-
2
-
-
0001160588
-
What size net gives valid generalization?
-
Baum, E.B., Haussler, D.: What size net gives valid generalization? Neural Comput. 1(1), 151-160 (1989)
-
(1989)
Neural Comput
, vol.1
, Issue.1
, pp. 151-160
-
-
Baum, E.B.1
Haussler, D.2
-
3
-
-
33646412585
-
Some theory for generalized boosting algorithms
-
Bickel, P.J., Ritov, Y., Zakai, A.: Some theory for generalized boosting algorithms. J. Mach. Learn. Res. 7, 705-732 (2006)
-
(2006)
J. Mach. Learn. Res
, vol.7
, pp. 705-732
-
-
Bickel, P.J.1
Ritov, Y.2
Zakai, A.3
-
4
-
-
0000275022
-
Prediction games and arcing classifiers
-
Breiman, L.: Prediction games and arcing classifiers. Neural Comput. 11(7), 1493-1517 (1999)
-
(1999)
Neural Comput
, vol.11
, Issue.7
, pp. 1493-1517
-
-
Breiman, L.1
-
5
-
-
14644395930
-
Population theory for boosting ensembles
-
Breiman, L.: Population theory for boosting ensembles. Ann. Stat. 32(1), 1-11 (2004)
-
(2004)
Ann. Stat
, vol.32
, Issue.1
, pp. 1-11
-
-
Breiman, L.1
-
6
-
-
0034250160
-
An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization
-
Dietterich, T.G.: An experimental comparison of three methods for constructing ensembles of decision trees: bagging, boosting, and randomization. Mach. Learn. 40(2), 139-158 (2000)
-
(2000)
Mach. Learn
, vol.40
, Issue.2
, pp. 139-158
-
-
Dietterich, T.G.1
-
7
-
-
0006444313
-
-
Technical report, Department of Computer Science and Electrical Engineering, University of Queensland
-
Frean, M., Downs, T.: A simple cost function for boosting. Technical report, Department of Computer Science and Electrical Engineering, University of Queensland (1998)
-
(1998)
A simple cost function for boosting
-
-
Frean, M.1
Downs, T.2
-
8
-
-
58149321460
-
Boosting a weak learning algorithm by majority
-
Freund, Y.: Boosting a weak learning algorithm by majority. Inf. Comput. 121(2), 256-285 (1995)
-
(1995)
Inf. Comput
, vol.121
, Issue.2
, pp. 256-285
-
-
Freund, Y.1
-
9
-
-
0035371148
-
An adaptive version of the boost by majority algorithm
-
Freund, Y.: An adaptive version of the boost by majority algorithm. Mach. Learn. 43(3), 293-318 (2001)
-
(2001)
Mach. Learn
, vol.43
, Issue.3
, pp. 293-318
-
-
Freund, Y.1
-
10
-
-
0031211090
-
A decision-theoretic generalization of on-line learning and an application to boosting
-
Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci. 55(1), 119-139 (1997)
-
(1997)
J. Comput. Syst. Sci
, vol.55
, Issue.1
, pp. 119-139
-
-
Freund, Y.1
Schapire, R.E.2
-
11
-
-
0035470889
-
Greedy function approximation: A gradient boosting machine
-
Friedman, J.H.: Greedy function approximation: a gradient boosting machine. Ann. Stat. 29(5), 1189-1232 (2001)
-
(2001)
Ann. Stat
, vol.29
, Issue.5
, pp. 1189-1232
-
-
Friedman, J.H.1
-
12
-
-
0034164230
-
Additive logistic regression: A statistical view of boosting
-
Friedman, J., Hastie, T., Tibshirani, R.: Additive logistic regression: a statistical view of boosting. Ann. Stat. 28(2), 337-407 (2000)
-
(2000)
Ann. Stat
, vol.28
, Issue.2
, pp. 337-407
-
-
Friedman, J.1
Hastie, T.2
Tibshirani, R.3
