메뉴 건너뛰기




Volumn 12, Issue 2, 2019, Pages

A review on hybrid empirical mode decomposition models for wind speed and wind power prediction

Author keywords

Decomposition; EMD; Prediction; Wind power; Wind speed

Indexed keywords

DECOMPOSITION; FORECASTING; PROCESSING; SIGNAL PROCESSING; STOCHASTIC MODELS; STOCHASTIC SYSTEMS; WEATHER FORECASTING; WIND; WIND POWER;

EID: 85060523173     PISSN: None     EISSN: 19961073     Source Type: Journal    
DOI: 10.3390/en12020254     Document Type: Review
Times cited : (146)

References (132)
  • 1
    • 84931262272 scopus 로고    scopus 로고
    • Short-term wind power prediction based on LSSVM–GSA model
    • Yuan, X.; Chen, C.; Yuan, Y.; Huang, Y.; Tan, Q. Short-term wind power prediction based on LSSVM–GSA model. Energy Convers. Manag. 2015, 101, 393–401. [CrossRef]
    • (2015) Energy Convers. Manag. , vol.101 , pp. 393-401
    • Yuan, X.1    Chen, C.2    Yuan, Y.3    Huang, Y.4    Tan, Q.5
  • 2
    • 84859612787 scopus 로고    scopus 로고
    • Short-term wind speed forecasting for power system operations
    • Zhu, X.; Genton, M.G. Short-Term Wind Speed Forecasting for Power System Operations. Int. Stat. Rev. 2012, 80, 2–23. [CrossRef]
    • (2012) Int. Stat. Rev. , vol.80 , pp. 2-23
    • Zhu, X.1    Genton, M.G.2
  • 3
    • 78650562310 scopus 로고    scopus 로고
    • ARMA based approaches for forecasting the tuple of wind speed and direction
    • Erdem, E.; Shi, J. ARMA based approaches for forecasting the tuple of wind speed and direction. Appl. Energy 2011, 88, 1405–1414. [CrossRef]
    • (2011) Appl. Energy , vol.88 , pp. 1405-1414
    • Erdem, E.1    Shi, J.2
  • 4
  • 6
    • 79951847299 scopus 로고    scopus 로고
    • Short-term wind power generation forecasting: Direct versus indirect arima-based approaches
    • Shi, J.; Qu, X.; Zeng, S. Short-term wind power generation forecasting: Direct versus indirect arima-based approaches. Int. J. Green Energy 2011, 8, 100–112. [CrossRef]
    • (2011) Int. J. Green Energy , vol.8 , pp. 100-112
    • Shi, J.1    Qu, X.2    Zeng, S.3
  • 7
    • 84890167160 scopus 로고    scopus 로고
    • Hour-ahead wind speed and power forecasting using empirical mode decomposition
    • Hong, Y.Y.; Yu, T.H.; Liu, C.Y. Hour-ahead wind speed and power forecasting using empirical mode decomposition. Energies 2013, 6, 6137–6152. [CrossRef]
    • (2013) Energies , vol.6 , pp. 6137-6152
    • Hong, Y.Y.1    Yu, T.H.2    Liu, C.Y.3
  • 8
    • 84863508830 scopus 로고    scopus 로고
    • A hybrid model for wind speed prediction using empirical mode decomposition and artificial neural networks
    • Liu, H.; Chen, C.; Tian, H.Q.; Li, Y.F. A hybrid model for wind speed prediction using empirical mode decomposition and artificial neural networks. Renew. Energy 2012, 48, 545–556. [CrossRef]
    • (2012) Renew. Energy , vol.48 , pp. 545-556
    • Liu, H.1    Chen, C.2    Tian, H.Q.3    Li, Y.F.4
  • 10
    • 79961127156 scopus 로고    scopus 로고
    • Multi-step forecasting for wind speed using a modified EMD-based artificial neural network model
    • Guo, Z.; Zhao, W.; Lu, H.; Wang, J. Multi-step forecasting for wind speed using a modified EMD-based artificial neural network model. Renew. Energy 2012, 37, 241–249. [CrossRef]
    • (2012) Renew. Energy , vol.37 , pp. 241-249
    • Guo, Z.1    Zhao, W.2    Lu, H.3    Wang, J.4
  • 11
    • 84919905288 scopus 로고    scopus 로고
    • A comparative study of empirical mode decomposition-based short-term wind speed forecasting methods
    • Ren, Y.; Suganthan, P.; Srikanth, N. A comparative study of empirical mode decomposition-based short-term wind speed forecasting methods. IEEE Trans. Sustain. Energy 2015, 6, 236–244. [CrossRef]
    • (2015) IEEE Trans. Sustain. Energy , vol.6 , pp. 236-244
    • Ren, Y.1    Suganthan, P.2    Srikanth, N.3
  • 12
    • 85010282413 scopus 로고    scopus 로고
    • A combined model based on CEEMDAN and modified flower pollination algorithm for wind speed forecasting
    • Zhang, W.; Qu, Z.; Zhang, K.; Mao, W.; Ma, Y.; Fan, X. A combined model based on CEEMDAN and modified flower pollination algorithm for wind speed forecasting. Energy Convers. Manag. 2017, 136, 439–451. [CrossRef]
    • (2017) Energy Convers. Manag. , vol.136 , pp. 439-451
    • Zhang, W.1    Qu, Z.2    Zhang, K.3    Mao, W.4    Ma, Y.5    Fan, X.6
  • 13
    • 84907704597 scopus 로고    scopus 로고
    • A novel empirical mode decomposition with support vector regression for wind speed forecasting
    • Ren, Y.; Suganthan, P.N.; Srikanth, N. A novel empirical mode decomposition with support vector regression for wind speed forecasting. IEEE Trans. Neural Netw. Learn. Syst. 2016, 27, 1793–1798. [CrossRef] [PubMed]
    • (2016) IEEE Trans. Neural Netw. Learn. Syst. , vol.27 , pp. 1793-1798
    • Ren, Y.1    Suganthan, P.N.2    Srikanth, N.3
  • 14
    • 84969170236 scopus 로고    scopus 로고
    • Short-term wind speed forecasting using empirical mode decomposition and feature selection
    • Zhang, C.; Wei, H.; Zhao, J.; Liu, T.; Zhu, T.; Zhang, K. Short-term wind speed forecasting using empirical mode decomposition and feature selection. Renew. Energy 2016, 96, 727–737. [CrossRef]
    • (2016) Renew. Energy , vol.96 , pp. 727-737
    • Zhang, C.1    Wei, H.2    Zhao, J.3    Liu, T.4    Zhu, T.5    Zhang, K.6
  • 15
    • 84980335318 scopus 로고    scopus 로고
    • Short-term wind speed forecasting using the data processing approach and the support vector machine model optimized by the improved cuckoo search parameter estimation algorithm
    • Wang, C.; Wu, J.; Wang, J.; Hu, Z. Short-Term Wind Speed Forecasting Using the Data Processing Approach and the Support Vector Machine Model Optimized by the Improved Cuckoo Search Parameter Estimation Algorithm. Math. Probl. Eng. 2016, 2016, 4896854. [CrossRef]
    • (2016) Math. Probl. Eng. , vol.2016 , pp. 4896854
    • Wang, C.1    Wu, J.2    Wang, J.3    Hu, Z.4
  • 18
    • 82055184071 scopus 로고    scopus 로고
    • Combined model based on EMD-SVM for short-term wind power prediction
    • Lin, Y.; Peng, L. Combined model based on EMD-SVM for short-term wind power prediction. Proc. Chin. Soc. Electr. Eng. 2011, 31, 102–108.
