-
1
-
-
84929146225
-
Four wind speed multi-step forecasting models using extreme learning machines and signal decomposing algorithms
-
[1] Liu, H., Tian, H.Q., Li, Y.F., Four wind speed multi-step forecasting models using extreme learning machines and signal decomposing algorithms. Energy Convers Manage 100 (2015), 16–22.
-
(2015)
Energy Convers Manage
, vol.100
, pp. 16-22
-
-
Liu, H.1
Tian, H.Q.2
Li, Y.F.3
-
2
-
-
84954424030
-
Linear and non-linear autoregressive models for short-term wind speed forecasting
-
[2] Lydia, M., Kumar, S.S., Selvakumar, A.I., Kumar, G.E., Linear and non-linear autoregressive models for short-term wind speed forecasting. Energy Convers Manage 112 (2016), 115–124.
-
(2016)
Energy Convers Manage
, vol.112
, pp. 115-124
-
-
Lydia, M.1
Kumar, S.S.2
Selvakumar, A.I.3
Kumar, G.E.4
-
3
-
-
84925326167
-
Aggregated wind power generation probabilistic forecasting based on particle filter
-
[3] Li, P., Guan, X., Wu, J., Aggregated wind power generation probabilistic forecasting based on particle filter. Energy Convers Manage 96 (2015), 579–587.
-
(2015)
Energy Convers Manage
, vol.96
, pp. 579-587
-
-
Li, P.1
Guan, X.2
Wu, J.3
-
4
-
-
84961219483
-
Charging, power management, and battery degradation mitigation in plug-in hybrid electric vehicles: a unified cost-optimal approach
-
[4] Hu, X., Martinez, C.M., Yang, Y., Charging, power management, and battery degradation mitigation in plug-in hybrid electric vehicles: a unified cost-optimal approach. Mech Syst Signal Process, 2016, 10.1016/j.ymssp.2016.03.004.
-
(2016)
Mech Syst Signal Process
-
-
Hu, X.1
Martinez, C.M.2
Yang, Y.3
-
5
-
-
84860890595
-
Data mining and wind power prediction: a literature review
-
[5] Colak, I., Sagiroglu, S., Yesilbudak, M., Data mining and wind power prediction: a literature review. Renew Energy 42 (2012), 241–247.
-
(2012)
Renew Energy
, vol.42
, pp. 241-247
-
-
Colak, I.1
Sagiroglu, S.2
Yesilbudak, M.3
-
6
-
-
50849132200
-
A literature review of wind forecasting technology in the world
-
IEEE Lausanne
-
[6] Wu, Y.K., Hong, J.S., A literature review of wind forecasting technology in the world. Power Tech, 2007, IEEE, Lausanne, 504–509.
-
(2007)
Power Tech
, pp. 504-509
-
-
Wu, Y.K.1
Hong, J.S.2
-
7
-
-
84897459902
-
A review of combined approaches for prediction of short-term wind speed and power
-
[7] Tascikaraoglu, A., Uzunoglu, M., A review of combined approaches for prediction of short-term wind speed and power. Renew Sustain Energy Rev 34 (2014), 243–254.
-
(2014)
Renew Sustain Energy Rev
, vol.34
, pp. 243-254
-
-
Tascikaraoglu, A.1
Uzunoglu, M.2
-
8
-
-
84939864064
-
A review on the recent history of wind power ramp forecasting
-
[8] Gallego-Castillo, C., Cuerva-Tejero, A., Lopez-Garcia, O., A review on the recent history of wind power ramp forecasting. Renew Sustain Energy Rev 52 (2015), 1148–1157.
-
(2015)
Renew Sustain Energy Rev
, vol.52
, pp. 1148-1157
-
-
Gallego-Castillo, C.1
Cuerva-Tejero, A.2
Lopez-Garcia, O.3
-
9
-
-
79961126223
-
Current methods and advances in forecasting of wind power generation
-
[9] Foley, A.M., Leahy, P.G., Marvuglia, A., McKeogh, E.J., Current methods and advances in forecasting of wind power generation. Renew Energy 37 (2012), 1–8.
