메뉴 건너뛰기




Volumn , Issue , 2013, Pages 37-52

Explaining adaboost

Author keywords

[No Author keywords available]

Indexed keywords

EDUCATION; LEARNING SYSTEMS;

EID: 84931574142     PISSN: None     EISSN: None     Source Type: Book    
DOI: 10.1007/978-3-642-41136-6_5     Document Type: Chapter
Times cited : (990)

References (40)
  • 2
    • 0001160588 scopus 로고
    • What size net gives valid generalization?
    • Baum, E.B., Haussler, D.: What size net gives valid generalization? Neural Comput. 1(1), 151-160 (1989)
    • (1989) Neural Comput , vol.1 , Issue.1 , pp. 151-160
    • Baum, E.B.1    Haussler, D.2
  • 3
    • 33646412585 scopus 로고    scopus 로고
    • Some theory for generalized boosting algorithms
    • Bickel, P.J., Ritov, Y., Zakai, A.: Some theory for generalized boosting algorithms. J. Mach. Learn. Res. 7, 705-732 (2006)
    • (2006) J. Mach. Learn. Res , vol.7 , pp. 705-732
    • Bickel, P.J.1    Ritov, Y.2    Zakai, A.3
  • 4
    • 0000275022 scopus 로고    scopus 로고
    • Prediction games and arcing classifiers
    • Breiman, L.: Prediction games and arcing classifiers. Neural Comput. 11(7), 1493-1517 (1999)
    • (1999) Neural Comput , vol.11 , Issue.7 , pp. 1493-1517
    • Breiman, L.1
  • 5
    • 14644395930 scopus 로고    scopus 로고
    • Population theory for boosting ensembles
    • Breiman, L.: Population theory for boosting ensembles. Ann. Stat. 32(1), 1-11 (2004)
    • (2004) Ann. Stat , vol.32 , Issue.1 , pp. 1-11
    • Breiman, L.1
  • 6
    • 0034250160 scopus 로고    scopus 로고
    • An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization
    • Dietterich, T.G.: An experimental comparison of three methods for constructing ensembles of decision trees: bagging, boosting, and randomization. Mach. Learn. 40(2), 139-158 (2000)
    • (2000) Mach. Learn , vol.40 , Issue.2 , pp. 139-158
    • Dietterich, T.G.1
  • 7
    • 0006444313 scopus 로고    scopus 로고
    • Technical report, Department of Computer Science and Electrical Engineering, University of Queensland
    • Frean, M., Downs, T.: A simple cost function for boosting. Technical report, Department of Computer Science and Electrical Engineering, University of Queensland (1998)
    • (1998) A simple cost function for boosting
    • Frean, M.1    Downs, T.2
  • 8
    • 58149321460 scopus 로고
    • Boosting a weak learning algorithm by majority
    • Freund, Y.: Boosting a weak learning algorithm by majority. Inf. Comput. 121(2), 256-285 (1995)
    • (1995) Inf. Comput , vol.121 , Issue.2 , pp. 256-285
    • Freund, Y.1
  • 9
    • 0035371148 scopus 로고    scopus 로고
    • An adaptive version of the boost by majority algorithm
    • Freund, Y.: An adaptive version of the boost by majority algorithm. Mach. Learn. 43(3), 293-318 (2001)
    • (2001) Mach. Learn , vol.43 , Issue.3 , pp. 293-318
    • Freund, Y.1
  • 10
    • 0031211090 scopus 로고    scopus 로고
    • A decision-theoretic generalization of on-line learning and an application to boosting
    • Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci. 55(1), 119-139 (1997)
    • (1997) J. Comput. Syst. Sci , vol.55 , Issue.1 , pp. 119-139
    • Freund, Y.1    Schapire, R.E.2
  • 11
    • 0035470889 scopus 로고    scopus 로고
