyn. 2015, 141, 27–38. [CrossRef]
-
(2015)
J. Wind Eng. Ind. Aerodyn.
, vol.141
, pp. 27-38
-
-
Liu, H.1
Tian, H.Q.2
Li, Y.F.3
-
24
-
-
85058634621
-
Study on the multi-step forecasting for wind speed based on EMD
-
Nanjing, China, 6–7 April
-
Liu, X.; Mi, Z.; Li, P.; Mei, H. Study on the multi-step forecasting for wind speed based on EMD. In Proceedings of the International Conference on Sustainable Power Generation and Supply, Nanjing, China, 6–7 April 2009; pp. 1–5.
-
(2009)
Proceedings of The International Conference on Sustainable Power Generation and Supply
, pp. 1-5
-
-
Liu, X.1
Mi, Z.2
Li, P.3
Mei, H.4
-
25
-
-
84869978022
-
A novel approach for wind speed forecasting based on EMD and time-series analysis
-
Wuhan, China, 27–31 March
-
Liu, X.J.; Mi, Z.Q.; Bai, L.; Wu, T. A novel approach for wind speed forecasting based on EMD and time-series analysis. In Proceedings of the Asia-Pacific Power and Energy Engineering Conference, Wuhan, China, 27–31 March 2009; pp. 1–4.
-
(2009)
Proceedings of The Asia-Pacific Power and Energy Engineering Conference
, pp. 1-4
-
-
Liu, X.J.1
Mi, Z.Q.2
Bai, L.3
Wu, T.4
-
26
-
-
67649452332
-
Short-term wind speed forecasting for wind farm based on empirical mode decomposition
-
Wuhan, China, 17–20 October
-
Li, R.; Wang, Y. Short-term wind speed forecasting for wind farm based on empirical mode decomposition. In Proceedings of the International Conference on Electrical Machines and Systems, Wuhan, China, 17–20 October 2008; pp. 2521–2525.
-
(2008)
Proceedings of The International Conference on Electrical Machines and Systems
, pp. 2521-2525
-
-
Li, R.1
Wang, Y.2
-
27
-
-
84880863911
-
A new method for wind speed forecasting based on empirical mode decomposition and improved persistence approach
-
Ho Chi Minh City, Vietnam, 12–14 December
-
Sun, C.; Yuan, Y.; Li, Q. A new method for wind speed forecasting based on empirical mode decomposition and improved persistence approach. In Proceedings of the Conference on Power & Energy (IPEC), Ho Chi Minh City, Vietnam, 12–14 December 2012; pp. 659–664.
-
(2012)
Proceedings of The Conference on Power & Energy (IPEC)
, pp. 659-664
-
-
Sun, C.1
Yuan, Y.2
Li, Q.3
-
28
-
-
85018463690
-
A hybrid method for short-term wind speed forecasting
-
Zhang, J.; Wei, Y.; Tan, Z.F.; Ke, W.; Tian, W. A hybrid method for short-term wind speed forecasting. Sustainability 2017, 9, 596. [CrossRef]
-
(2017)
Sustainability
, vol.9
, pp. 596
-
-
Zhang, J.1
Wei, Y.2
Tan, Z.F.3
Ke, W.4
Tian, W.5
-
29
-
-
84979035667
-
Empirical mode decomposition and chaos based prediction model for wind speed oscillations
-
Trivandrum, India, 10–12 December
-
Drisya, G.; Kumar, K.S. Empirical mode decomposition and chaos based prediction model for wind speed oscillations. In Proceedings of the Conference on Recent Advances in Intelligent Computational Systems (RAICS), Trivandrum, India, 10–12 December 2015; pp. 306–311.
-
(2015)
Proceedings of The Conference on Recent Advances in Intelligent Computational Systems (RAICS)
, pp. 306-311
-
-
Drisya, G.1
Kumar, K.S.2
-
30
-
-
80052379563
-
Short-term prediction of wind power using EMD and chaotic theory
-
An, X.; Jiang, D.; Zhao, M.; Liu, C. Short-term prediction of wind power using EMD and chaotic theory. Commun. Nonlinear Sci. Numer. Simul. 2012, 17, 1036–1042. [CrossRef]
-
(2012)
Commun. Nonlinear Sci. Numer. Simul.
, vol.17
, pp. 1036-1042
-
-
An, X.1
Jiang, D.2
Zhao, M.3
Liu, C.4
-
31
-
-
84875598356
-
Chaotic time series prediction model of wind power based on ensemble empirical mode decomposition-approximate entropy and reservoir
-
Zhang, X.Q.; Liang, J Chaotic time series prediction model of wind power based on ensemble empirical mode decomposition-approximate entropy and reservoir. Acta Phys. Sin. 2013, 62, 50505.
-
(2013)
Acta Phys. Sin.
, vol.62
, pp. 50505
-
-
Zhang, X.Q.1
Liang, J.2
-
32
-
-
85001574806
-
Challenges in applying the empirical mode decomposition based hybrid algorithm for forecasting renewable wind/solar in practical cases
-
Boston, MA, USA, 17–21 July
-
Wang, Y.; Wu, L.; Wang, S. Challenges in applying the empirical mode decomposition based hybrid algorithm for forecasting renewable wind/solar in practical cases. In Proceedings of the Power and Energy Society General Meeting (PESGM), Boston, MA, USA, 17–21 July 2016; pp. 1–5.
-
(2016)
Proceedings of The Power and Energy Society General Meeting (PESGM)
, pp. 1-5
-
-
Wang, Y.1
Wu, L.2
Wang, S.3
-
33
-
-
84893188504
-
A novel wind speed forecasting method based on ensemble empirical mode decomposition and GA-BP neural network
-
Vancouver, BC, Canada, 21–25 July
-
Wang, Y.; Wang, S.; Zhang, N. A novel wind speed forecasting method based on ensemble empirical mode decomposition and GA-BP neural network. In Proceedings of the Power and Energy Society General Meeting (PES), Vancouver, BC, Canada, 21–25 July 2013; pp. 1–5.
-
(2013)
Proceedings of The Power and Energy Society General Meeting (PES)
, pp. 1-5
-
-
Wang, Y.1
Wang, S.2
Zhang, N.3
-
34
-
-
84962148959
-
Wind speed forecasting based on the hybrid ensemble empirical mode decomposition and GA-BP neural network method
-
Wang, S.; Zhang, N.; Wu, L.; Wang, Y. Wind speed forecasting based on the hybrid ensemble empirical mode decomposition and GA-BP neural network method. Renew. Energy 2016, 94, 629–636. [CrossRef]
-
(2016)
Renew. Energy
, vol.94
, pp. 629-636
-
-
Wang, S.1
Zhang, N.2
Wu, L.3
Wang, Y.4
-
35
-
-
84905494402
-
Forecasting wind speed using empirical mode decomposition and Elman neural network
-
Wang, J.; Zhang, W.; Li, Y.; Wang, J.; Dang, Z. Forecasting wind speed using empirical mode decomposition and Elman neural network. Appl. Soft Comput. 2014, 23, 452–459. [CrossRef]
-
(2014)
Appl. Soft Comput.