-
(2012)
Renew Energy
, vol.37
, pp. 1-8
-
-
Foley, A.M.1
Leahy, P.G.2
Marvuglia, A.3
McKeogh, E.J.4
-
10
-
-
84892960976
-
Current status and future advances for wind speed and power forecasting
-
[10] Jung, J., Broadwater, R.P., Current status and future advances for wind speed and power forecasting. Renew Sustain Energy Rev 31 (2014), 762–777.
-
(2014)
Renew Sustain Energy Rev
, vol.31
, pp. 762-777
-
-
Jung, J.1
Broadwater, R.P.2
-
11
-
-
84893275099
-
Review on probabilistic forecasting of wind power generation
-
[11] Zhang, Y., Wang, J., Wang, X., Review on probabilistic forecasting of wind power generation. Renew Sustain Energy Rev 32 (2014), 255–270.
-
(2014)
Renew Sustain Energy Rev
, vol.32
, pp. 255-270
-
-
Zhang, Y.1
Wang, J.2
Wang, X.3
-
12
-
-
78650045524
-
A review of wind power and wind speed forecasting methods with different time horizons
-
[12] Soman, S.S., Zareipour, H., Malik, O., Mandal, P., A review of wind power and wind speed forecasting methods with different time horizons. North American power symposium (NAPS), 2010, 1–8.
-
(2010)
North American power symposium (NAPS)
, pp. 1-8
-
-
Soman, S.S.1
Zareipour, H.2
Malik, O.3
Mandal, P.4
-
13
-
-
84997706201
-
Artificial neural networks applications in wind energy systems: a review
-
[13] Ata, R., Artificial neural networks applications in wind energy systems: a review. Renew Sustain Energy Rev 49 (2015), 534–562.
-
(2015)
Renew Sustain Energy Rev
, vol.49
, pp. 534-562
-
-
Ata, R.1
-
14
-
-
84908480576
-
A novel fuzzy multi-objective framework to construct optimal prediction intervals for wind power forecast
-
[14] Kavousi-Fard, A., Khosravi, A., Nahavadi, S., A novel fuzzy multi-objective framework to construct optimal prediction intervals for wind power forecast. Proceedings of the international joint conference neural networks (IJCNN), 2014, 1015–1019.
-
(2014)
Proceedings of the international joint conference neural networks (IJCNN)
, pp. 1015-1019
-
-
Kavousi-Fard, A.1
Khosravi, A.2
Nahavadi, S.3
-
15
-
-
78049513565
-
Very short-term wind speed prediction: a new artificial neural network-Markov chain model
-
[15] Pourmousavi Kani, S.A., Ardehali, M.M., Very short-term wind speed prediction: a new artificial neural network-Markov chain model. Energy Convers Manage 52 (2011), 738–745.
-
(2011)
Energy Convers Manage
, vol.52
, pp. 738-745
-
-
Pourmousavi Kani, S.A.1
Ardehali, M.M.2
-
16
-
-
84865557377
-
Very short-term wind speed forecasting with Bayesian structural break model
-
[16] Jiang, Y., Song, Z., Kusiak, A., Very short-term wind speed forecasting with Bayesian structural break model. Renew Energy 50 (2013), 637–647.
-
(2013)
Renew Energy
, vol.50
, pp. 637-647
-
-
Jiang, Y.1
Song, Z.2
Kusiak, A.3
-
17
-
-
84901427227
-
Noise model based on v-support vector regression with its application to short-term wind speed forecasting
-
[17] Hu, Q., Zhang, S., Xie, Z., Mi, J., Wan, J., Noise model based on v-support vector regression with its application to short-term wind speed forecasting. Neural Netw 57 (2014), 1–11.