    • (2011) Proc. Chin. Soc. Electr. Eng. , vol.31 , pp. 102-108
    • Lin, Y.1    Peng, L.2
  • 19
    • 84878854403 scopus 로고    scopus 로고
    • A hybrid forecasting approach applied to wind speed time series
    • Hu, J.; Wang, J.; Zeng, G. A hybrid forecasting approach applied to wind speed time series. Renew. Energy 2013, 60, 185–194. [CrossRef]
    • (2013) Renew. Energy , vol.60 , pp. 185-194
    • Hu, J.1    Wang, J.2    Zeng, G.3
  • 21
    • 84896341262 scopus 로고    scopus 로고
    • A hybrid approach for short-term forecasting of wind speed
    • Tatinati, S.; Veluvolu, K.C. A hybrid approach for short-term forecasting of wind speed. Sci. World J. 2013, 2013, 548370. [CrossRef] [PubMed]
    • (2013) Sci. World J. , vol.2013 , pp. 548370
    • Tatinati, S.1    Veluvolu, K.C.2
  • 22
    • 85010023016 scopus 로고    scopus 로고
    • An indirect short-term wind power forecast approach with multi-variable inputs
    • Melbourne, VIC, Australia, 28 November–1 December
    • Hong, D.; Ji, T.; Zhang, L.; Li, M.; Wu, Q. An indirect short-term wind power forecast approach with multi-variable inputs. In Proceedings of the Innovative Smart Grid Technologies-Asia (ISGT-Asia), Melbourne, VIC, Australia, 28 November–1 December 2016; pp. 793–798.
    • (2016) Proceedings of The Innovative Smart Grid Technologies-Asia (ISGT-Asia) , pp. 793-798
    • Hong, D.1    Ji, T.2    Zhang, L.3    Li, M.4    Wu, Q.5
  • 23
    • 84925012310 scopus 로고    scopus 로고
    • An EMD-recursive ARIMA method to predict wind speed for railway strong wind warning system
    • Liu, H.; Tian, H.Q.; Li, Y.F. An EMD-recursive ARIMA method to predict wind speed for railway strong wind warning system. J. Wind Eng. Ind. Aerodyn. 2015, 141, 27–38. [CrossRef]
    • (2015) J. Wind Eng. Ind. Aerodyn. , vol.141 , pp. 27-38
    • Liu, H.1    Tian, H.Q.2    Li, Y.F.3
  • 26
    • 67649452332 scopus 로고    scopus 로고
    • Short-term wind speed forecasting for wind farm based on empirical mode decomposition
    • Wuhan, China, 17–20 October
    • Li, R.; Wang, Y. Short-term wind speed forecasting for wind farm based on empirical mode decomposition. In Proceedings of the International Conference on Electrical Machines and Systems, Wuhan, China, 17–20 October 2008; pp. 2521–2525.
    • (2008) Proceedings of The International Conference on Electrical Machines and Systems , pp. 2521-2525
    • Li, R.1    Wang, Y.2
  • 27
    • 84880863911 scopus 로고    scopus 로고
    • A new method for wind speed forecasting based on empirical mode decomposition and improved persistence approach
    • Ho Chi Minh City, Vietnam, 12–14 December
    • Sun, C.; Yuan, Y.; Li, Q. A new method for wind speed forecasting based on empirical mode decomposition and improved persistence approach. In Proceedings of the Conference on Power & Energy (IPEC), Ho Chi Minh City, Vietnam, 12–14 December 2012; pp. 659–664.
    • (2012) Proceedings of The Conference on Power & Energy (IPEC) , pp. 659-664
    • Sun, C.1    Yuan, Y.2    Li, Q.3
  • 28
    • 85018463690 scopus 로고    scopus 로고
    • A hybrid method for short-term wind speed forecasting
    • Zhang, J.; Wei, Y.; Tan, Z.F.; Ke, W.; Tian, W. A hybrid method for short-term wind speed forecasting. Sustainability 2017, 9, 596. [CrossRef]
    • (2017) Sustainability , vol.9 , pp. 596
    • Zhang, J.1    Wei, Y.2    Tan, Z.F.3    Ke, W.4    Tian, W.5
  • 30
    • 80052379563 scopus 로고    scopus 로고
    • Short-term prediction of wind power using EMD and chaotic theory
    • An, X.; Jiang, D.; Zhao, M.; Liu, C. Short-term prediction of wind power using EMD and chaotic theory. Commun. Nonlinear Sci. Numer. Simul. 2012, 17, 1036–1042. [CrossRef]
    • (2012) Commun. Nonlinear Sci. Numer. Simul. , vol.17 , pp. 1036-1042
    • An, X.1    Jiang, D.2    Zhao, M.3    Liu, C.4
  • 31
    • 84875598356 scopus 로고    scopus 로고
    • Chaotic time series prediction model of wind power based on ensemble empirical mode decomposition-approximate entropy and reservoir
    • Zhang, X.Q.; Liang, J Chaotic time series prediction model of wind power based on ensemble empirical mode decomposition-approximate entropy and reservoir. Acta Phys. Sin. 2013, 62, 50505.
    • (2013) Acta Phys. Sin. , vol.62 , pp. 50505
    • Zhang, X.Q.1    Liang, J.2
  • 32
    • 85001574806 scopus 로고    scopus 로고
    • Challenges in applying the empirical mode decomposition based hybrid algorithm for forecasting renewable wind/solar in practical cases
    • Boston, MA, USA, 17–21 July
    • Wang, Y.; Wu, L.; Wang, S. Challenges in applying the empirical mode decomposition based hybrid algorithm for forecasting renewable wind/solar in practical cases. In Proceedings of the Power and Energy Society General Meeting (PESGM), Boston, MA, USA, 17–21 July 2016; pp. 1–5.
    • (2016) Proceedings of The Power and Energy Society General Meeting (PESGM) , pp. 1-5
    • Wang, Y.1    Wu, L.2    Wang, S.3
  • 33
    • 84893188504 scopus 로고    scopus 로고
    • A novel wind speed forecasting method based on ensemble empirical mode decomposition and GA-BP neural network
    • Vancouver, BC, Canada, 21–25 July
    • Wang, Y.; Wang, S.; Zhang, N. A novel wind speed forecasting method based on ensemble empirical mode decomposition and GA-BP neural network. In Proceedings of the Power and Energy Society General Meeting (PES), Vancouver, BC, Canada, 21–25 July 2013; pp. 1–5.
