메뉴 건너뛰기




Volumn 6, Issue 12, 2013, Pages 6137-6152

Hour-ahead wind speed and power forecasting using empirical mode decomposition

Author keywords

Artificial neural network; Empirical mode decomposition; Intrinsic mode function; Wind power

Indexed keywords

DEEP NEURAL NETWORKS; ELECTRIC LOAD DISPATCHING; ELECTRIC POWER GENERATION; ELECTRIC POWER TRANSMISSION NETWORKS; FORECASTING; FUNCTIONS; NEURAL NETWORKS; SCHEDULING; SIGNAL PROCESSING; SMART POWER GRIDS; SPEED; TURBOGENERATORS; WIND EFFECTS; WIND POWER; WIND TURBINES;

EID: 84890167160     PISSN: None     EISSN: 19961073     Source Type: Journal    
DOI: 10.3390/en6126137     Document Type: Article
Times cited : (48)

References (23)
  • 1
    • 84890241807 scopus 로고    scopus 로고
    • National Energy Technology Laboratory. A Report Developed for the U.S. Department of Energy, Office of Electricity Delivery and Energy Reliability; National Energy Technology Laboratory: Washington, DC, USA
    • National Energy Technology Laboratory. The Modern Grid Strategy. Building a Smart Grid Business Case; A Report Developed for the U.S. Department of Energy, Office of Electricity Delivery and Energy Reliability; National Energy Technology Laboratory: Washington, DC, USA, 2009.
    • (2009) The Modern Grid Strategy. Building a Smart Grid Business Case
  • 3
    • 84877349401 scopus 로고    scopus 로고
    • A new two-stage approach to short term electrical load forecasting
    • Božic, M.; Stojanovic, M.; Stajic, Z.; Tasic, D. A new two-stage approach to short term electrical load forecasting. Energies 2013, 6, 2130-2148.
    • (2013) Energies , vol.6 , pp. 2130-2148
    • Božic, M.1    Stojanovic, M.2    Stajic, Z.3    Tasic, D.4
  • 4
    • 84870745105 scopus 로고    scopus 로고
    • Annual electric load forecasting by a least squares support vector machine with a fruit fly optimization algorithm
    • Li, H.Z.; Guo, S.; Zhao, H.R.; Su, C.B.; Wang, B. Annual electric load forecasting by a least squares support vector machine with a fruit fly optimization algorithm. Energies 2012, 5, 4430-4445.
    • (2012) Energies , vol.5 , pp. 4430-4445
    • Li, H.Z.1    Guo, S.2    Zhao, H.R.3    Su, C.B.4    Wang, B.5
  • 5
    • 84877355447 scopus 로고    scopus 로고
    • Support vector regression model based on empirical mode decomposition and auto regression for electric load forecasting
    • Fan, G.F.; Qing, S.; Wang, H.; Hong, W.C.; Li, H.J. Support vector regression model based on empirical mode decomposition and auto regression for electric load forecasting. Energies 2013, 6, 1887-1901.
    • (2013) Energies , vol.6 , pp. 1887-1901
    • Fan, G.F.1    Qing, S.2    Wang, H.3    Hong, W.C.4    Li, H.J.5
  • 6
    • 84877686108 scopus 로고    scopus 로고
    • Load forecast model switching scheme for improved robustness to changes in building energy consumption patterns
    • Yoo, J.; Hur, K. Load forecast model switching scheme for improved robustness to changes in building energy consumption patterns. Energies 2013, 6, 1329-1343.
    • (2013) Energies , vol.6 , pp. 1329-1343
    • Yoo, J.1    Hur, K.2
  • 7
    • 84861823295 scopus 로고    scopus 로고
    • Short-term solar irradiance forecasting model based on artificial neural network using statistical feature parameters
    • Wang, F.; Mi, Z.Q.; Su, S.; Zhao, H.S. Short-term solar irradiance forecasting model based on artificial neural network using statistical feature parameters. Energies 2012, 5, 1355-1370.
    • (2012) Energies , vol.5 , pp. 1355-1370
    • Wang, F.1    Mi, Z.Q.2    Su, S.3    Zhao, H.S.4
  • 10
    • 70049094192 scopus 로고    scopus 로고
    • Wind power density forecasting using ensemble predictions and time series models
    • Taylor, J.W.; McSharry, P.E.; Roberto, B. Wind power density forecasting using ensemble predictions and time series models. IEEE Trans. Energy Convers. 2009, 24, 775-782.
    • (2009) IEEE Trans. Energy Convers. , vol.24 , pp. 775-782
    • Taylor, J.W.1    McSharry, P.E.2    Roberto, B.3
  • 11
    • 84859036543 scopus 로고    scopus 로고
    • AWNN-assisted wind power forecasting using feed-forward neural network
    • Bhaskar, K.; Singh, S.N. AWNN-assisted wind power forecasting using feed-forward neural network. IEEE Trans. Sustain. Energy 2012, 3, 306-315.
    • (2012) IEEE Trans. Sustain. Energy , vol.3 , pp. 306-315
    • Bhaskar, K.1    Singh, S.N.2
  • 12
    • 84874753088 scopus 로고    scopus 로고
    • Quantile forecasting of wind power using variability indices