, vol.23
, pp. 452-459
-
-
Wang, J.1
Zhang, W.2
Li, Y.3
Wang, J.4
Dang, Z.5
-
36
-
-
84939789758
-
Wind speed forecasting approach using secondary decomposition algorithm and Elman neural networks
-
Liu, H.; Tian, H.Q.; Liang, X.F.; Li, Y.F. Wind speed forecasting approach using secondary decomposition algorithm and Elman neural networks. Appl. Energy 2015, 157, 183–194. [CrossRef]
-
(2015)
Appl. Energy
, vol.157
, pp. 183-194
-
-
Liu, H.1
Tian, H.Q.2
Liang, X.F.3
Li, Y.F.4
-
37
-
-
85019652331
-
Comparative study on three new hybrid models using Elman Neural Network and Empirical Mode Decomposition based technologies improved by Singular Spectrum Analysis for hour-ahead wind speed forecasting
-
Yu, C.; Li, Y.; Zhang, M. Comparative study on three new hybrid models using Elman Neural Network and Empirical Mode Decomposition based technologies improved by Singular Spectrum Analysis for hour-ahead wind speed forecasting. Energy Convers. Manag. 2017, 147, 75–85. [CrossRef]
-
(2017)
Energy Convers. Manag.
, vol.147
, pp. 75-85
-
-
Yu, C.1
Li, Y.2
Zhang, M.3
-
38
-
-
84979163988
-
Short-term wind power forecasting using empirical mode decomposition and RBFNN
-
Zheng, Z.W.; Chen, Y.Y.; Zhou, X.W.; Huo, M.M.; Zhao, B.; Guo, M. Short-term wind power forecasting using empirical mode decomposition and RBFNN. Int. J. Smart Grid Clean Energy 2013, 2, 192–199. [CrossRef]
-
(2013)
Int. J. Smart Grid Clean Energy
, vol.2
, pp. 192-199
-
-
Zheng, Z.W.1
Chen, Y.Y.2
Zhou, X.W.3
Huo, M.M.4
Zhao, B.5
Guo, M.6
-
40
-
-
85018952510
-
Short-term wind speed prediction: Hybrid of ensemble empirical mode decomposition, feature selection and error correction
-
Jiang, Y.; Huang, G. Short-term wind speed prediction: Hybrid of ensemble empirical mode decomposition, feature selection and error correction. Energy Convers. Manag. 2017, 144, 340–350. [CrossRef]
-
(2017)
Energy Convers. Manag.
, vol.144
, pp. 340-350
-
-
Jiang, Y.1
Huang, G.2
-
41
-
-
84964506540
-
Wind power generation forecasting using least squares support vector machine combined with ensemble empirical mode decomposition, principal component analysis and a bat algorithm
-
Wu, Q.; Peng, C. Wind power generation forecasting using least squares support vector machine combined with ensemble empirical mode decomposition, principal component analysis and a bat algorithm. Energies 2016, 9, 261. [CrossRef]
-
(2016)
Energies
, vol.9
, pp. 261
-
-
Wu, Q.1
Peng, C.2
-
42
-
-
85029812519
-
A novel multi-step short-term wind power prediction framework based on chaotic time series analysis and singular spectrum analysis
-
Safari, N.; Chung, C.; Price, G. A Novel Multi-Step Short-Term Wind Power Prediction Framework Based on Chaotic Time Series Analysis and Singular Spectrum Analysis. IEEE Trans. Power Syst. 2017, 33, 590–601. [CrossRef]
-
(2017)
IEEE Trans. Power Syst.
, vol.33
, pp. 590-601
-
-
Safari, N.1
Chung, C.2
Price, G.3
-
43
-
-
84939158416
-
Wind speed forecasting based on FEEMD and LSSVM optimized by the bat algorithm
-
Sun, W.; Liu, M.; Liang, Y. Wind speed forecasting based on FEEMD and LSSVM optimized by the bat algorithm. Energies 2015, 8, 6585–6607. [CrossRef]
-
(2015)
Energies
, vol.8
, pp. 6585-6607
-
-
Sun, W.1
Liu, M.2
Liang, Y.3
-
44
-
-
84930001510
-
An experimental investigation of FNN model for wind speed forecasting using EEMD and CS
-
Wang, J.; Jiang, H.; Han, B.; Zhou, Q. An experimental investigation of FNN model for wind speed forecasting using EEMD and CS. Math. Probl. Eng. 2015, 2015, 464153. [CrossRef]
-
(2015)
Math. Probl. Eng.
, vol.2015
, pp. 464153
-
-
Wang, J.1
Jiang, H.2
Han, B.3
Zhou, Q.4
-
45
-
-
85050693536
-
Analysis of differencing and decomposition preprocessing methods for wind speed prediction
-
Bokde, N.; Feijóo, A.; Kulat, K. Analysis of differencing and decomposition preprocessing methods for wind speed prediction. Appl. Soft Comput. 2018, 71, 926–938. [CrossRef]
-
(2018)
Appl. Soft Comput.
, vol.71
, pp. 926-938
-
-
Bokde, N.1
Feijóo, A.2
Kulat, K.3
-
46
-
-
85017187262
-
A novel hybrid approach based on cuckoo search optimization algorithm for short-term wind speed forecasting
-
Zhang, K.; Qu, Z.; Wang, J.; Zhang, W.; Yang, F. A novel hybrid approach based on cuckoo search optimization algorithm for short-term wind speed forecasting. Environ. Prog. Sustain. Energy 2017, 36, 943–952. [CrossRef]
-
(2017)
Environ. Prog. Sustain. Energy
, vol.36
, pp. 943-952
-
-
Zhang, K.1
Qu, Z.2
Wang, J.3
Zhang, W.4
Yang, F.5
-
47
-
-
84963818846
-
Hybrid model for short-term wind speed forecasting using empirical mode decomposition and artificial neural network
-
Bursa, Turkey, 26–28 November
-
Dokur, E.; Kurban, M.; Ceyhan, S. Hybrid model for short-term wind speed forecasting using empirical mode decomposition and artificial neural network. In Proceedings of the 9th International Conference on Electrical and Electronics Engineering (ELECO), Bursa, Turkey, 26–28 November 2015; pp. 420–423.