    • (2013) Proceedings of The Power and Energy Society General Meeting (PES) , pp. 1-5
    • Wang, Y.1    Wang, S.2    Zhang, N.3
  • 34
    • 84962148959 scopus 로고    scopus 로고
    • Wind speed forecasting based on the hybrid ensemble empirical mode decomposition and GA-BP neural network method
    • Wang, S.; Zhang, N.; Wu, L.; Wang, Y. Wind speed forecasting based on the hybrid ensemble empirical mode decomposition and GA-BP neural network method. Renew. Energy 2016, 94, 629–636. [CrossRef]
    • (2016) Renew. Energy , vol.94 , pp. 629-636
    • Wang, S.1    Zhang, N.2    Wu, L.3    Wang, Y.4
  • 35
    • 84905494402 scopus 로고    scopus 로고
    • Forecasting wind speed using empirical mode decomposition and Elman neural network
    • Wang, J.; Zhang, W.; Li, Y.; Wang, J.; Dang, Z. Forecasting wind speed using empirical mode decomposition and Elman neural network. Appl. Soft Comput. 2014, 23, 452–459. [CrossRef]
    • (2014) Appl. Soft Comput. , vol.23 , pp. 452-459
    • Wang, J.1    Zhang, W.2    Li, Y.3    Wang, J.4    Dang, Z.5
  • 36
    • 84939789758 scopus 로고    scopus 로고
    • Wind speed forecasting approach using secondary decomposition algorithm and Elman neural networks
    • Liu, H.; Tian, H.Q.; Liang, X.F.; Li, Y.F. Wind speed forecasting approach using secondary decomposition algorithm and Elman neural networks. Appl. Energy 2015, 157, 183–194. [CrossRef]
    • (2015) Appl. Energy , vol.157 , pp. 183-194
    • Liu, H.1    Tian, H.Q.2    Liang, X.F.3    Li, Y.F.4
  • 37
    • 85019652331 scopus 로고    scopus 로고
    • Comparative study on three new hybrid models using Elman Neural Network and Empirical Mode Decomposition based technologies improved by Singular Spectrum Analysis for hour-ahead wind speed forecasting
    • Yu, C.; Li, Y.; Zhang, M. Comparative study on three new hybrid models using Elman Neural Network and Empirical Mode Decomposition based technologies improved by Singular Spectrum Analysis for hour-ahead wind speed forecasting. Energy Convers. Manag. 2017, 147, 75–85. [CrossRef]
    • (2017) Energy Convers. Manag. , vol.147 , pp. 75-85
    • Yu, C.1    Li, Y.2    Zhang, M.3
  • 40
    • 85018952510 scopus 로고    scopus 로고
    • Short-term wind speed prediction: Hybrid of ensemble empirical mode decomposition, feature selection and error correction
    • Jiang, Y.; Huang, G. Short-term wind speed prediction: Hybrid of ensemble empirical mode decomposition, feature selection and error correction. Energy Convers. Manag. 2017, 144, 340–350. [CrossRef]
    • (2017) Energy Convers. Manag. , vol.144 , pp. 340-350
    • Jiang, Y.1    Huang, G.2
  • 41
    • 84964506540 scopus 로고    scopus 로고
    • Wind power generation forecasting using least squares support vector machine combined with ensemble empirical mode decomposition, principal component analysis and a bat algorithm
    • Wu, Q.; Peng, C. Wind power generation forecasting using least squares support vector machine combined with ensemble empirical mode decomposition, principal component analysis and a bat algorithm. Energies 2016, 9, 261. [CrossRef]
    • (2016) Energies , vol.9 , pp. 261
    • Wu, Q.1    Peng, C.2
  • 42
    • 85029812519 scopus 로고    scopus 로고
    • A novel multi-step short-term wind power prediction framework based on chaotic time series analysis and singular spectrum analysis
    • Safari, N.; Chung, C.; Price, G. A Novel Multi-Step Short-Term Wind Power Prediction Framework Based on Chaotic Time Series Analysis and Singular Spectrum Analysis. IEEE Trans. Power Syst. 2017, 33, 590–601. [CrossRef]
    • (2017) IEEE Trans. Power Syst. , vol.33 , pp. 590-601
    • Safari, N.1    Chung, C.2    Price, G.3
  • 43
    • 84939158416 scopus 로고    scopus 로고
    • Wind speed forecasting based on FEEMD and LSSVM optimized by the bat algorithm
    • Sun, W.; Liu, M.; Liang, Y. Wind speed forecasting based on FEEMD and LSSVM optimized by the bat algorithm. Energies 2015, 8, 6585–6607. [CrossRef]
    • (2015) Energies , vol.8 , pp. 6585-6607
    • Sun, W.1    Liu, M.2    Liang, Y.3
  • 44
    • 84930001510 scopus 로고    scopus 로고
    • An experimental investigation of FNN model for wind speed forecasting using EEMD and CS
    • Wang, J.; Jiang, H.; Han, B.; Zhou, Q. An experimental investigation of FNN model for wind speed forecasting using EEMD and CS. Math. Probl. Eng. 2015, 2015, 464153. [CrossRef]
    • (2015) Math. Probl. Eng. , vol.2015 , pp. 464153
    • Wang, J.1    Jiang, H.2    Han, B.3    Zhou, Q.4
  • 45
    • 85050693536 scopus 로고    scopus 로고
    • Analysis of differencing and decomposition preprocessing methods for wind speed prediction
    • Bokde, N.; Feijóo, A.; Kulat, K. Analysis of differencing and decomposition preprocessing methods for wind speed prediction. Appl. Soft Comput. 2018, 71, 926–938. [CrossRef]
    • (2018) Appl. Soft Comput. , vol.71 , pp. 926-938
    • Bokde, N.1    Feijóo, A.2    Kulat, K.3
  • 46
    • 85017187262 scopus 로고    scopus 로고
    • A novel hybrid approach based on cuckoo search optimization algorithm for short-term wind speed forecasting
    • Zhang, K.; Qu, Z.; Wang, J.; Zhang, W.; Yang, F. A novel hybrid approach based on cuckoo search optimization algorithm for short-term wind speed forecasting. Environ. Prog. Sustain. Energy 2017, 36, 943–952. [CrossRef]
