메뉴 건너뛰기




Volumn , Issue , 2011, Pages

Training set of support vector regression extracted by empirical mode decomposition

Author keywords

Empirical mode decomposition; Feature extraction; Support vector regression; Wind speed forecast

Indexed keywords

CALCULATING PRECISION; EMPIRICAL MODE DECOMPOSITION; FORECASTING MODELS; GENERALIZATION ABILITY; INTRINSIC MODE FUNCTIONS; LEARNING METHODS; REGRESSION MODEL; STRUCTURAL RISK MINIMIZATION; SUPPORT VECTOR REGRESSION; SUPPORT VECTOR REGRESSIONS; TRAINING SETS; WIND SPEED; WIND SPEED FORECAST;

EID: 79955841701     PISSN: 21574839     EISSN: 21574847     Source Type: Conference Proceeding    
DOI: 10.1109/APPEEC.2011.5748739     Document Type: Conference Paper
Times cited : (3)

References (17)
  • 1
    • 0036552848 scopus 로고    scopus 로고
    • A support vector machine approach for short term load forecasting [J]
    • in Chinese
    • Zhao Dengfu, Wang Meng, Zhang Jiangshe, A Support Vector Machine approach for short Term load forecasting [J], Proceedings of the CSEE, 2002, 22(4): 26-30. (in Chinese).
    • (2002) Proceedings of the CSEE , vol.22 , Issue.4 , pp. 26-30
    • Zhao, D.1    Wang, M.2    Zhang, J.3
  • 2
    • 0141678325 scopus 로고    scopus 로고
    • Study of support vector machines for short-term load forecasting [J]
    • in Chinese
    • LI Yuancheng, FANG Tingjian, YU Erkeng, Study of Support Vector Machines for Short-Term load forecasting [J], Proceedings of the CSEE, 2003, 23(6): 55-59. (in Chinese).
    • (2003) Proceedings of the CSEE , vol.23 , Issue.6 , pp. 55-59
    • Li, Y.1    Fang, T.2    Yu, E.3
  • 3
    • 0035248045 scopus 로고    scopus 로고
    • Neural networks for short-term load forecasting: A review and evaluation
    • DOI 10.1109/59.910780, PII S0885895001023069
    • Hippert H S, Pedreira C E, Souza R C, Neural networks for short-term load forecasting: A review and evaluation [J], IEEE Trans on Power System, 2001, 16(1): 44-55. (Pubitemid 32297468)
    • (2001) IEEE Transactions on Power Systems , vol.16 , Issue.1 , pp. 44-55
    • Hippert, H.S.1    Pedreira, C.E.2    Souza, R.C.3
  • 4
    • 0036698972 scopus 로고    scopus 로고
    • Artificial neural network-based peak load forecasting using conjugate gradient methods
    • DOI 10.1109/TPWRS.2002.800992, PII 1011092002800992
    • Saini L M, Soni M K, Artificial neural network-based peak load forecasting using conjugate gradient methods [J], IEEE Trans on Power System, 2002, 17(3): 907-912. (Pubitemid 35151775)
    • (2002) IEEE Transactions on Power Systems , vol.17 , Issue.3 , pp. 907-912
    • Saini, L.M.1    Soni, M.K.2
  • 5
    • 0043166482 scopus 로고    scopus 로고
    • General regression neural network based prediction of time series [J]
    • in Chinese
    • Feng Zhipeng, Song Xigeng, Xue Dongxin, General regression neural network based prediction of time series [J], Journal of Vibration Measurement & Diagnosis, 2003, 23(2), 105-109. (in Chinese).
    • (2003) Journal of Vibration Measurement & Diagnosis , vol.23 , Issue.2 , pp. 105-109
    • Feng, Z.1    Song, X.2    Xue, D.3
  • 6
    • 84886789326 scopus 로고    scopus 로고
    • Recognition of bearing failures using wavelets and neural networks
    • Coventry(UK), August 27-29
    • Alexander Y, Ronald L, Recognition of Bearing Failures using Wavelets and Neural Networks, TFTS97, Coventry(UK), August 27-29, 1997.
    • (1997) TFTS97
    • Alexander, Y.1    Ronald, L.2
  • 8
    • 77955754042 scopus 로고    scopus 로고
    • Short-term wind speed forecasting of wind farm based on SVM method [J]
    • in Chinese
    • Peng Huaiwu, Yang Xiaofeng, Liu Fangrui, Short-Term Wind Speed Forecasting of Wind Farm Based on SVM Method [J], Power System and Clean Energy, 2009, 25(7), 48-52. (in Chinese).
    • (2009) Power System and Clean Energy , vol.25 , Issue.7 , pp. 48-52
    • Peng, H.1    Yang, X.2    Liu, F.3
  • 9
    • 33845783816 scopus 로고    scopus 로고
    • Short-Term load forecasting based on wavelet transform and support vector machine [J]
    • in Chinese
    • Zhu Zhiyong, Lin Mugang, Zhang Shenji, Short-Term load forecasting based on wavelet transform and support vector machine [J], Microcomputer Applications, 2005, 26(4), 440-442. (in Chinese).
    • (2005) Microcomputer Applications , vol.26 , Issue.4 , pp. 440-442
    • Zhu, Z.1    Lin, M.2    Zhang, S.3
  • 10
    • 0001325175 scopus 로고    scopus 로고
    • The empirical mode decomposition and the hilbert spectrum for non-linear non-stationary time series analysis [C]
    • London
    • Huang N E, Shen Z, The empirical mode decomposition and the hilbert spectrum for non-linear non-stationary time series analysis [C] Proc. R. Soc, London, 1998.
    • (1998) Proc. R. Soc
    • Huang, N.E.1    Shen, Z.2
  • 11
    • 0033489494 scopus 로고    scopus 로고
    • A new view of nonlinear water waves: The Hilbert spectrum
    • DOI 10.1146/annurev.fluid.31.1.417
    • Huang N E, A new view of non-linear waves: the hilbert spectrum [J]. Annual Review of Fluid Mechanics, 1999, 31(5): 417-457. (Pubitemid 36186209)
    • (1999) Annual Review of Fluid Mechanics , vol.31 , pp. 417-457
    • Huang, N.E.1    Shen, Z.2    Long, S.R.3
  • 12
    • 38049123678 scopus 로고    scopus 로고
    • Application of hilbert-huang transform method in vibration faults diagnosis for rotor system [J]
    • in Chinese
    • Xiang Ling, Zhu Yongli, Tang Guiji, Application of Hilbert-Huang Transform Method in Vibration Faults Diagnosis for Rotor System [J], Proceedings of the CSEE, 2007, 27(35), 84-89. (in Chinese).
    • (2007) Proceedings of the CSEE , vol.27 , Issue.35 , pp. 84-89
    • Xiang, L.1    Zhu, Y.2    Tang, G.3
  • 14
    • 0032594959 scopus 로고    scopus 로고
    • An overview of statistical learning theory [J]
    • Vapnik V, An overview of statistical learning theory [J], IEEE Trans on Neural Network, 1999, 10(5), 988-999.
    • (1999) IEEE Trans on Neural Network , vol.10 , Issue.5 , pp. 988-999
    • Vapnik, V.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.