-
(2015)
Proceedings of The 9th International Conference on Electrical and Electronics Engineering (ELECO)
, pp. 420-423
-
-
Dokur, E.1
Kurban, M.2
Ceyhan, S.3
-
48
-
-
84930947539
-
New wind speed forecasting approaches using fast ensemble empirical model decomposition, genetic algorithm, mind evolutionary algorithm and artificial neural networks
-
Liu, H.; Tian, H.; Liang, X.; Li, Y. New wind speed forecasting approaches using fast ensemble empirical model decomposition, genetic algorithm, mind evolutionary algorithm and artificial neural networks. Renew. Energy 2015, 83, 1066–1075. [CrossRef]
-
(2015)
Renew. Energy
, vol.83
, pp. 1066-1075
-
-
Liu, H.1
Tian, H.2
Liang, X.3
Li, Y.4
-
49
-
-
84907974670
-
Comparison of new hybrid FEEMD-MLP, FEEMD-ANFIS, Wavelet Packet-MLP and Wavelet Packet-ANFIS for wind speed predictions
-
Liu, H.; Tian, H.Q.; Li, Y.F. Comparison of new hybrid FEEMD-MLP, FEEMD-ANFIS, Wavelet Packet-MLP and Wavelet Packet-ANFIS for wind speed predictions. Energy Convers. Manag. 2015, 89, 1–11. [CrossRef]
-
(2015)
Energy Convers. Manag.
, vol.89
, pp. 1-11
-
-
Liu, H.1
Tian, H.Q.2
Li, Y.F.3
-
50
-
-
85027941214
-
Short-term wind power prediction using differential EMD and relevance vector machine
-
Bao, Y.; Wang, H.; Wang, B. Short-term wind power prediction using differential EMD and relevance vector machine. Neural Comput. Appl. 2014, 25, 283–289. [CrossRef]
-
(2014)
Neural Comput. Appl.
, vol.25
, pp. 283-289
-
-
Bao, Y.1
Wang, H.2
Wang, B.3
-
51
-
-
84955512570
-
A hybrid model of EMD and multiple-kernel RVR algorithm for wind speed prediction
-
Fei, S.W. A hybrid model of EMD and multiple-kernel RVR algorithm for wind speed prediction. Int. J. Electr. Power Energy Syst. 2016, 78, 910–915. [CrossRef]
-
(2016)
Int. J. Electr. Power Energy Syst.
, vol.78
, pp. 910-915
-
-
Fei, S.W.1
-
52
-
-
85009956027
-
Short-term wind speed forecasting based on an EEMD-CAPSO-RVM model
-
Xi’an, China, 25–28 October
-
Zang, H.; Liang, Z.; Guo, M.; Qian, Z.; Wei, Z.; Sun, G. Short-term wind speed forecasting based on an EEMD-CAPSO-RVM model. In Proceedings of the PES Asia-Pacific Power and Energy Engineering Conference (APPEEC), Xi’an, China, 25–28 October 2016; pp. 439–443.
-
(2016)
Proceedings of The PES Asia-Pacific Power and Energy Engineering Conference (APPEEC)
, pp. 439-443
-
-
Zang, H.1
Liang, Z.2
Guo, M.3
Qian, Z.4
Wei, Z.5
Sun, G.6
-
53
-
-
85000842711
-
Short-term wind power interval forecasting based on an EEMD-RT-RVM model
-
Zang, H.; Fan, L.; Guo, M.; Wei, Z.; Sun, G.; Zhang, L. Short-Term Wind Power Interval Forecasting Based on an EEMD-RT-RVM Model. Adv. Meteorol. 2016, 2016, 8760780. [CrossRef]
-
(2016)
Adv. Meteorol.
, vol.2016
, pp. 8760780
-
-
Zang, H.1
Fan, L.2
Guo, M.3
Wei, Z.4
Sun, G.5
Zhang, L.6
-
54
-
-
84919905211
-
Empirical mode decomposition-k nearest neighbor models for wind speed forecasting
-
Ren, Y.; Suganthan, P. Empirical mode decomposition-k nearest neighbor models for wind speed forecasting. J. Power Energy Eng. 2014, 2, 176–185. [CrossRef]
-
(2014)
J. Power Energy Eng.
, vol.2
, pp. 176-185
-
-
Ren, Y.1
Suganthan, P.2
-
55
-
-
84929146225
-
Four wind speed multi-step forecasting models using extreme learning machines and signal decomposing algorithms
-
Liu, H.; Tian, H.Q.; Li, Y.F. Four wind speed multi-step forecasting models using extreme learning machines and signal decomposing algorithms. Energy Convers. Manag. 2015, 100, 16–22. [CrossRef]
-
(2015)
Energy Convers. Manag.
, vol.100
, pp. 16-22
-
-
Liu, H.1
Tian, H.Q.2
Li, Y.F.3
-
56
-
-
84958759376
-
Wind speed forecasting using FEEMD echo state networks with RELM in Hebei, China
-
Sun, W.; Liu, M. Wind speed forecasting using FEEMD echo state networks with RELM in Hebei, China. Energy Convers. Manag. 2016, 114, 197–208. [CrossRef]
-
(2016)
Energy Convers. Manag.
, vol.114
, pp. 197-208
-
-
Sun, W.1
Liu, M.2
-
57
-
-
78650045524
-
A review of wind power and wind speed forecasting methods with different time horizons
-
Arlington, TX, USA, 26–28 September
-
Soman, S.S.; Zareipour, H.; Malik, O.; Mandal, P. A review of wind power and wind speed forecasting methods with different time horizons. In Proceedings of the North American Power Symposium (NAPS), Arlington, TX, USA, 26–28 September 2010; pp. 1–8.
-
(2010)
Proceedings of The North American Power Symposium (NAPS)
, pp. 1-8
-
-
Soman, S.S.1
Zareipour, H.2
Malik, O.3
Mandal, P.4
-
58
-
-
84941270020
-
Analysis of multi-scale chaotic characteristics of wind power based on Hilbert–Huang transform and Hurst analysis
-
Liang, Z.; Liang, J.; Zhang, L.; Wang, C.; Yun, Z.; Zhang, X. Analysis of multi-scale chaotic characteristics of wind power based on Hilbert–Huang transform and Hurst analysis. Appl. Energy 2015, 159, 51–61. [CrossRef]
-
(2015)
Appl. Energy
, vol.159
, pp. 51-61
-
-
Liang, Z.1
Liang, J.2
Zhang, L.3
Wang, C.4
Yun, Z.5
Zhang, X.6
-
59
-
-
77949524633
-
One-month ahead prediction of wind speed and output power based on EMD and LSSVM
-
Guilin, China, 16–18 October
-
Wang, X.; Hui, L. One-month ahead prediction of wind speed and output power based on EMD and LSSVM. In Proceedings of the International Conference on Energy and Environment Technology, Guilin, China, 16–18 October 2009; Volume 3, pp. 439–442.
-
(2009)
Proceedings of The International Conference on Energy and Environment Technology
, vol.3
, pp. 439-442
-
-
Wang, X.1
Hui, L.2
-
60
-
-
77957943097
-
One hour ahead prediction of wind speed based on data mining
-
Shenyang, China, 27–29 March
-
Dejun, L.; Hui, L.; Zhonghua, M. One hour ahead prediction of wind speed based on data mining. In Proceedings of the 2nd International Conference on Advanced Computer Control (ICACC), Shenyang, China, 27–29 March 2010; Volume 5, pp. 199–203.