    • (2017) Environ. Prog. Sustain. Energy , vol.36 , pp. 943-952
    • Zhang, K.1    Qu, Z.2    Wang, J.3    Zhang, W.4    Yang, F.5
  • 48
    • 84930947539 scopus 로고    scopus 로고
    • New wind speed forecasting approaches using fast ensemble empirical model decomposition, genetic algorithm, mind evolutionary algorithm and artificial neural networks
    • Liu, H.; Tian, H.; Liang, X.; Li, Y. New wind speed forecasting approaches using fast ensemble empirical model decomposition, genetic algorithm, mind evolutionary algorithm and artificial neural networks. Renew. Energy 2015, 83, 1066–1075. [CrossRef]
    • (2015) Renew. Energy , vol.83 , pp. 1066-1075
    • Liu, H.1    Tian, H.2    Liang, X.3    Li, Y.4
  • 49
    • 84907974670 scopus 로고    scopus 로고
    • Comparison of new hybrid FEEMD-MLP, FEEMD-ANFIS, Wavelet Packet-MLP and Wavelet Packet-ANFIS for wind speed predictions
    • Liu, H.; Tian, H.Q.; Li, Y.F. Comparison of new hybrid FEEMD-MLP, FEEMD-ANFIS, Wavelet Packet-MLP and Wavelet Packet-ANFIS for wind speed predictions. Energy Convers. Manag. 2015, 89, 1–11. [CrossRef]
    • (2015) Energy Convers. Manag. , vol.89 , pp. 1-11
    • Liu, H.1    Tian, H.Q.2    Li, Y.F.3
  • 50
    • 85027941214 scopus 로고    scopus 로고
    • Short-term wind power prediction using differential EMD and relevance vector machine
    • Bao, Y.; Wang, H.; Wang, B. Short-term wind power prediction using differential EMD and relevance vector machine. Neural Comput. Appl. 2014, 25, 283–289. [CrossRef]
    • (2014) Neural Comput. Appl. , vol.25 , pp. 283-289
    • Bao, Y.1    Wang, H.2    Wang, B.3
  • 51
    • 84955512570 scopus 로고    scopus 로고
    • A hybrid model of EMD and multiple-kernel RVR algorithm for wind speed prediction
    • Fei, S.W. A hybrid model of EMD and multiple-kernel RVR algorithm for wind speed prediction. Int. J. Electr. Power Energy Syst. 2016, 78, 910–915. [CrossRef]
    • (2016) Int. J. Electr. Power Energy Syst. , vol.78 , pp. 910-915
    • Fei, S.W.1
  • 53
    • 85000842711 scopus 로고    scopus 로고
    • Short-term wind power interval forecasting based on an EEMD-RT-RVM model
    • Zang, H.; Fan, L.; Guo, M.; Wei, Z.; Sun, G.; Zhang, L. Short-Term Wind Power Interval Forecasting Based on an EEMD-RT-RVM Model. Adv. Meteorol. 2016, 2016, 8760780. [CrossRef]
    • (2016) Adv. Meteorol. , vol.2016 , pp. 8760780
    • Zang, H.1    Fan, L.2    Guo, M.3    Wei, Z.4    Sun, G.5    Zhang, L.6
  • 54
    • 84919905211 scopus 로고    scopus 로고
    • Empirical mode decomposition-k nearest neighbor models for wind speed forecasting
    • Ren, Y.; Suganthan, P. Empirical mode decomposition-k nearest neighbor models for wind speed forecasting. J. Power Energy Eng. 2014, 2, 176–185. [CrossRef]
    • (2014) J. Power Energy Eng. , vol.2 , pp. 176-185
    • Ren, Y.1    Suganthan, P.2
  • 55
    • 84929146225 scopus 로고    scopus 로고
    • Four wind speed multi-step forecasting models using extreme learning machines and signal decomposing algorithms
    • Liu, H.; Tian, H.Q.; Li, Y.F. Four wind speed multi-step forecasting models using extreme learning machines and signal decomposing algorithms. Energy Convers. Manag. 2015, 100, 16–22. [CrossRef]
    • (2015) Energy Convers. Manag. , vol.100 , pp. 16-22
    • Liu, H.1    Tian, H.Q.2    Li, Y.F.3
  • 56
    • 84958759376 scopus 로고    scopus 로고
    • Wind speed forecasting using FEEMD echo state networks with RELM in Hebei, China
    • Sun, W.; Liu, M. Wind speed forecasting using FEEMD echo state networks with RELM in Hebei, China. Energy Convers. Manag. 2016, 114, 197–208. [CrossRef]
    • (2016) Energy Convers. Manag. , vol.114 , pp. 197-208
    • Sun, W.1    Liu, M.2
  • 57
    • 78650045524 scopus 로고    scopus 로고
    • A review of wind power and wind speed forecasting methods with different time horizons
    • Arlington, TX, USA, 26–28 September
    • Soman, S.S.; Zareipour, H.; Malik, O.; Mandal, P. A review of wind power and wind speed forecasting methods with different time horizons. In Proceedings of the North American Power Symposium (NAPS), Arlington, TX, USA, 26–28 September 2010; pp. 1–8.
    • (2010) Proceedings of The North American Power Symposium (NAPS) , pp. 1-8
    • Soman, S.S.1    Zareipour, H.2    Malik, O.3    Mandal, P.4
  • 58
    • 84941270020 scopus 로고    scopus 로고
    • Analysis of multi-scale chaotic characteristics of wind power based on Hilbert–Huang transform and Hurst analysis
    • Liang, Z.; Liang, J.; Zhang, L.; Wang, C.; Yun, Z.; Zhang, X. Analysis of multi-scale chaotic characteristics of wind power based on Hilbert–Huang transform and Hurst analysis. Appl. Energy 2015, 159, 51–61. [CrossRef]
    • (2015) Appl. Energy , vol.159 , pp. 51-61
    • Liang, Z.1    Liang, J.2    Zhang, L.3    Wang, C.4    Yun, Z.5    Zhang, X.6
  • 59
    • 77949524633 scopus 로고    scopus 로고
    • One-month ahead prediction of wind speed and output power based on EMD and LSSVM
    • Guilin, China, 16–18 October
    • Wang, X.; Hui, L. One-month ahead prediction of wind speed and output power based on EMD and LSSVM. In Proceedings of the International Conference on Energy and Environment Technology, Guilin, China, 16–18 October 2009; Volume 3, pp. 439–442.
