메뉴 건너뛰기




Volumn , Issue , 2013, Pages

A novel wind speed forecasting method based on ensemble empirical mode decomposition and GA-BP neural network

Author keywords

EEMD; EMD; GA BP Neural Network; Genetic Algorithm; Wind Speed Forecasting

Indexed keywords

EEMD; EMD; EMPIRICAL MODE DECOMPOSITION; ENSEMBLE EMPIRICAL MODE DECOMPOSITION; ENSEMBLE EMPIRICAL MODE DECOMPOSITIONS (EEMD); GA-BP NEURAL NETWORKS; WIND ENERGY CONVERSION SYSTEM; WIND SPEED FORECASTING;

EID: 84893188504     PISSN: 19449925     EISSN: 19449933     Source Type: Conference Proceeding    
DOI: 10.1109/PESMG.2013.6672195     Document Type: Conference Paper
Times cited : (29)

References (18)
  • 1
    • 0005581003 scopus 로고    scopus 로고
    • A mathematical look at a physical power prediction model
    • Sep.
    • L. Landberg, "A mathematical look at a physical power prediction model", Wind Energy, vol. l, pp. 23-28, Sep. 1998.
    • (1998) Wind Energy , vol.1 , pp. 23-28
    • Landberg, L.1
  • 2
    • 84962377388 scopus 로고    scopus 로고
    • Evaluation of the high-resolution model forecasts over the Taiwan area during GEVIEX
    • J. S. Hong, "Evaluation of the high-resolution model forecasts over the Taiwan area during GEVIEX", Weather and Forecasting, vol. 18, pp. 23-28, 1998.
    • (1998) Weather and Forecasting , vol.18 , pp. 23-28
    • Hong, J.S.1
  • 4
  • 6
    • 0037224608 scopus 로고    scopus 로고
    • Forecasting wind with neural networks
    • A. More and M. C. Deo, "Forecasting wind with neural networks", Marine Structures, vol. 16, pp. 35-49, 2003.
    • (2003) Marine Structures , vol.16 , pp. 35-49
    • More, A.1    Deo, M.C.2
  • 7
    • 77953137822 scopus 로고    scopus 로고
    • On comparing three artificial neural networks for wind speed forecasting
    • G. Li and J. Shi, "On comparing three artificial neural networks for wind speed forecasting", Applied Energy, vol. 87, pp. 2313-2320, 2010.
    • (2010) Applied Energy , vol.87 , pp. 2313-2320
    • Li, G.1    Shi, J.2
  • 8
    • 54149110925 scopus 로고    scopus 로고
    • A new strategy for wind speed forecasting using artificial intelligent methods
    • M. Monfared, H. Rastegar and H. M. Kojabadi, "A new strategy for wind speed forecasting using artificial intelligent methods", Renewable Energy, vol. 34, pp. 845-848, 2009.
    • (2009) Renewable Energy , vol.34 , pp. 845-848
    • Monfared, M.1    Rastegar, H.2    Kojabadi, H.M.3
  • 9
    • 84861423084 scopus 로고    scopus 로고
    • Comparing the applications of EMD and EEMD on time frequency analysis of seismic signal
    • W. Tong, Z. Mingcai, Y. Qihao, and Z. Huyuan, "Comparing the applications of EMD and EEMD on time frequency analysis of seismic signal", Journal of Applied Geophysics, vol. 83, pp. 29-34, 2012.
    • (2012) Journal of Applied Geophysics , vol.83 , pp. 29-34
    • Tong, W.1    Mingcai, Z.2    Qihao, Y.3    Huyuan, Z.4
  • 10
    • 58949088453 scopus 로고    scopus 로고
    • Application of the EEMD method to rotor fault diagnosis of rotating machinery
    • Y. Lei, Z. He and Y. Zi, "Application of the EEMD method to rotor fault diagnosis of rotating machinery", Mechanical Systems and Signal Processing, vol. 23, pp. 1327-1338, 2009.
    • (2009) Mechanical Systems and Signal Processing , vol.23 , pp. 1327-1338
    • Lei, Y.1    He, Z.2    Zi, Y.3
  • 11
    • 79955647441 scopus 로고    scopus 로고
    • Feed-axis gearbox condition monitoring using built-in position sensors and EEMD method
    • Y. Zhou, T. Tao, X. Mei, G. Jiang, and N. Sun, "Feed-axis gearbox condition monitoring using built-in position sensors and EEMD method", Robotics and Computer-integrated Manufacturing, vol. 27, pp. 785-793, 2011.
    • (2011) Robotics and Computer-integrated Manufacturing , vol.27 , pp. 785-793
    • Zhou, Y.1    Tao, T.2    Mei, X.3    Jiang, G.4    Sun, N.5
  • 12
    • 77952629975 scopus 로고    scopus 로고
    • Application of the VLF-EM method with EEMD to the study of a mud volcano in southern Taiwan
    • M. J. Lin and Y. Jeng, "Application of the VLF-EM method with EEMD to the study of a mud volcano in southern Taiwan", Geomorphology, vol. 119, pp. 97-110, 2010.
    • (2010) Geomorphology , vol.119 , pp. 97-110
    • Lin, M.J.1    Jeng, Y.2
  • 13
    • 5444236478 scopus 로고    scopus 로고
    • The empirical mode decomposition and the Hilbert spectrum for nonlinear and nonstationary time series analysis
    • N. E. Huang, Z. Shen and S. R. Long, "The Empirical mode decomposition and the Hilbert spectrum for nonlinear and nonstationary time series analysis", Proceedings of the Royal Society of London, vol. 454, pp. 903 995, 1998.
    • (1998) Proceedings of the Royal Society of London , vol.454 , pp. 903-995
    • Huang, N.E.1    Shen, Z.2    Long, S.R.3
  • 14
    • 80052078099 scopus 로고    scopus 로고
    • Ensemble empirical mode decomposition: A noise assisted data analysis method
    • Z. H. Wu and N. E. Huang, "Ensemble empirical mode decomposition: a noise assisted data analysis method", Advances in Adaptive Data Analysis, vol. I, pp. 1-41, 2009.
    • (2009) Advances in Adaptive Data Analysis , vol.1 , pp. 1-41
    • Wu, Z.H.1    Huang, N.E.2
  • 16
    • 2542525254 scopus 로고    scopus 로고
    • A study of the characteristics of white noise using the empirical mode decomposition method
    • Z. H. Wu and N. E. Huang, "A study of the characteristics of white noise using the empirical mode decomposition method", Proceedings of the Royal Society of London, vol. 460 A, pp. 1597-1611, 2004.
    • (2004) Proceedings of the Royal Society of London , vol.460 A , pp. 1597-1611
    • Wu, Z.H.1    Huang, N.E.2
  • 17
    • 0034963531 scopus 로고    scopus 로고
    • Arti ficial neural networks in renewable energy systems applications: A review
    • S. A. Kalogirou, "Arti ficial neural networks in renewable energy systems applications: a review", Renewable and Sustainable Energy Reviews, vol. 5, pp. 373-401, 2001.
    • (2001) Renewable and Sustainable Energy Reviews , vol.5 , pp. 373-401
    • Kalogirou, S.A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.