-
13
-
-
0003684449
-
-
2nd edn, Springer, New York
-
Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd edn. Springer, New York (2009)
-
(2009)
The Elements of Statistical Learning: Data Mining, Inference, and Prediction
-
-
Hastie, T.1
Tibshirani, R.2
Friedman, J.3
-
14
-
-
26444545593
-
Process consistency for AdaBoost
-
Jiang, W.: Process consistency for AdaBoost. Ann. Stat. 32(1), 13-29 (2004)
-
(2004)
Ann. Stat
, vol.32
, Issue.1
, pp. 13-29
-
-
Jiang, W.1
-
15
-
-
24644494284
-
Boosting in the presence of noise
-
Kalai, A.T., Servedio, R.A.: Boosting in the presence of noise. J. Comput. Syst. Sci. 71(3), 266-290 (2005)
-
(2005)
J. Comput. Syst. Sci
, vol.71
, Issue.3
, pp. 266-290
-
-
Kalai, A.T.1
Servedio, R.A.2
-
18
-
-
83555170269
-
Random classification noise defeats all convex potential boosters
-
Long, P.M., Servedio, R.A.: Random classification noise defeats all convex potential boosters. Mach. Learn. 78, 287-304 (2010)
-
(2010)
Mach. Learn
, vol.78
, pp. 287-304
-
-
Long, P.M.1
Servedio, R.A.2
-
19
-
-
9444269961
-
On the Bayes-risk consistency of regularized boosting methods
-
Lugosi, G., Vayatis, N.: On the Bayes-risk consistency of regularized boosting methods. Ann. Stat. 32(1), 30-55 (2004)
-
(2004)
Ann. Stat
, vol.32
, Issue.1
, pp. 30-55
-
-
Lugosi, G.1
Vayatis, N.2
-
21
-
-
2542488393
-
Greedy algorithms for classification-consistency, convergence rates, and adaptivity
-
Mannor, S., Meir, R., Zhang, T.: Greedy algorithms for classification-consistency, convergence rates, and adaptivity. J. Mach. Learn. Res. 4, 713-742 (2003)
-
(2003)
J. Mach. Learn. Res
, vol.4
, pp. 713-742
-
-
Mannor, S.1
Meir, R.2
Zhang, T.3
-
22
-
-
84879873079
-
-
MIT Press, Cambridge
-
Mason, L., Bartlett, P., Baxter, J.: Direct optimization of margins improves generalization in combined classifiers. Advances in Neural Information Processing Systems 12. MIT Press, Cambridge (2000)
-
(2000)
Direct optimization of margins improves generalization in combined classifiers. Advances in Neural Information Processing Systems 12
-
-
Mason, L.1
Bartlett, P.2
Baxter, J.3
-
23
-
-
0002550596
-
-
MIT Press, Cambridge
-
Mason, L., Baxter, J., Bartlett, P., Frean, M.: Functional gradient techniques for combining hypotheses. Advances in Large Margin Classifiers. MIT Press, Cambridge (2000)
-
(2000)
Functional gradient techniques for combining hypotheses. Advances in Large Margin Classifiers
-
-
Mason, L.1
Baxter, J.2
Bartlett, P.3
Frean, M.4
-
24
-
-
41549131613
-
Evidence contrary to the statistical view of boosting
-
Mease, D., Wyner, A.: Evidence contrary to the statistical view of boosting. J. Mach. Learn. Res. 9, 131-156 (2008)
-
(2008)
J. Mach. Learn. Res
, vol.9
, pp. 131-156
-
-
Mease, D.1
Wyner, A.2
-
25
-
-
0342749314
-
An asymptotic analysis of AdaBoost in the binary classification case
-
Onoda, T., Rätsch, G., Müller, K.R.: An asymptotic analysis of AdaBoost in the binary classification case. In: Proceedings of the 8th International Conference on Artificial Neural Networks, Skövde, pp. 195-200 (1998)