    • (2009) Proceedings of The International Conference on Energy and Environment Technology , vol.3 , pp. 439-442
    • Wang, X.1    Hui, L.2
  • 61
    • 84962349410 scopus 로고    scopus 로고
    • K-nearest neighbors and a kernel density estimator for GEFCom2014 probabilistic wind power forecasting
    • Zhang, Y.; Wang, J. K-nearest neighbors and a kernel density estimator for GEFCom2014 probabilistic wind power forecasting. Int. J. Forecast. 2016, 32, 1074–1080. [CrossRef]
    • (2016) Int. J. Forecast. , vol.32 , pp. 1074-1080
    • Zhang, Y.1    Wang, J.2
  • 62
    • 77958487600 scopus 로고    scopus 로고
    • Conditional prediction intervals of wind power generation
    • Pinson, P.; Kariniotakis, G. Conditional prediction intervals of wind power generation. IEEE Trans. Power Syst. 2010, 25, 1845–1856. [CrossRef]
    • (2010) IEEE Trans. Power Syst. , vol.25 , pp. 1845-1856
    • Pinson, P.1    Kariniotakis, G.2
  • 63
  • 64
    • 2942570109 scopus 로고    scopus 로고
    • A fuzzy model for wind speed prediction and power generation in wind parks using spatial correlation
    • Damousis, I.G.; Alexiadis, M.C.; Theocharis, J.B.; Dokopoulos, P.S. A fuzzy model for wind speed prediction and power generation in wind parks using spatial correlation. IEEE Trans. Energy Convers. 2004, 19, 352–361. [CrossRef]
    • (2004) IEEE Trans. Energy Convers. , vol.19 , pp. 352-361
    • Damousis, I.G.1    Alexiadis, M.C.2    Theocharis, J.B.3    Dokopoulos, P.S.4
  • 65
    • 33847369874 scopus 로고    scopus 로고
    • A locally recurrent fuzzy neural network with application to the wind speed prediction using spatial correlation
    • Barbounis, T.; Theocharis, J. A locally recurrent fuzzy neural network with application to the wind speed prediction using spatial correlation. Neurocomputing 2007, 70, 1525–1542. [CrossRef]
    • (2007) Neurocomputing , vol.70 , pp. 1525-1542
    • Barbounis, T.1    Theocharis, J.2
  • 66
    • 79961128617 scopus 로고    scopus 로고
    • Nested ensemble NWP approach for wind energy assessment
    • Al-Yahyai, S.; Charabi, Y.; Al-Badi, A.; Gastli, A. Nested ensemble NWP approach for wind energy assessment. Renew. Energy 2012, 37, 150–160. [CrossRef]
    • (2012) Renew. Energy , vol.37 , pp. 150-160
    • Al-Yahyai, S.1    Charabi, Y.2    Al-Badi, A.3    Gastli, A.4
  • 67
    • 0342301563 scopus 로고
    • Generalized exponential Markov and model output statistics: A comparative verification
    • Perrone, T.J.; Miller, R.G. Generalized exponential Markov and model output statistics: A comparative verification. Mon. Weather Rev. 1985, 113, 1524–1541. [CrossRef]
    • (1985) Mon. Weather Rev. , vol.113 , pp. 1524-1541
    • Perrone, T.J.1    Miller, R.G.2
  • 68
    • 79952129528 scopus 로고    scopus 로고
    • The forecasting procedure for long-term wind speed in the Zhangye area
    • Guo, Z.; Dong, Y.; Wang, J.; Lu, H. The forecasting procedure for long-term wind speed in the Zhangye area. Math. Probl. Eng. 2010, 2010, 684742. [CrossRef]
    • (2010) Math. Probl. Eng. , vol.2010 , pp. 684742
    • Guo, Z.1    Dong, Y.2    Wang, J.3    Lu, H.4
  • 69
    • 84862213628 scopus 로고    scopus 로고
    • Comparison of two new ARIMA-ANN and ARIMA-Kalman hybrid methods for wind speed prediction
    • Liu, H.; Tian, H.Q.; Li, Y.F. Comparison of two new ARIMA-ANN and ARIMA-Kalman hybrid methods for wind speed prediction. Appl. Energy 2012, 98, 415–424. [CrossRef]
    • (2012) Appl. Energy , vol.98 , pp. 415-424
    • Liu, H.1    Tian, H.Q.2    Li, Y.F.3
  • 70
    • 85021456831 scopus 로고    scopus 로고
    • PSF: Introduction to R package for pattern sequence based forecasting algorithm
    • Bokde, N.; Asencio-Cortés, G.; Martínez-Álvarez, F.; Kulat, K. PSF: Introduction to R Package for Pattern Sequence Based Forecasting Algorithm. R J. 2017, 9, 324–333.
    • (2017) R J , vol.9 , pp. 324-333
    • Bokde, N.1    Asencio-Cortés, G.2    Martínez-Álvarez, F.3    Kulat, K.4
  • 72
    • 85057859941 scopus 로고    scopus 로고
    • Robust performance of PSF method over outliers and random patterns in univariate time series forecasting
    • Pune, India, 28–29 December
    • Bokde, N.; Wakpanjar, A.; Kulat, K.; Feijóo, A. Robust performance of PSF method over outliers and random patterns in univariate time series forecasting. In Proceedings of the International Technology Congress, Pune, India, 28–29 December 2017.
    • (2017) Proceedings of The International Technology Congress
    • Bokde, N.1    Wakpanjar, A.2    Kulat, K.3    Feijóo, A.4
  • 74
    • 77956516306 scopus 로고    scopus 로고
    • Estimation and filtering of physiological tremor for real-time compensation in surgical robotics applications
    • Veluvolu, K.; Ang, W. Estimation and filtering of physiological tremor for real-time compensation in surgical robotics applications. Int. J. Med. Robot. Comput. Assist. Surg. 2010, 6, 334–342. [CrossRef] [PubMed]
    • (2010) Int. J. Med. Robot. Comput. Assist. Surg. , vol.6 , pp. 334-342
    • Veluvolu, K.1    Ang, W.2
  • 75
    • 84864797603 scopus 로고    scopus 로고
    • Performance analysis of four modified approaches for wind speed forecasting
    • Zhang, W.; Wu, J.; Wang, J.; Zhao, W.; Shen, L. Performance analysis of four modified approaches for wind speed forecasting. Appl. Energy 2012, 99, 324–333. [CrossRef]
    • (2012) Appl. Energy , vol.99 , pp. 324-333
    • Zhang, W.1    Wu, J.2    Wang, J.3    Zhao, W.4    Shen, L.5
  • 76
    • 34250762015 scopus 로고    scopus 로고
    • Application of artificial neural networks for the wind speed prediction of target station using reference stations data
    • Bilgili, M.; Sahin, B.; Yasar, A. Application of artificial neural networks for the wind speed prediction of target station using reference stations data. Renew. Energy 2007, 32, 2350–2360. [CrossRef]
    • (2007) Renew. Energy , vol.32 , pp. 2350-2360
    • Bilgili, M.1    Sahin, B.2    Yasar, A.3
  • 78
    • 84988723388 scopus 로고    scopus 로고
    • Short-term wind speed forecasting using artificial neural networks for Tehran, Iran
    • Fazelpour, F.; Tarashkar, N.; Rosen, M.A. Short-term wind speed forecasting using artificial neural networks for Tehran, Iran. Int. J. Energy Environ. Eng. 2016, 7, 377–390. [CrossRef]
    • (2016) Int. J. Energy Environ. Eng. , vol.7 , pp. 377-390
    • Fazelpour, F.1    Tarashkar, N.2    Rosen, M.A.3
  • 79
    • 1442289939 scopus 로고    scopus 로고
    • Energy price forecasting in the Ontario competitive power system market
    • Rodriguez, C.P.; Anders, G.J. Energy price forecasting in the Ontario competitive power system market. IEEE Trans. Power Syst. 2004, 19, 366–374. [CrossRef]
    • (2004) IEEE Trans. Power Syst. , vol.19 , pp. 366-374
    • Rodriguez, C.P.1    Anders, G.J.2
  • 81
    • 84929622158 scopus 로고    scopus 로고
    • Ensemble methods for wind and solar power forecasting—A state-of-the-art review
    • Ren, Y.; Suganthan, P.; Srikanth, N. Ensemble methods for wind and solar power forecasting—A state-of-the-art review. Renew. Sustain. Energy Rev. 2015, 50, 82–91. [CrossRef]
    • (2015) Renew. Sustain. Energy Rev. , vol.50 , pp. 82-91
    • Ren, Y.1    Suganthan, P.2    Srikanth, N.3
  • 82
    • 50849132200 scopus 로고    scopus 로고
    • A literature review of wind forecasting technology in the world
    • Lausanne, Switzerland, 1–5 July
    • Wu, Y.K.; Hong, J.S. A literature review of wind forecasting technology in the world. In Proceedings of the IEEE Lausanne Power Tech, Lausanne, Switzerland, 1–5 July 2007; pp. 504–509.