-
(2010)
Proceedings of The 2nd International Conference on Advanced Computer Control (ICACC)
, vol.5
, pp. 199-203
-
-
Dejun, L.1
Hui, L.2
Zhonghua, M.3
-
61
-
-
84962349410
-
K-nearest neighbors and a kernel density estimator for GEFCom2014 probabilistic wind power forecasting
-
Zhang, Y.; Wang, J. K-nearest neighbors and a kernel density estimator for GEFCom2014 probabilistic wind power forecasting. Int. J. Forecast. 2016, 32, 1074–1080. [CrossRef]
-
(2016)
Int. J. Forecast.
, vol.32
, pp. 1074-1080
-
-
Zhang, Y.1
Wang, J.2
-
62
-
-
77958487600
-
Conditional prediction intervals of wind power generation
-
Pinson, P.; Kariniotakis, G. Conditional prediction intervals of wind power generation. IEEE Trans. Power Syst. 2010, 25, 1845–1856. [CrossRef]
-
(2010)
IEEE Trans. Power Syst.
, vol.25
, pp. 1845-1856
-
-
Pinson, P.1
Kariniotakis, G.2
-
63
-
-
0032122184
-
Short-term forecasting of wind speed and related electrical power
-
Alexiadis, M.; Dokopoulos, P.; Sahsamanoglou, H.; Manousaridis, I. Short-term forecasting of wind speed and related electrical power. Sol. Energy 1998, 63, 61–68. [CrossRef]
-
(1998)
Sol. Energy
, vol.63
, pp. 61-68
-
-
Alexiadis, M.1
Dokopoulos, P.2
Sahsamanoglou, H.3
Manousaridis, I.4
-
64
-
-
2942570109
-
A fuzzy model for wind speed prediction and power generation in wind parks using spatial correlation
-
Damousis, I.G.; Alexiadis, M.C.; Theocharis, J.B.; Dokopoulos, P.S. A fuzzy model for wind speed prediction and power generation in wind parks using spatial correlation. IEEE Trans. Energy Convers. 2004, 19, 352–361. [CrossRef]
-
(2004)
IEEE Trans. Energy Convers.
, vol.19
, pp. 352-361
-
-
Damousis, I.G.1
Alexiadis, M.C.2
Theocharis, J.B.3
Dokopoulos, P.S.4
-
65
-
-
33847369874
-
A locally recurrent fuzzy neural network with application to the wind speed prediction using spatial correlation
-
Barbounis, T.; Theocharis, J. A locally recurrent fuzzy neural network with application to the wind speed prediction using spatial correlation. Neurocomputing 2007, 70, 1525–1542. [CrossRef]
-
(2007)
Neurocomputing
, vol.70
, pp. 1525-1542
-
-
Barbounis, T.1
Theocharis, J.2
-
66
-
-
79961128617
-
Nested ensemble NWP approach for wind energy assessment
-
Al-Yahyai, S.; Charabi, Y.; Al-Badi, A.; Gastli, A. Nested ensemble NWP approach for wind energy assessment. Renew. Energy 2012, 37, 150–160. [CrossRef]
-
(2012)
Renew. Energy
, vol.37
, pp. 150-160
-
-
Al-Yahyai, S.1
Charabi, Y.2
Al-Badi, A.3
Gastli, A.4
-
67
-
-
0342301563
-
Generalized exponential Markov and model output statistics: A comparative verification
-
Perrone, T.J.; Miller, R.G. Generalized exponential Markov and model output statistics: A comparative verification. Mon. Weather Rev. 1985, 113, 1524–1541. [CrossRef]
-
(1985)
Mon. Weather Rev.
, vol.113
, pp. 1524-1541
-
-
Perrone, T.J.1
Miller, R.G.2
-
68
-
-
79952129528
-
The forecasting procedure for long-term wind speed in the Zhangye area
-
Guo, Z.; Dong, Y.; Wang, J.; Lu, H. The forecasting procedure for long-term wind speed in the Zhangye area. Math. Probl. Eng. 2010, 2010, 684742. [CrossRef]
-
(2010)
Math. Probl. Eng.
, vol.2010
, pp. 684742
-
-
Guo, Z.1
Dong, Y.2
Wang, J.3
Lu, H.4
-
69
-
-
84862213628
-
Comparison of two new ARIMA-ANN and ARIMA-Kalman hybrid methods for wind speed prediction
-
Liu, H.; Tian, H.Q.; Li, Y.F. Comparison of two new ARIMA-ANN and ARIMA-Kalman hybrid methods for wind speed prediction. Appl. Energy 2012, 98, 415–424. [CrossRef]
-
(2012)
Appl. Energy
, vol.98
, pp. 415-424
-
-
Liu, H.1
Tian, H.Q.2
Li, Y.F.3
-
70
-
-
85021456831
-
PSF: Introduction to R package for pattern sequence based forecasting algorithm
-
Bokde, N.; Asencio-Cortés, G.; Martínez-Álvarez, F.; Kulat, K. PSF: Introduction to R Package for Pattern Sequence Based Forecasting Algorithm. R J. 2017, 9, 324–333.
-
(2017)
R J
, vol.9
, pp. 324-333
-
-
Bokde, N.1
Asencio-Cortés, G.2
Martínez-Álvarez, F.3
Kulat, K.4
-
71
-
-
85057780410
-
Pattern sequence similarity based techniques for wind speed forecasting
-
Granada, Spain, 18–20 September Universidad de Granada: Granada, Spain, 2017, in press
-
Bokde, N.; Troncoso, A.; Asencio-Cortés, G.; Kulat, K.; Martínez-Álvarez, F. Pattern sequence similarity based techniques for wind speed forecasting. In Proceedings of the International Work-Conference on Time Series, Granada, Spain, 18–20 September 2017; Universidad de Granada: Granada, Spain, 2017, in press.
-
(2017)
Proceedings of The International Work-Conference on Time Series
-
-
Bokde, N.1
Troncoso, A.2
Asencio-Cortés, G.3
Kulat, K.4
Martínez-Álvarez, F.5
-
72
-
-
85057859941
-
Robust performance of PSF method over outliers and random patterns in univariate time series forecasting
-
Pune, India, 28–29 December
-
Bokde, N.; Wakpanjar, A.; Kulat, K.; Feijóo, A. Robust performance of PSF method over outliers and random patterns in univariate time series forecasting. In Proceedings of the International Technology Congress, Pune, India, 28–29 December 2017.