    • Greedy function approximation: A gradient boosting machine
    • Friedman, J.H.: Greedy function approximation: a gradient boosting machine. Ann. Stat. 29(5), 1189-1232 (2001)
    • (2001) Ann. Stat , vol.29 , Issue.5 , pp. 1189-1232
    • Friedman, J.H.1
  • 12
    • 0034164230 scopus 로고    scopus 로고
    • Additive logistic regression: A statistical view of boosting
    • Friedman, J., Hastie, T., Tibshirani, R.: Additive logistic regression: a statistical view of boosting. Ann. Stat. 28(2), 337-407 (2000)
    • (2000) Ann. Stat , vol.28 , Issue.2 , pp. 337-407
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 14
    • 26444545593 scopus 로고    scopus 로고
    • Process consistency for AdaBoost
    • Jiang, W.: Process consistency for AdaBoost. Ann. Stat. 32(1), 13-29 (2004)
    • (2004) Ann. Stat , vol.32 , Issue.1 , pp. 13-29
    • Jiang, W.1
  • 15
    • 24644494284 scopus 로고    scopus 로고
    • Boosting in the presence of noise
    • Kalai, A.T., Servedio, R.A.: Boosting in the presence of noise. J. Comput. Syst. Sci. 71(3), 266-290 (2005)
    • (2005) J. Comput. Syst. Sci , vol.71 , Issue.3 , pp. 266-290
    • Kalai, A.T.1    Servedio, R.A.2
  • 17
    • 56449094314 scopus 로고    scopus 로고
    • Advances in Neural Information Processing Systems 21, Vancouver
    • Long, P.M., Servedio, R.A.: Adaptive martingale boosting. Advances in Neural Information Processing Systems 21, Vancouver (2009)
    • (2009) Adaptive martingale boosting
    • Long, P.M.1    Servedio, R.A.2
  • 18
    • 83555170269 scopus 로고    scopus 로고
    • Random classification noise defeats all convex potential boosters
    • Long, P.M., Servedio, R.A.: Random classification noise defeats all convex potential boosters. Mach. Learn. 78, 287-304 (2010)
    • (2010) Mach. Learn , vol.78 , pp. 287-304
    • Long, P.M.1    Servedio, R.A.2
  • 19
    • 9444269961 scopus 로고    scopus 로고
    • On the Bayes-risk consistency of regularized boosting methods
    • Lugosi, G., Vayatis, N.: On the Bayes-risk consistency of regularized boosting methods. Ann. Stat. 32(1), 30-55 (2004)
    • (2004) Ann. Stat , vol.32 , Issue.1 , pp. 30-55
    • Lugosi, G.1    Vayatis, N.2
  • 21
    • 2542488393 scopus 로고    scopus 로고
    • Greedy algorithms for classification-consistency, convergence rates, and adaptivity
    • Mannor, S., Meir, R., Zhang, T.: Greedy algorithms for classification-consistency, convergence rates, and adaptivity. J. Mach. Learn. Res. 4, 713-742 (2003)
    • (2003) J. Mach. Learn. Res , vol.4 , pp. 713-742
    • Mannor, S.1    Meir, R.2    Zhang, T.3
  • 24
    • 41549131613 scopus 로고    scopus 로고
    • Evidence contrary to the statistical view of boosting
    • Mease, D., Wyner, A.: Evidence contrary to the statistical view of boosting. J. Mach. Learn. Res. 9, 131-156 (2008)
    • (2008) J. Mach. Learn. Res , vol.9 , pp. 131-156
    • Mease, D.1    Wyner, A.2
  • 27
    • 0342502195 scopus 로고    scopus 로고
    • Soft margins for AdaBoost
    • Rätsch, G., Onoda, T., Müller, K.R.: Soft margins for AdaBoost. Mach. Learn. 42(3), 287-320 (2001)
    • (2001) Mach. Learn , vol.42 , Issue.3 , pp. 287-320
    • Rätsch, G.1    Onoda, T.2    Müller, K.R.3
  • 29
    • 12844274244 scopus 로고    scopus 로고