    • (2007) Proceedings of The IEEE Lausanne Power Tech , pp. 504-509
    • Wu, Y.K.1    Hong, J.S.2
  • 83
    • 78049513565 scopus 로고    scopus 로고
    • Very short-term wind speed prediction: A new artificial neural network–Markov chain model
    • Kani, S.P.; Ardehali, M. Very short-term wind speed prediction: A new artificial neural network–Markov chain model. Energy Convers. Manag. 2011, 52, 738–745. [CrossRef]
    • (2011) Energy Convers. Manag. , vol.52 , pp. 738-745
    • Kani, S.P.1    Ardehali, M.2
  • 84
    • 84949681323 scopus 로고    scopus 로고
    • A robust combination approach for short-term wind speed forecasting and analysis–Combination of the ARIMA (Autoregressive Integrated Moving Average), ELM (Extreme Learning Machine), SVM (Support Vector Machine) and LSSVM (Least Square SVM) forecasts using a GPR (Gaussian Process Regression) model
    • Wang, J.; Hu, J. A robust combination approach for short-term wind speed forecasting and analysis–Combination of the ARIMA (Autoregressive Integrated Moving Average), ELM (Extreme Learning Machine), SVM (Support Vector Machine) and LSSVM (Least Square SVM) forecasts using a GPR (Gaussian Process Regression) model. Energy 2015, 93, 41–56.
    • (2015) Energy , vol.93 , pp. 41-56
    • Wang, J.1    Hu, J.2
  • 86
    • 80052078099 scopus 로고    scopus 로고
    • Ensemble empirical mode decomposition: A noise-assisted data analysis method
    • Wu, Z.; Huang, N.E. Ensemble empirical mode decomposition: A noise-assisted data analysis method. Adv. Adapt. Data Anal. 2009, 1, 1–41. [CrossRef]
    • (2009) Adv. Adapt. Data Anal. , vol.1 , pp. 1-41
    • Wu, Z.1    Huang, N.E.2
  • 87
    • 84930940764 scopus 로고    scopus 로고
    • Wind speed prediction using the hybrid model of wavelet decomposition and artificial bee colony algorithm-based relevance vector machine
    • Fei, S.W.; He, Y. Wind speed prediction using the hybrid model of wavelet decomposition and artificial bee colony algorithm-based relevance vector machine. Int. J. Electr. Power Energy Syst. 2015, 73, 625–631. [CrossRef]
    • (2015) Int. J. Electr. Power Energy Syst. , vol.73 , pp. 625-631
    • Fei, S.W.1    He, Y.2
  • 88
    • 79955623964 scopus 로고    scopus 로고
    • Wind farm power prediction based on wavelet decomposition and chaotic time series
    • An, X.; Jiang, D.; Liu, C.; Zhao, M. Wind farm power prediction based on wavelet decomposition and chaotic time series. Expert Syst. Appl. 2011, 38, 11280–11285. [CrossRef]
    • (2011) Expert Syst. Appl. , vol.38 , pp. 11280-11285
    • An, X.1    Jiang, D.2    Liu, C.3    Zhao, M.4
  • 89
    • 33745813525 scopus 로고    scopus 로고
    • Improved wind power forecasting using a combined neuro-fuzzy and artificial neural network model
    • Springer: Berlin, Germany
    • Katsigiannis, Y.; Tsikalakis, A.; Georgilakis, P.; Hatziargyriou, N. Improved wind power forecasting using a combined neuro-fuzzy and artificial neural network model. In Advances in Artificial Intelligence; Springer: Berlin, Germany, 2006; pp. 105–115.