-
(2017)
Proceedings of The International Technology Congress
-
-
Bokde, N.1
Wakpanjar, A.2
Kulat, K.3
Feijóo, A.4
-
73
-
-
49749138923
-
Improvements in wind speed forecasts for wind power prediction purposes using Kalman filtering
-
Louka, P.; Galanis, G.; Siebert, N.; Kariniotakis, G.; Katsafados, P.; Pytharoulis, I.; Kallos, G. Improvements in wind speed forecasts for wind power prediction purposes using Kalman filtering. J. Wind Eng. Ind. Aerodyn. 2008, 96, 2348–2362. [CrossRef]
-
(2008)
J. Wind Eng. Ind. Aerodyn.
, vol.96
, pp. 2348-2362
-
-
Louka, P.1
Galanis, G.2
Siebert, N.3
Kariniotakis, G.4
Katsafados, P.5
Pytharoulis, I.6
Kallos, G.7
-
74
-
-
77956516306
-
Estimation and filtering of physiological tremor for real-time compensation in surgical robotics applications
-
Veluvolu, K.; Ang, W. Estimation and filtering of physiological tremor for real-time compensation in surgical robotics applications. Int. J. Med. Robot. Comput. Assist. Surg. 2010, 6, 334–342. [CrossRef] [PubMed]
-
(2010)
Int. J. Med. Robot. Comput. Assist. Surg.
, vol.6
, pp. 334-342
-
-
Veluvolu, K.1
Ang, W.2
-
75
-
-
84864797603
-
Performance analysis of four modified approaches for wind speed forecasting
-
Zhang, W.; Wu, J.; Wang, J.; Zhao, W.; Shen, L. Performance analysis of four modified approaches for wind speed forecasting. Appl. Energy 2012, 99, 324–333. [CrossRef]
-
(2012)
Appl. Energy
, vol.99
, pp. 324-333
-
-
Zhang, W.1
Wu, J.2
Wang, J.3
Zhao, W.4
Shen, L.5
-
76
-
-
34250762015
-
Application of artificial neural networks for the wind speed prediction of target station using reference stations data
-
Bilgili, M.; Sahin, B.; Yasar, A. Application of artificial neural networks for the wind speed prediction of target station using reference stations data. Renew. Energy 2007, 32, 2350–2360. [CrossRef]
-
(2007)
Renew. Energy
, vol.32
, pp. 2350-2360
-
-
Bilgili, M.1
Sahin, B.2
Yasar, A.3
-
77
-
-
0442296729
-
Support vector machines for wind speed prediction
-
Mohandes, M.A.; Halawani, T.O.; Rehman, S.; Hussain, A.A. Support vector machines for wind speed prediction. Renew. Energy 2004, 29, 939–947. [CrossRef]
-
(2004)
Renew. Energy
, vol.29
, pp. 939-947
-
-
Mohandes, M.A.1
Halawani, T.O.2
Rehman, S.3
Hussain, A.A.4
-
78
-
-
84988723388
-
Short-term wind speed forecasting using artificial neural networks for Tehran, Iran
-
Fazelpour, F.; Tarashkar, N.; Rosen, M.A. Short-term wind speed forecasting using artificial neural networks for Tehran, Iran. Int. J. Energy Environ. Eng. 2016, 7, 377–390. [CrossRef]
-
(2016)
Int. J. Energy Environ. Eng.
, vol.7
, pp. 377-390
-
-
Fazelpour, F.1
Tarashkar, N.2
Rosen, M.A.3
-
79
-
-
1442289939
-
Energy price forecasting in the Ontario competitive power system market
-
Rodriguez, C.P.; Anders, G.J. Energy price forecasting in the Ontario competitive power system market. IEEE Trans. Power Syst. 2004, 19, 366–374. [CrossRef]
-
(2004)
IEEE Trans. Power Syst.
, vol.19
, pp. 366-374
-
-
Rodriguez, C.P.1
Anders, G.J.2
-
81
-
-
84929622158
-
Ensemble methods for wind and solar power forecasting—A state-of-the-art review
-
Ren, Y.; Suganthan, P.; Srikanth, N. Ensemble methods for wind and solar power forecasting—A state-of-the-art review. Renew. Sustain. Energy Rev. 2015, 50, 82–91. [CrossRef]
-
(2015)
Renew. Sustain. Energy Rev.
, vol.50
, pp. 82-91
-
-
Ren, Y.1
Suganthan, P.2
Srikanth, N.3
-
82
-
-
50849132200
-
A literature review of wind forecasting technology in the world
-
Lausanne, Switzerland, 1–5 July
-
Wu, Y.K.; Hong, J.S. A literature review of wind forecasting technology in the world. In Proceedings of the IEEE Lausanne Power Tech, Lausanne, Switzerland, 1–5 July 2007; pp. 504–509.
-
(2007)
Proceedings of The IEEE Lausanne Power Tech
, pp. 504-509
-
-
Wu, Y.K.1
Hong, J.S.2
-
83
-
-
78049513565
-
Very short-term wind speed prediction: A new artificial neural network–Markov chain model
-
Kani, S.P.; Ardehali, M. Very short-term wind speed prediction: A new artificial neural network–Markov chain model. Energy Convers. Manag. 2011, 52, 738–745. [CrossRef]
-
(2011)
Energy Convers. Manag.
, vol.52
, pp. 738-745
-
-
Kani, S.P.1
Ardehali, M.2
-
84
-
-
84949681323
-
A robust combination approach for short-term wind speed forecasting and analysis–Combination of the ARIMA (Autoregressive Integrated Moving Average), ELM (Extreme Learning Machine), SVM (Support Vector Machine) and LSSVM (Least Square SVM) forecasts using a GPR (Gaussian Process Regression) model
-
Wang, J.; Hu, J. A robust combination approach for short-term wind speed forecasting and analysis–Combination of the ARIMA (Autoregressive Integrated Moving Average), ELM (Extreme Learning Machine), SVM (Support Vector Machine) and LSSVM (Least Square SVM) forecasts using a GPR (Gaussian Process Regression) model. Energy 2015, 93, 41–56.
-
(2015)
Energy
, vol.93
, pp. 41-56
-
-
Wang, J.1
Hu, J.2
-
85
-
-
5444236478
-
The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis
-
Huang, N.E.; Shen, Z.; Long, S.R.; Wu, M.C.; Shih, H.H.; Zheng, Q.; Yen, N.C.; Tung, C.C.; Liu, H.H. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 1998, 454, 903–995. [CrossRef]
-
(1998)
Proc. R. Soc. Lond. A Math. Phys. Eng. Sci.
, vol.454
, pp. 903-995
-
-
Huang, N.E.1
Shen, Z.2
Long, S.R.3
Wu, M.C.4
Shih, H.H.5
Zheng, Q.6
Yen, N.C.7
Tung, C.C.8
Liu, H.H.9
-
86
-
-
80052078099
-
Ensemble empirical mode decomposition: A noise-assisted data analysis method
-
Wu, Z.; Huang, N.E. Ensemble empirical mode decomposition: A noise-assisted data analysis method. Adv. Adapt. Data Anal. 2009, 1, 1–41. [CrossRef]
-
(2009)
Adv. Adapt. Data Anal.