-
(2014)
Neural Netw
, vol.57
, pp. 1-11
-
-
Hu, Q.1
Zhang, S.2
Xie, Z.3
Mi, J.4
Wan, J.5
-
18
-
-
84934887601
-
Transfer learning for short-term wind speed prediction with deep neural networks
-
[18] Hu, Q., Zhang, R., Zhou, Y., Transfer learning for short-term wind speed prediction with deep neural networks. Renew Energy 85 (2016), 83–95.
-
(2016)
Renew Energy
, vol.85
, pp. 83-95
-
-
Hu, Q.1
Zhang, R.2
Zhou, Y.3
-
19
-
-
84949115095
-
A selection of time series models for short- to medium-term wind power forecasting
-
[19] Croonenbroeck, C., Ambach, D., A selection of time series models for short- to medium-term wind power forecasting. J Wind Eng Ind Aerodyn 136 (2015), 201–210.
-
(2015)
J Wind Eng Ind Aerodyn
, vol.136
, pp. 201-210
-
-
Croonenbroeck, C.1
Ambach, D.2
-
20
-
-
84949681323
-
A robust combination approach for short-term wind speed forecasting and analysis – combination of the ARIMA (Autoregressive Integrated Moving Average), ELM (Extreme Learning Machine), SVM (Support Vector Machine) and LSSVM (Least Square SVM) forecasts using a GPR (Gaussian Process Regression) model
-
[20] Wang, J., Hu, J., A robust combination approach for short-term wind speed forecasting and analysis – combination of the ARIMA (Autoregressive Integrated Moving Average), ELM (Extreme Learning Machine), SVM (Support Vector Machine) and LSSVM (Least Square SVM) forecasts using a GPR (Gaussian Process Regression) model. Energy 93 (2015), 41–56.
-
(2015)
Energy
, vol.93
, pp. 41-56
-
-
Wang, J.1
Hu, J.2
-
21
-
-
84860255082
-
Forecasting wind speed with recurrent neural networks
-
[21] Cao, Q., Ewing, B.T., Thompson, M.A., Forecasting wind speed with recurrent neural networks. Eur J Oper Res 221 (2012), 148–154.
-
(2012)
Eur J Oper Res
, vol.221
, pp. 148-154
-
-
Cao, Q.1
Ewing, B.T.2
Thompson, M.A.3
-
22
-
-
84941270020
-
Analysis of multi-scale chaotic characteristics of wind power based on Hilbert–Huang transform and Hurst analysis
-
[22] Liang, Z., Liang, J., Zhang, L., Wang, C., Yun, Z., Zhang, X., Analysis of multi-scale chaotic characteristics of wind power based on Hilbert–Huang transform and Hurst analysis. Appl Energy 159 (2015), 51–61.
-
(2015)
Appl Energy
, vol.159
, pp. 51-61
-
-
Liang, Z.1
Liang, J.2
Zhang, L.3
Wang, C.4
Yun, Z.5
Zhang, X.6
-
23
-
-
84907974670
-
Comparison of new hybrid FEEMD-MLP, FEEMD-ANFIS, Wavelet Packet-MLP and Wavelet Packet-ANFIS for wind speed predictions
-
[23] Liu, H., Tian, H.G., Li, Y.F., Comparison of new hybrid FEEMD-MLP, FEEMD-ANFIS, Wavelet Packet-MLP and Wavelet Packet-ANFIS for wind speed predictions. Energy Convers Manage 89 (2015), 1–11.
-
(2015)
Energy Convers Manage
, vol.89
, pp. 1-11
-
-
Liu, H.1
Tian, H.G.2
Li, Y.F.3
-
24
-
-
84887255451
-
Hybrid technique of ant colony and particle swarm optimization for short term wind energy forecasting
-
[24] Rahmani, R., Yusof, R., Seyedmahmoudian, M., Mekhilef, S., Hybrid technique of ant colony and particle swarm optimization for short term wind energy forecasting. J Wind Eng Ind Aerodyn 123 (2013), 163–170.