    • (2006) Advances in Artificial Intelligence , pp. 105-115
    • Katsigiannis, Y.1    Tsikalakis, A.2    Georgilakis, P.3    Hatziargyriou, N.4
  • 90
    • 84975869372 scopus 로고    scopus 로고
    • Current status of wind energy forecasting and a hybrid method for hourly predictions
    • Okumus, I.; Dinler, A. Current status of wind energy forecasting and a hybrid method for hourly predictions. Energy Convers. Manag. 2016, 123, 362–371. [CrossRef]
    • (2016) Energy Convers. Manag. , vol.123 , pp. 362-371
    • Okumus, I.1    Dinler, A.2
  • 91
    • 84893194518 scopus 로고    scopus 로고
    • On the computational complexity of the empirical mode decomposition algorithm
    • Wang, Y.H.; Yeh, C.H.; Young, H.W.V.; Hu, K.; Lo, M.T. On the computational complexity of the empirical mode decomposition algorithm. Phys. A: Stat. Mech. Appl. 2014, 400, 159–167. [CrossRef]
    • (2014) Phys. A: Stat. Mech. Appl. , vol.400 , pp. 159-167
    • Wang, Y.H.1    Yeh, C.H.2    Young, H.W.V.3    Hu, K.4    Lo, M.T.5
  • 92
    • 36749090569 scopus 로고    scopus 로고
    • A new formulation for empirical mode decomposition based on constrained optimization
    • Meignen, S.; Perrier, V. A new formulation for empirical mode decomposition based on constrained optimization. IEEE Signal Process. Lett. 2007, 14, 932–935. [CrossRef]
    • (2007) IEEE Signal Process. Lett. , vol.14 , pp. 932-935
    • Meignen, S.1    Perrier, V.2
  • 94
    • 80052641966 scopus 로고    scopus 로고
    • Adaptive data analysis via sparse time-frequency representation
    • Hou, T.Y.; Shi, Z. Adaptive data analysis via sparse time-frequency representation. Adv. Adapt. Data Anal. 2011, 3, 1–28. [CrossRef]
    • (2011) Adv. Adapt. Data Anal. , vol.3 , pp. 1-28
    • Hou, T.Y.1    Shi, Z.2
  • 95
    • 33745163942 scopus 로고    scopus 로고
    • Time-varying vibration decomposition and analysis based on the Hilbert transform
    • Feldman, M. Time-varying vibration decomposition and analysis based on the Hilbert transform. J. Sound Vib. 2006, 295, 518–530. [CrossRef]
    • (2006) J. Sound Vib. , vol.295 , pp. 518-530
    • Feldman, M.1
  • 97
    • 84880891329 scopus 로고    scopus 로고
    • Empirical wavelet transform
    • Gilles, J. Empirical wavelet transform. IEEE Trans. Signal Process. 2013, 61, 3999–4010. [CrossRef]
    • (2013) IEEE Trans. Signal Process. , vol.61 , pp. 3999-4010
    • Gilles, J.1
  • 98
    • 84868201484 scopus 로고    scopus 로고
    • An optimization based empirical mode decomposition scheme
    • Huang, B.; Kunoth, A. An optimization based empirical mode decomposition scheme. J. Comput. Appl. Math. 2013, 240, 174–183. [CrossRef]
    • (2013) J. Comput. Appl. Math. , vol.240 , pp. 174-183
    • Huang, B.1    Kunoth, A.2
  • 99
    • 85001112761 scopus 로고    scopus 로고
    • Sliding window empirical mode decomposition-its performance and quality
    • Stepien, P. Sliding window empirical mode decomposition-its performance and quality. EPJ Nonlinear Biomed. Phys. 2014, 2, 14. [CrossRef]
    • (2014) EPJ Nonlinear Biomed. Phys. , vol.2 , pp. 14
    • Stepien, P.1
  • 100
    • 79956369785 scopus 로고    scopus 로고
    • Complementary ensemble empirical mode decomposition: A novel noise enhanced data analysis method
    • Yeh, J.R.; Shieh, J.S.; Huang, N.E. Complementary ensemble empirical mode decomposition: A novel noise enhanced data analysis method. Adv. Adapt. Data Anal. 2010, 2, 135–156. [CrossRef]
    • (2010) Adv. Adapt. Data Anal. , vol.2 , pp. 135-156
    • Yeh, J.R.1    Shieh, J.S.2    Huang, N.E.3
  • 103
    • 85021714468 scopus 로고    scopus 로고
    • A weighted EMD-based prediction model based on TOPSIS and feed forward neural network for noised time series
    • Jun, W.; Lingyu, T.; Yuyan, L.; Peng, G. A weighted EMD-based prediction model based on TOPSIS and feed forward neural network for noised time series. Knowl. Based Syst. 2017, 132, 167–178. [CrossRef]
    • (2017) Knowl. Based Syst. , vol.132 , pp. 167-178
    • Jun, W.1    Lingyu, T.2    Yuyan, L.3    Peng, G.4
  • 104
    • 84874343832 scopus 로고    scopus 로고
    • Morphology-based prediction of osteogenic differentiation potential of human mesenchymal stem cells
    • Matsuoka, F.; Takeuchi, I.; Agata, H.; Kagami, H.; Shiono, H.; Kiyota, Y.; Honda, H.; Kato, R. Morphology-based prediction of osteogenic differentiation potential of human mesenchymal stem cells. PLoS ONE 2013, 8, e55082. [CrossRef]
    • (2013) PLoS ONE , vol.8
    • Matsuoka, F.1    Takeuchi, I.2    Agata, H.3    Kagami, H.4    Shiono, H.5    Kiyota, Y.6    Honda, H.7    Kato, R.8
  • 105
    • 78649417989 scopus 로고    scopus 로고
    • EMD: A package for empirical mode decomposition and Hilbert spectrum
    • Kim, D.; Oh, H.S. EMD: A package for empirical mode decomposition and Hilbert spectrum. R J. 2009, 1, 40–46.
    • (2009) R J , vol.1 , pp. 40-46
    • Kim, D.1    Oh, H.S.2
  • 106
    • 84963783252 scopus 로고    scopus 로고
    • Introducing libeemd: A program package for performing the ensemble empirical mode decomposition
    • Luukko, P.; Helske, J.; Räsänen, E. Introducing libeemd: A program package for performing the ensemble empirical mode decomposition. Comput. Stat. 2016, 31, 545–557. [CrossRef]
    • (2016) Comput. Stat. , vol.31 , pp. 545-557
    • Luukko, P.1    Helske, J.2    Räsänen, E.3
  • 107
    • 0031536329 scopus 로고    scopus 로고
    • Teacher’s corner: A note on interpretation of the paired-samples t test
    • Zimmerman, D.W. Teacher’s corner: A note on interpretation of the paired-samples t test. J. Educ. Behav. Stat. 1997, 22, 349–360. [CrossRef]
    • (1997) J. Educ. Behav. Stat. , vol.22 , pp. 349-360
    • Zimmerman, D.W.1
  • 108
    • 0032029065 scopus 로고    scopus 로고
    • A neural networks approach for wind speed prediction
    • Mohandes, M.A.; Rehman, S.; Halawani, T.O. A neural networks approach for wind speed prediction. Renew. Energy 1998, 13, 345–354. [CrossRef]
    • (1998) Renew. Energy , vol.13 , pp. 345-354
    • Mohandes, M.A.1    Rehman, S.2    Halawani, T.O.3
  • 109
    • 79958110380 scopus 로고    scopus 로고
    • Optimal artificial neural network architecture selection for performance prediction of compact heat exchanger with the EBaLM-OTR technique
    • Wijayasekara, D.; Manic, M.; Sabharwall, P.; Utgikar, V. Optimal artificial neural network architecture selection for performance prediction of compact heat exchanger with the EBaLM-OTR technique. Nucl. Eng. Des. 2011, 241, 2549–2557. [CrossRef]
    • (2011) Nucl. Eng. Des. , vol.241 , pp. 2549-2557
    • Wijayasekara, D.1    Manic, M.2    Sabharwall, P.3    Utgikar, V.4
  • 110
    • 0037186314 scopus 로고    scopus 로고
    • Problem-specific genetic algorithm for power transmission system planning
    • Duan, G.; Yu, Y. Problem-specific genetic algorithm for power transmission system planning. Electr. Power Syst. Res. 2002, 61, 41–50. [CrossRef]
    • (2002) Electr. Power Syst. Res. , vol.61 , pp. 41-50
    • Duan, G.1    Yu, Y.2
  • 112
    • 84873637949 scopus 로고    scopus 로고
    • Wavelet neural networks: A practical guide
    • Alexandridis, A.K.; Zapranis, A.D. Wavelet neural networks: A practical guide. Neural Netw. 2013, 42, 1–27. [CrossRef] [PubMed]
    • (2013) Neural Netw , vol.42 , pp. 1-27
    • Alexandridis, A.K.1    Zapranis, A.D.2
  • 113
    • 78149320537 scopus 로고    scopus 로고
    • On the levenberg-marquardt training method for feed-forward neural networks
    • Yantai, China, 10–12 August
    • Liu, H. On the levenberg-marquardt training method for feed-forward neural networks. In Proceedings of the Sixth International Conference on Natural Computation (ICNC), Yantai, China, 10–12 August 2010; Volume 1, pp. 456–460.