, vol.1
, pp. 1-41
-
-
Wu, Z.1
Huang, N.E.2
-
87
-
-
84930940764
-
Wind speed prediction using the hybrid model of wavelet decomposition and artificial bee colony algorithm-based relevance vector machine
-
Fei, S.W.; He, Y. Wind speed prediction using the hybrid model of wavelet decomposition and artificial bee colony algorithm-based relevance vector machine. Int. J. Electr. Power Energy Syst. 2015, 73, 625–631. [CrossRef]
-
(2015)
Int. J. Electr. Power Energy Syst.
, vol.73
, pp. 625-631
-
-
Fei, S.W.1
He, Y.2
-
88
-
-
79955623964
-
Wind farm power prediction based on wavelet decomposition and chaotic time series
-
An, X.; Jiang, D.; Liu, C.; Zhao, M. Wind farm power prediction based on wavelet decomposition and chaotic time series. Expert Syst. Appl. 2011, 38, 11280–11285. [CrossRef]
-
(2011)
Expert Syst. Appl.
, vol.38
, pp. 11280-11285
-
-
An, X.1
Jiang, D.2
Liu, C.3
Zhao, M.4
-
89
-
-
33745813525
-
Improved wind power forecasting using a combined neuro-fuzzy and artificial neural network model
-
Springer: Berlin, Germany
-
Katsigiannis, Y.; Tsikalakis, A.; Georgilakis, P.; Hatziargyriou, N. Improved wind power forecasting using a combined neuro-fuzzy and artificial neural network model. In Advances in Artificial Intelligence; Springer: Berlin, Germany, 2006; pp. 105–115.
-
(2006)
Advances in Artificial Intelligence
, pp. 105-115
-
-
Katsigiannis, Y.1
Tsikalakis, A.2
Georgilakis, P.3
Hatziargyriou, N.4
-
90
-
-
84975869372
-
Current status of wind energy forecasting and a hybrid method for hourly predictions
-
Okumus, I.; Dinler, A. Current status of wind energy forecasting and a hybrid method for hourly predictions. Energy Convers. Manag. 2016, 123, 362–371. [CrossRef]
-
(2016)
Energy Convers. Manag.
, vol.123
, pp. 362-371
-
-
Okumus, I.1
Dinler, A.2
-
91
-
-
84893194518
-
On the computational complexity of the empirical mode decomposition algorithm
-
Wang, Y.H.; Yeh, C.H.; Young, H.W.V.; Hu, K.; Lo, M.T. On the computational complexity of the empirical mode decomposition algorithm. Phys. A: Stat. Mech. Appl. 2014, 400, 159–167. [CrossRef]
-
(2014)
Phys. A: Stat. Mech. Appl.
, vol.400
, pp. 159-167
-
-
Wang, Y.H.1
Yeh, C.H.2
Young, H.W.V.3
Hu, K.4
Lo, M.T.5
-
92
-
-
36749090569
-
A new formulation for empirical mode decomposition based on constrained optimization
-
Meignen, S.; Perrier, V. A new formulation for empirical mode decomposition based on constrained optimization. IEEE Signal Process. Lett. 2007, 14, 932–935. [CrossRef]
-
(2007)
IEEE Signal Process. Lett.
, vol.14
, pp. 932-935
-
-
Meignen, S.1
Perrier, V.2
-
93
-
-
84869751837
-
A multicomponent proximal algorithm for empirical mode decomposition
-
Bucharest, Romania, 27–31 August
-
Pustelnik, N.; Borgnat, P.; Flandrin, P. A multicomponent proximal algorithm for empirical mode decomposition. In Proceedings of the 20th European Signal Processing Conference (EUSIPCO), Bucharest, Romania, 27–31 August 2012; pp. 1880–1884.
-
(2012)
Proceedings of The 20th European Signal Processing Conference (EUSIPCO)
, pp. 1880-1884
-
-
Pustelnik, N.1
Borgnat, P.2
Flandrin, P.3
-
94
-
-
80052641966
-
Adaptive data analysis via sparse time-frequency representation
-
Hou, T.Y.; Shi, Z. Adaptive data analysis via sparse time-frequency representation. Adv. Adapt. Data Anal. 2011, 3, 1–28. [CrossRef]
-
(2011)
Adv. Adapt. Data Anal.
, vol.3
, pp. 1-28
-
-
Hou, T.Y.1
Shi, Z.2
-
95
-
-
33745163942
-
Time-varying vibration decomposition and analysis based on the Hilbert transform
-
Feldman, M. Time-varying vibration decomposition and analysis based on the Hilbert transform. J. Sound Vib. 2006, 295, 518–530. [CrossRef]
-
(2006)
J. Sound Vib.
, vol.295
, pp. 518-530
-
-
Feldman, M.1
-
97
-
-
84880891329
-
Empirical wavelet transform
-
Gilles, J. Empirical wavelet transform. IEEE Trans. Signal Process. 2013, 61, 3999–4010. [CrossRef]
-
(2013)
IEEE Trans. Signal Process.
, vol.61
, pp. 3999-4010
-
-
Gilles, J.1
-
98
-
-
84868201484
-
An optimization based empirical mode decomposition scheme
-
Huang, B.; Kunoth, A. An optimization based empirical mode decomposition scheme. J. Comput. Appl. Math. 2013, 240, 174–183. [CrossRef]
-
(2013)
J. Comput. Appl. Math.
, vol.240
, pp. 174-183
-
-
Huang, B.1
Kunoth, A.2
-
99
-
-
85001112761
-
Sliding window empirical mode decomposition-its performance and quality
-
Stepien, P. Sliding window empirical mode decomposition-its performance and quality. EPJ Nonlinear Biomed. Phys. 2014, 2, 14. [CrossRef]
-
(2014)
EPJ Nonlinear Biomed. Phys.
, vol.2
, pp. 14
-
-
Stepien, P.1
-
100
-
-
79956369785
-
Complementary ensemble empirical mode decomposition: A novel noise enhanced data analysis method
-
Yeh, J.R.; Shieh, J.S.; Huang, N.E. Complementary ensemble empirical mode decomposition: A novel noise enhanced data analysis method. Adv. Adapt. Data Anal. 2010, 2, 135–156. [CrossRef]
-
(2010)
Adv. Adapt. Data Anal.
, vol.2
, pp. 135-156
-
-
Yeh, J.R.1
Shieh, J.S.2
Huang, N.E.3
-
101
-
-
80051634709
-
A complete ensemble empirical mode decomposition with adaptive noise
-
Prague, Czech Republic, 22–27 May
-
Torres, M.E.; Colominas, M.A.; Schlotthauer, G.; Flandrin, P. A complete ensemble empirical mode decomposition with adaptive noise. In Proceedings of the International Conference on Acoustics, Speech and Signal Processing (ICASSP), Prague, Czech Republic, 22–27 May 2011; pp. 4144–4147.