-
(1998)
Proceedings of the 8th International Conference on Artificial Neural Networks, Skövde
, pp. 195-200
-
-
Onoda, T.1
Rätsch, G.2
Müller, K.R.3
-
27
-
-
0342502195
-
Soft margins for AdaBoost
-
Rätsch, G., Onoda, T., Müller, K.R.: Soft margins for AdaBoost. Mach. Learn. 42(3), 287-320 (2001)
-
(2001)
Mach. Learn
, vol.42
, Issue.3
, pp. 287-320
-
-
Rätsch, G.1
Onoda, T.2
Müller, K.R.3
-
29
-
-
12844274244
-
Boosting as a regularized path to a maximum margin classifier
-
Rosset, S., Zhu, J., Hastie, T.: Boosting as a regularized path to a maximum margin classifier. J. Mach. Learn. Res. 5, 941-973 (2004)
-
(2004)
J. Mach. Learn. Res
, vol.5
, pp. 941-973
-
-
Rosset, S.1
Zhu, J.2
Hastie, T.3
-
31
-
-
0033281701
-
Improved boosting algorithms using confidence-rated predictions
-
Schapire, R.E., Singer, Y.: Improved boosting algorithms using confidence-rated predictions. Mach. Learn. 37(3), 297-336 (1999)
-
(1999)
Mach. Learn
, vol.37
, Issue.3
, pp. 297-336
-
-
Schapire, R.E.1
Singer, Y.2
-
32
-
-
0032280519
-
Boosting the margin: A new explanation for the effectiveness of voting methods
-
Schapire, R.E., Freund, Y., Bartlett, P., Lee, W.S.: Boosting the margin: a new explanation for the effectiveness of voting methods. Ann. Stat. 26(5), 1651-1686 (1998)
-
(1998)
Ann. Stat
, vol.26
, Issue.5
, pp. 1651-1686
-
-
Schapire, R.E.1
Freund, Y.2
Bartlett, P.3
Lee, W.S.4
-
33
-
-
85194972808
-
Regression shrinkage and selection via the Lasso
-
Tibshirani, R.: Regression shrinkage and selection via the Lasso. J. Royal Stat. Soc. B (Methodol.) 58(1), 267-288 (1996)
-
(1996)
J. Royal Stat. Soc. B (Methodol.)
, vol.58
, Issue.1
, pp. 267-288
-
-
Tibshirani, R.1
-
34
-
-
0001024505
-
On the uniform convergence of relative frequencies of events to their probabilities
-
Vapnik, V.N., Chervonenkis, A.Y.: On the uniform convergence of relative frequencies of events to their probabilities. Theory Prob. Appl. 16(2), 264-280 (1971)
-
(1971)
Theory Prob. Appl
, vol.16
, Issue.2
, pp. 264-280
-
-
Vapnik, V.N.1
Chervonenkis, A.Y.2
-
36
-
-
79960142790
-
A refined margin analysis for boosting algorithms via equilibrium margin
-
Wang, L., Sugiyama, M., Jing, Z., Yang, C., Zhou, Z.H., Feng, J.: A refined margin analysis for boosting algorithms via equilibrium margin. J. Mach. Learn. Res. 12, 1835-1863 (2011)
-
(2011)
J. Mach. Learn. Res
, vol.12
, pp. 1835-1863
-
-
Wang, L.1
Sugiyama, M.2
Jing, Z.3
Yang, C.4
Zhou, Z.H.5
Feng, J.6
-
38
-
-
4644257995
-
Statistical behavior and consistency of classification methods based on convex risk minimization
-
Zhang, T.: Statistical behavior and consistency of classification methods based on convex risk minimization. Ann. Stat. 32(1), 56-134 (2004)
-
(2004)
Ann. Stat
, vol.32
, Issue.1
, pp. 56-134
-
-
Zhang, T.1
-
39
-
-
26444493144
-
Boosting with early stopping: Convergence and consistency
-
Zhang, T., Yu, B.: Boosting with early stopping: convergence and consistency. Ann. Stat. 33(4), 1538-1579 (2005)
-
(2005)
Ann. Stat
, vol.33
, Issue.4
, pp. 1538-1579
-
-
Zhang, T.1
Yu, B.2
|