    • (2010) Proceedings of The Sixth International Conference on Natural Computation (ICNC) , vol.1 , pp. 456-460
    • Liu, H.1
  • 114
    • 80053644429 scopus 로고    scopus 로고
    • Multilayer perceptron neural network (MLPNN) controller for automatic generation control of multiarea thermal system
    • Boston, MA, USA, 4–6 August
    • Mishra, P.; Mishra, S.; Nanda, J.; Sajith, K. Multilayer perceptron neural network (MLPNN) controller for automatic generation control of multiarea thermal system. In Proceedings of the North American Power Symposium (NAPS), Boston, MA, USA, 4–6 August 2011; pp. 1–7.
    • (2011) Proceedings of The North American Power Symposium (NAPS) , pp. 1-7
    • Mishra, P.1    Mishra, S.2    Nanda, J.3    Sajith, K.4
  • 115
    • 84930453399 scopus 로고    scopus 로고
    • MLPNN training via a multiobjective optimization of training error and stochastic sensitivity
    • Yeung, D.S.; Li, J.C.; Ng, W.W.; Chan, P.P. MLPNN training via a multiobjective optimization of training error and stochastic sensitivity. IEEE Trans. Neural Netw. Learn. Syst. 2016, 27, 978–992. [CrossRef] [PubMed]
    • (2016) IEEE Trans. Neural Netw. Learn. Syst. , vol.27 , pp. 978-992
    • Yeung, D.S.1    Li, J.C.2    Ng, W.W.3    Chan, P.P.4
  • 116
    • 10944272650 scopus 로고    scopus 로고
    • Extreme learning machine: A new learning scheme of feed-forward neural networks
    • Budapest, Hungary, 25–29 July
    • Huang, G.B.; Zhu, Q.Y.; Siew, C.K. Extreme learning machine: A new learning scheme of feed-forward neural networks. In Proceedings of the International Joint Conference on Neural Networks, Budapest, Hungary, 25–29 July 2004; Volume 2, pp. 985–990.
    • (2004) Proceedings of The International Joint Conference on Neural Networks , vol.2 , pp. 985-990
    • Huang, G.B.1    Zhu, Q.Y.2    Siew, C.K.3
  • 117
    • 84904741064 scopus 로고    scopus 로고
    • Feature selection in wind speed prediction systems based on a hybrid coral reefs optimization–Extreme learning machine approach
    • Salcedo-Sanz, S.; Pastor-Sánchez, A.; Prieto, L.; Blanco-Aguilera, A.; García-Herrera, R. Feature selection in wind speed prediction systems based on a hybrid coral reefs optimization–Extreme learning machine approach. Energy Convers. Manag. 2014, 87, 10–18. [CrossRef]
    • (2014) Energy Convers. Manag. , vol.87 , pp. 10-18
    • Salcedo-Sanz, S.1    Pastor-Sánchez, A.2    Prieto, L.3    Blanco-Aguilera, A.4    García-Herrera, R.5
  • 118
    • 84931574142 scopus 로고    scopus 로고
    • Explaining adaboost
    • Springer: Berlin, Germany
    • Schapire, R.E. Explaining adaboost. In Empirical Inference; Springer: Berlin, Germany, 2013; pp. 37–52.
    • (2013) Empirical Inference , pp. 37-52
    • Schapire, R.E.1
  • 119
    • 19044361940 scopus 로고
    • Singular-spectrum analysis: A toolkit for short, noisy chaotic signals
    • Vautard, R.; Yiou, P.; Ghil, M. Singular-spectrum analysis: A toolkit for short, noisy chaotic signals. Phys. D Nonlinear Phenom. 1992, 58, 95–126. [CrossRef]
    • (1992) Phys. D Nonlinear Phenom. , vol.58 , pp. 95-126
    • Vautard, R.1    Yiou, P.2    Ghil, M.3
  • 122
    • 35748941976 scopus 로고    scopus 로고
    • Pruning of support vector networks on flood forecasting
    • Chen, S.T.; Yu, P.S. Pruning of support vector networks on flood forecasting. J. Hydrol. 2007, 347, 67–78. [CrossRef]
    • (2007) J. Hydrol. , vol.347 , pp. 67-78
    • Chen, S.T.1    Yu, P.S.2
  • 125
    • 0242579967 scopus 로고
    • Some comments on a paper by Chatfield and Prothero and on a review by Kendall
    • Box, G.; Jenkins, G. Some comments on a paper by Chatfield and Prothero and on a review by Kendall. J. R. Stat. Soc. Ser. A 1973, 136, 337–352. [CrossRef]
    • (1973) J. R. Stat. Soc. Ser. A , vol.136 , pp. 337-352
    • Box, G.1    Jenkins, G.2
  • 126
    • 0029663871 scopus 로고    scopus 로고
    • A nearest neighbor bootstrap for resampling hydrologic time series
    • Lall, U.; Sharma, A. A nearest neighbor bootstrap for resampling hydrologic time series. Water Resour. Res. 1996, 32, 679–693. [CrossRef]
    • (1996) Water Resour. Res. , vol.32 , pp. 679-693
    • Lall, U.1    Sharma, A.2
  • 129
    • 71749116803 scopus 로고    scopus 로고
    • Grey system theory-based models in time series prediction
    • Kayacan, E.; Ulutas, B.; Kaynak, O. Grey system theory-based models in time series prediction. Expert Syst. Appl. 2010, 37, 1784–1789. [CrossRef]
    • (2010) Expert Syst. Appl. , vol.37 , pp. 1784-1789
    • Kayacan, E.1    Ulutas, B.2    Kaynak, O.3
  • 130
    • 0000241853 scopus 로고
    • Deterministic nonperiodic flow
    • Lorenz, E.N. Deterministic nonperiodic flow. J. Atmos. Sci. 1963, 20, 130–141. [CrossRef]
    • (1963) J. Atmos. Sci. , vol.20 , pp. 130-141
    • Lorenz, E.N.1
  • 131
    • 84872502995 scopus 로고    scopus 로고
    • A practical guide to applying echo state networks
    • Springer: Berlin, Germany
    • Lukoševičius, M. A practical guide to applying echo state networks. In Neural Networks: Tricks of the Trade; Springer: Berlin, Germany, 2012; pp. 659–686.
    • (2012) Neural Networks: Tricks of The Trade , pp. 659-686
    • Lukoševičius, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.