-
(2011)
Proceedings of The International Conference on Acoustics, Speech and Signal Processing (ICASSP)
, pp. 4144-4147
-
-
Torres, M.E.1
Colominas, M.A.2
Schlotthauer, G.3
Flandrin, P.4
-
103
-
-
85021714468
-
A weighted EMD-based prediction model based on TOPSIS and feed forward neural network for noised time series
-
Jun, W.; Lingyu, T.; Yuyan, L.; Peng, G. A weighted EMD-based prediction model based on TOPSIS and feed forward neural network for noised time series. Knowl. Based Syst. 2017, 132, 167–178. [CrossRef]
-
(2017)
Knowl. Based Syst.
, vol.132
, pp. 167-178
-
-
Jun, W.1
Lingyu, T.2
Yuyan, L.3
Peng, G.4
-
104
-
-
84874343832
-
Morphology-based prediction of osteogenic differentiation potential of human mesenchymal stem cells
-
Matsuoka, F.; Takeuchi, I.; Agata, H.; Kagami, H.; Shiono, H.; Kiyota, Y.; Honda, H.; Kato, R. Morphology-based prediction of osteogenic differentiation potential of human mesenchymal stem cells. PLoS ONE 2013, 8, e55082. [CrossRef]
-
(2013)
PLoS ONE
, vol.8
-
-
Matsuoka, F.1
Takeuchi, I.2
Agata, H.3
Kagami, H.4
Shiono, H.5
Kiyota, Y.6
Honda, H.7
Kato, R.8
-
105
-
-
78649417989
-
EMD: A package for empirical mode decomposition and Hilbert spectrum
-
Kim, D.; Oh, H.S. EMD: A package for empirical mode decomposition and Hilbert spectrum. R J. 2009, 1, 40–46.
-
(2009)
R J
, vol.1
, pp. 40-46
-
-
Kim, D.1
Oh, H.S.2
-
106
-
-
84963783252
-
Introducing libeemd: A program package for performing the ensemble empirical mode decomposition
-
Luukko, P.; Helske, J.; Räsänen, E. Introducing libeemd: A program package for performing the ensemble empirical mode decomposition. Comput. Stat. 2016, 31, 545–557. [CrossRef]
-
(2016)
Comput. Stat.
, vol.31
, pp. 545-557
-
-
Luukko, P.1
Helske, J.2
Räsänen, E.3
-
107
-
-
0031536329
-
Teacher’s corner: A note on interpretation of the paired-samples t test
-
Zimmerman, D.W. Teacher’s corner: A note on interpretation of the paired-samples t test. J. Educ. Behav. Stat. 1997, 22, 349–360. [CrossRef]
-
(1997)
J. Educ. Behav. Stat.
, vol.22
, pp. 349-360
-
-
Zimmerman, D.W.1
-
108
-
-
0032029065
-
A neural networks approach for wind speed prediction
-
Mohandes, M.A.; Rehman, S.; Halawani, T.O. A neural networks approach for wind speed prediction. Renew. Energy 1998, 13, 345–354. [CrossRef]
-
(1998)
Renew. Energy
, vol.13
, pp. 345-354
-
-
Mohandes, M.A.1
Rehman, S.2
Halawani, T.O.3
-
109
-
-
79958110380
-
Optimal artificial neural network architecture selection for performance prediction of compact heat exchanger with the EBaLM-OTR technique
-
Wijayasekara, D.; Manic, M.; Sabharwall, P.; Utgikar, V. Optimal artificial neural network architecture selection for performance prediction of compact heat exchanger with the EBaLM-OTR technique. Nucl. Eng. Des. 2011, 241, 2549–2557. [CrossRef]
-
(2011)
Nucl. Eng. Des.
, vol.241
, pp. 2549-2557
-
-
Wijayasekara, D.1
Manic, M.2
Sabharwall, P.3
Utgikar, V.4
-
110
-
-
0037186314
-
Problem-specific genetic algorithm for power transmission system planning
-
Duan, G.; Yu, Y. Problem-specific genetic algorithm for power transmission system planning. Electr. Power Syst. Res. 2002, 61, 41–50. [CrossRef]
-
(2002)
Electr. Power Syst. Res.
, vol.61
, pp. 41-50
-
-
Duan, G.1
Yu, Y.2
-
112
-
-
84873637949
-
Wavelet neural networks: A practical guide
-
Alexandridis, A.K.; Zapranis, A.D. Wavelet neural networks: A practical guide. Neural Netw. 2013, 42, 1–27. [CrossRef] [PubMed]
-
(2013)
Neural Netw
, vol.42
, pp. 1-27
-
-
Alexandridis, A.K.1
Zapranis, A.D.2
-
113
-
-
78149320537
-
On the levenberg-marquardt training method for feed-forward neural networks
-
Yantai, China, 10–12 August
-
Liu, H. On the levenberg-marquardt training method for feed-forward neural networks. In Proceedings of the Sixth International Conference on Natural Computation (ICNC), Yantai, China, 10–12 August 2010; Volume 1, pp. 456–460.
-
(2010)
Proceedings of The Sixth International Conference on Natural Computation (ICNC)
, vol.1
, pp. 456-460
-
-
Liu, H.1
-
114
-
-
80053644429
-
Multilayer perceptron neural network (MLPNN) controller for automatic generation control of multiarea thermal system
-
Boston, MA, USA, 4–6 August
-
Mishra, P.; Mishra, S.; Nanda, J.; Sajith, K. Multilayer perceptron neural network (MLPNN) controller for automatic generation control of multiarea thermal system. In Proceedings of the North American Power Symposium (NAPS), Boston, MA, USA, 4–6 August 2011; pp. 1–7.
-
(2011)
Proceedings of The North American Power Symposium (NAPS)
, pp. 1-7
-
-
Mishra, P.1
Mishra, S.2
Nanda, J.3
Sajith, K.4
-
115
-
-
84930453399
-
MLPNN training via a multiobjective optimization of training error and stochastic sensitivity
-
Yeung, D.S.; Li, J.C.; Ng, W.W.; Chan, P.P. MLPNN training via a multiobjective optimization of training error and stochastic sensitivity. IEEE Trans. Neural Netw. Learn. Syst. 2016, 27, 978–992. [CrossRef] [PubMed]
-
(2016)
IEEE Trans. Neural Netw. Learn. Syst.
, vol.27
, pp. 978-992
-
-
Yeung, D.S.1
Li, J.C.2
Ng, W.W.3
Chan, P.P.4
-
116
-
-
10944272650
-
Extreme learning machine: A new learning scheme of feed-forward neural networks
-
Budapest, Hungary, 25–29 July
-
Huang, G.B.; Zhu, Q.Y.; Siew, C.K. Extreme learning machine: A new learning scheme of feed-forward neural networks. In Proceedings of the International Joint Conference on Neural Networks, Budapest, Hungary, 25–29 July 2004; Volume 2, pp. 985–990.