    • Boosting as a regularized path to a maximum margin classifier
    • Rosset, S., Zhu, J., Hastie, T.: Boosting as a regularized path to a maximum margin classifier. J. Mach. Learn. Res. 5, 941-973 (2004)
    • (2004) J. Mach. Learn. Res , vol.5 , pp. 941-973
    • Rosset, S.1    Zhu, J.2    Hastie, T.3
  • 31
    • 0033281701 scopus 로고    scopus 로고
    • Improved boosting algorithms using confidence-rated predictions
    • Schapire, R.E., Singer, Y.: Improved boosting algorithms using confidence-rated predictions. Mach. Learn. 37(3), 297-336 (1999)
    • (1999) Mach. Learn , vol.37 , Issue.3 , pp. 297-336
    • Schapire, R.E.1    Singer, Y.2
  • 32
    • 0032280519 scopus 로고    scopus 로고
    • Boosting the margin: A new explanation for the effectiveness of voting methods
    • Schapire, R.E., Freund, Y., Bartlett, P., Lee, W.S.: Boosting the margin: a new explanation for the effectiveness of voting methods. Ann. Stat. 26(5), 1651-1686 (1998)
    • (1998) Ann. Stat , vol.26 , Issue.5 , pp. 1651-1686
    • Schapire, R.E.1    Freund, Y.2    Bartlett, P.3    Lee, W.S.4
  • 33
    • 85194972808 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the Lasso
    • Tibshirani, R.: Regression shrinkage and selection via the Lasso. J. Royal Stat. Soc. B (Methodol.) 58(1), 267-288 (1996)
    • (1996) J. Royal Stat. Soc. B (Methodol.) , vol.58 , Issue.1 , pp. 267-288
    • Tibshirani, R.1
  • 34
    • 0001024505 scopus 로고
    • On the uniform convergence of relative frequencies of events to their probabilities
    • Vapnik, V.N., Chervonenkis, A.Y.: On the uniform convergence of relative frequencies of events to their probabilities. Theory Prob. Appl. 16(2), 264-280 (1971)
    • (1971) Theory Prob. Appl , vol.16 , Issue.2 , pp. 264-280
    • Vapnik, V.N.1    Chervonenkis, A.Y.2
  • 36
    • 79960142790 scopus 로고    scopus 로고
    • A refined margin analysis for boosting algorithms via equilibrium margin
    • Wang, L., Sugiyama, M., Jing, Z., Yang, C., Zhou, Z.H., Feng, J.: A refined margin analysis for boosting algorithms via equilibrium margin. J. Mach. Learn. Res. 12, 1835-1863 (2011)
    • (2011) J. Mach. Learn. Res , vol.12 , pp. 1835-1863
    • Wang, L.1    Sugiyama, M.2    Jing, Z.3    Yang, C.4    Zhou, Z.H.5    Feng, J.6
  • 38
    • 4644257995 scopus 로고    scopus 로고
    • Statistical behavior and consistency of classification methods based on convex risk minimization
    • Zhang, T.: Statistical behavior and consistency of classification methods based on convex risk minimization. Ann. Stat. 32(1), 56-134 (2004)
    • (2004) Ann. Stat , vol.32 , Issue.1 , pp. 56-134
    • Zhang, T.1
  • 39
    • 26444493144 scopus 로고    scopus 로고
    • Boosting with early stopping: Convergence and consistency
    • Zhang, T., Yu, B.: Boosting with early stopping: convergence and consistency. Ann. Stat. 33(4), 1538-1579 (2005)
    • (2005) Ann. Stat , vol.33 , Issue.4 , pp. 1538-1579
    • Zhang, T.1    Yu, B.2
  • 40
    • 37749006178 scopus 로고    scopus 로고
    • Stagewise Lasso
    • Zhao, P., Yu, B.: Stagewise Lasso. J. Mach. Learn. Res. 8, 2701-2726 (2007)
    • (2007) J. Mach. Learn. Res , vol.8 , pp. 2701-2726
    • Zhao, P.1    Yu, B.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.