    • Anastasiades, G.; McSharry, P. Quantile forecasting of wind power using variability indices. Energies 2013, 6, 662-695.
    • (2013) Energies , vol.6 , pp. 662-695
    • Anastasiades, G.1    McSharry, P.2
  • 13
    • 84866534364 scopus 로고    scopus 로고
    • A fuzzy group forecasting model based on least squares support vector machine (LS-SVM) for short-term wind power
    • Zhang, Q.; Lai, K.K.; Niu, D.X.; Wang, Q.; Zhang, X.B. A fuzzy group forecasting model based on least squares support vector machine (LS-SVM) for short-term wind power. Energies 2012, 5, 3329-3346.
    • (2012) Energies , vol.5 , pp. 3329-3346
    • Zhang, Q.1    Lai, K.K.2    Niu, D.X.3    Wang, Q.4    Zhang, X.B.5
  • 14
    • 78650402541 scopus 로고    scopus 로고
    • Hybrid wavelet-PSO-ANFIS approach for short-term wind power forecasting in Portugal
    • Catalão, J.P.S.; Pousinho, H.M.I.; Mendes, V.M.F. Hybrid wavelet-PSO-ANFIS approach for short-term wind power forecasting in Portugal. IEEE Trans. Sustain. Energy 2011, 2, 50-59.
    • (2011) IEEE Trans. Sustain. Energy , vol.2 , pp. 50-59
    • Catalão, J.P.S.1    Pousinho, H.M.I.2    Mendes, V.M.F.3
  • 15
    • 33646352206 scopus 로고    scopus 로고
    • Very short-term wind forecasting for Tasmanian power generation
    • Potter, C.W.; Negnevitsky, M. Very short-term wind forecasting for Tasmanian power generation. IEEE Trans. Power Syst. 2006, 21, 965-972.
    • (2006) IEEE Trans. Power Syst. , vol.21 , pp. 965-972
    • Potter, C.W.1    Negnevitsky, M.2
  • 16
    • 79959557168 scopus 로고    scopus 로고
    • Wind power prediction by a new forecast engine composed of modified hybrid neural network and enhanced particle swarm optimization
    • Amjady, N.; Keynia, F.; Zareipour, H. Wind power prediction by a new forecast engine composed of modified hybrid neural network and enhanced particle swarm optimization. IEEE Trans. Sustain. Energy 2011, 2, 265-276.
    • (2011) IEEE Trans. Sustain. Energy , vol.2 , pp. 265-276
    • Amjady, N.1    Keynia, F.2    Zareipour, H.3
  • 17
    • 84880255073 scopus 로고    scopus 로고
    • Prediction intervals for short-term wind farm power generation forecasts
    • Khosravi, A.; Nahavandi, S.; Creighton, D. Prediction intervals for short-term wind farm power generation forecasts. IEEE Trans. Sustain. Energy 2013, 4, 602-610.
    • (2013) IEEE Trans. Sustain. Energy , vol.4 , pp. 602-610
    • Khosravi, A.1    Nahavandi, S.2    Creighton, D.3
  • 18
    • 79751505649 scopus 로고    scopus 로고
    • Bayesian adaptive combination of short-term wind speed forecasts from neural network models
    • Li, G.; Shi, J.; Zhou, J.Y. Bayesian adaptive combination of short-term wind speed forecasts from neural network models. Renew. Energy 2011, 36, 352-359.
    • (2011) Renew. Energy , vol.36 , pp. 352-359
    • Li, G.1    Shi, J.2    Zhou, J.Y.3
  • 19
    • 80052530027 scopus 로고    scopus 로고
    • Short-term wind power forecasting using ridgelet neural network
    • Amjadya, N.; Keyniaa, F.; Zareipour, H. Short-term wind power forecasting using ridgelet neural network. Electric Power Syst. Res. 2011, 81, 2099-2107.
    • (2011) Electric Power Syst. Res. , vol.81 , pp. 2099-2107
    • Amjadya, N.1    Keyniaa, F.2    Zareipour, H.3
  • 20
    • 77949570119 scopus 로고    scopus 로고
    • A hybrid statistical method to predict wind speed and wind power
    • Liu, H.; Tian, H.Q.; Chen, C.; Li, Y.F. A hybrid statistical method to predict wind speed and wind power. Renew. Energy 2010, 35, 1857-1861.
    • (2010) Renew. Energy , vol.35 , pp. 1857-1861
    • Liu, H.1    Tian, H.Q.2    Chen, C.3    Li, Y.F.4
  • 21
    • 55349098201 scopus 로고    scopus 로고
    • Short-term wind power forecasting using evolutionary algorithms for the automated specification of artificial intelligence models
    • Jursa, R.; Rohrig, K. Short-term wind power forecasting using evolutionary algorithms for the automated specification of artificial intelligence models. Int. J. Forecast. 2008, 24, 694-709.
    • (2008) Int. J. Forecast. , vol.24 , pp. 694-709
    • Jursa, R.1    Rohrig, K.2
  • 22
    • 78650944534 scopus 로고    scopus 로고
    • Fine tuning support vector machines for short-term wind speed forecasting
    • Zhou, J.Y.; Shi, J.; Li, G. Fine tuning support vector machines for short-term wind speed forecasting. Energy Convers. Manag. 2011, 52, 1990-1998.
    • (2011) Energy Convers. Manag. , vol.52 , pp. 1990-1998
    • Zhou, J.Y.1    Shi, J.2    Li, G.3
  • 23


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.