-
(2004)
Proceedings of The International Joint Conference on Neural Networks
, vol.2
, pp. 985-990
-
-
Huang, G.B.1
Zhu, Q.Y.2
Siew, C.K.3
-
117
-
-
84904741064
-
Feature selection in wind speed prediction systems based on a hybrid coral reefs optimization–Extreme learning machine approach
-
Salcedo-Sanz, S.; Pastor-Sánchez, A.; Prieto, L.; Blanco-Aguilera, A.; García-Herrera, R. Feature selection in wind speed prediction systems based on a hybrid coral reefs optimization–Extreme learning machine approach. Energy Convers. Manag. 2014, 87, 10–18. [CrossRef]
-
(2014)
Energy Convers. Manag.
, vol.87
, pp. 10-18
-
-
Salcedo-Sanz, S.1
Pastor-Sánchez, A.2
Prieto, L.3
Blanco-Aguilera, A.4
García-Herrera, R.5
-
118
-
-
84931574142
-
Explaining adaboost
-
Springer: Berlin, Germany
-
Schapire, R.E. Explaining adaboost. In Empirical Inference; Springer: Berlin, Germany, 2013; pp. 37–52.
-
(2013)
Empirical Inference
, pp. 37-52
-
-
Schapire, R.E.1
-
119
-
-
19044361940
-
Singular-spectrum analysis: A toolkit for short, noisy chaotic signals
-
Vautard, R.; Yiou, P.; Ghil, M. Singular-spectrum analysis: A toolkit for short, noisy chaotic signals. Phys. D Nonlinear Phenom. 1992, 58, 95–126. [CrossRef]
-
(1992)
Phys. D Nonlinear Phenom.
, vol.58
, pp. 95-126
-
-
Vautard, R.1
Yiou, P.2
Ghil, M.3
-
120
-
-
77949623076
-
Cuckoo search via Lévy flights
-
Coimbatore, India, 9–11 December
-
Yang, X.S.; Deb, S. Cuckoo search via Lévy flights. In Proceedings of the World Congress on Nature & Biologically Inspired Computing (NaBIC), Coimbatore, India, 9–11 December 2009; pp. 210–214.
-
(2009)
Proceedings of The World Congress on Nature & Biologically Inspired Computing (NaBIC)
, pp. 210-214
-
-
Yang, X.S.1
Deb, S.2
-
121
-
-
0141521146
-
Support vector regression machines
-
Denver, CL, USA, 3–5 December
-
Drucker, H.; Burges, C.J.; Kaufman, L.; Smola, A.J.; Vapnik, V. Support vector regression machines. In Proceedings of the 9th International Conference on Neural Information Processing Systems, Denver, CL, USA, 3–5 December 1996.
-
(1996)
Proceedings of The 9th International Conference on Neural Information Processing Systems
-
-
Drucker, H.1
Burges, C.J.2
Kaufman, L.3
Smola, A.J.4
Vapnik, V.5
-
122
-
-
35748941976
-
Pruning of support vector networks on flood forecasting
-
Chen, S.T.; Yu, P.S. Pruning of support vector networks on flood forecasting. J. Hydrol. 2007, 347, 67–78. [CrossRef]
-
(2007)
J. Hydrol.
, vol.347
, pp. 67-78
-
-
Chen, S.T.1
Yu, P.S.2
-
124
-
-
84862277678
-
SVM versus least squares SVM
-
San Juan, Puerto Rico, 21–24 March
-
Ye, J.; Xiong, T. SVM versus least squares SVM. In Proceedings of the Eleventh International Conference on Artificial Intelligence and Statistics, San Juan, Puerto Rico, 21–24 March 2007; pp. 644–651.
-
(2007)
Proceedings of The Eleventh International Conference on Artificial Intelligence and Statistics
, pp. 644-651
-
-
Ye, J.1
Xiong, T.2
-
125
-
-
0242579967
-
Some comments on a paper by Chatfield and Prothero and on a review by Kendall
-
Box, G.; Jenkins, G. Some comments on a paper by Chatfield and Prothero and on a review by Kendall. J. R. Stat. Soc. Ser. A 1973, 136, 337–352. [CrossRef]
-
(1973)
J. R. Stat. Soc. Ser. A
, vol.136
, pp. 337-352
-
-
Box, G.1
Jenkins, G.2
-
126
-
-
0029663871
-
A nearest neighbor bootstrap for resampling hydrologic time series
-
Lall, U.; Sharma, A. A nearest neighbor bootstrap for resampling hydrologic time series. Water Resour. Res. 1996, 32, 679–693. [CrossRef]
-
(1996)
Water Resour. Res.
, vol.32
, pp. 679-693
-
-
Lall, U.1
Sharma, A.2
-
127
-
-
79959543795
-
Energy time series forecasting based on pattern sequence similarity
-
Alvarez, F.M.; Troncoso, A.; Riquelme, J.C.; Ruiz, J.S.A. Energy time series forecasting based on pattern sequence similarity. IEEE Trans. Knowl. Data Eng. 2011, 23, 1230–1243. [CrossRef]
-
(2011)
IEEE Trans. Knowl. Data Eng.
, vol.23
, pp. 1230-1243
-
-
Alvarez, F.M.1
Troncoso, A.2
Riquelme, J.C.3
Ruiz, J.S.A.4
-
128
-
-
0008494528
-
Determining Lyapunov exponents from a time series
-
Wolf, A.; Swift, J.B.; Swinney, H.L.; Vastano, J.A. Determining Lyapunov exponents from a time series. Phys. D Nonlinear Phenom. 1985, 16, 285–317. [CrossRef]
-
(1985)
Phys. D Nonlinear Phenom.
, vol.16
, pp. 285-317
-
-
Wolf, A.1
Swift, J.B.2
Swinney, H.L.3
Vastano, J.A.4
-
129
-
-
71749116803
-
Grey system theory-based models in time series prediction
-
Kayacan, E.; Ulutas, B.; Kaynak, O. Grey system theory-based models in time series prediction. Expert Syst. Appl. 2010, 37, 1784–1789. [CrossRef]
-
(2010)
Expert Syst. Appl.
, vol.37
, pp. 1784-1789
-
-
Kayacan, E.1
Ulutas, B.2
Kaynak, O.3
-
130
-
-
0000241853
-
Deterministic nonperiodic flow
-
Lorenz, E.N. Deterministic nonperiodic flow. J. Atmos. Sci. 1963, 20, 130–141. [CrossRef]
-
(1963)
J. Atmos. Sci.
, vol.20
, pp. 130-141
-
-
Lorenz, E.N.1
-
131
-
-
84872502995
-
A practical guide to applying echo state networks
-
Springer: Berlin, Germany
-
Lukoševičius, M. A practical guide to applying echo state networks. In Neural Networks: Tricks of the Trade; Springer: Berlin, Germany, 2012; pp. 659–686.
-
(2012)
Neural Networks: Tricks of The Trade
, pp. 659-686
-
-
Lukoševičius, M.1
|