-
(2013)
J Wind Eng Ind Aerodyn
, vol.123
, pp. 163-170
-
-
Rahmani, R.1
Yusof, R.2
Seyedmahmoudian, M.3
Mekhilef, S.4
-
25
-
-
84929622158
-
Ensemble methods for wind and solar power forecasting – a state-of-the-art review
-
[25] Ren, Y., Suganthan, P.N., Srikanth, N., Ensemble methods for wind and solar power forecasting – a state-of-the-art review. Renew Sustain Energy Rev 50 (2015), 82–91.
-
(2015)
Renew Sustain Energy Rev
, vol.50
, pp. 82-91
-
-
Ren, Y.1
Suganthan, P.N.2
Srikanth, N.3
-
26
-
-
84926219686
-
Ramp forecasting performance from improved short-term wind power forecasting
-
[26] Zhang, J., Florita, A., Hodge, B.M., Freedman, J., Ramp forecasting performance from improved short-term wind power forecasting. Proceedings of the ASME 2014 international design engineering technical conferences and computers and information in engineering conference (IDETC/CIE ’14), 2014.
-
(2014)
Proceedings of the ASME 2014 international design engineering technical conferences and computers and information in engineering conference (IDETC/CIE ’14)
-
-
Zhang, J.1
Florita, A.2
Hodge, B.M.3
Freedman, J.4
-
27
-
-
84908376968
-
Short-term wind power forecasting using adaptive neuro-fuzzy inference system combined with evolutionary particle swarm optimization, wavelet transform and mutual information
-
[27] Osorio, G.J., Matias, J.C.O., Catalao, J.P.S., Short-term wind power forecasting using adaptive neuro-fuzzy inference system combined with evolutionary particle swarm optimization, wavelet transform and mutual information. Renew Energy 75 (2015), 301–307.
-
(2015)
Renew Energy
, vol.75
, pp. 301-307
-
-
Osorio, G.J.1
Matias, J.C.O.2
Catalao, J.P.S.3
-
28
-
-
84939164474
-
Short-term wind speed forecasting based on spectral clustering and optimized echo state networks
-
[28] Liu, D., Wang, J., Wang, H., Short-term wind speed forecasting based on spectral clustering and optimized echo state networks. Renew Energy 78 (2015), 599–608.
-
(2015)
Renew Energy
, vol.78
, pp. 599-608
-
-
Liu, D.1
Wang, J.2
Wang, H.3
-
29
-
-
84949925043
-
A hybrid intelligent framework for wind power forecasting engine
-
[29] Haque, A.U., Mandal, P., Nehrir, H.M., Bhuiya, A., Baker, A hybrid intelligent framework for wind power forecasting engine. Proceedings of the electrical power and energy conference (EPEC ’14), 2014, 184–189.
-
(2014)
Proceedings of the electrical power and energy conference (EPEC ’14)
, pp. 184-189
-
-
Haque, A.U.1
Mandal, P.2
Nehrir, H.M.3
Bhuiya, A.4
Baker5
-
30
-
-
84937909008
-
Wind speed forecasting for wind farms: a method based on support vector regression
-
[30] Santamaría-Bonfil, G., Reyes-Ballesteros, A., Gershenson, C., Wind speed forecasting for wind farms: a method based on support vector regression. Renew Energy 85 (2016), 790–809.
-
(2016)
Renew Energy
, vol.85
, pp. 790-809
-
-
Santamaría-Bonfil, G.1
Reyes-Ballesteros, A.2
Gershenson, C.3
-
31
-
-
33745813525
-
Improved wind power forecasting using a combined neuro-fuzzy and artificial neural network model
-
Springer Berlin Heidelberg
-
[31] Katsigiannis, Y.A., Tsikalakis, A.G., Georgilakis, P.S., Hatziargyriou, N.D., Improved wind power forecasting using a combined neuro-fuzzy and artificial neural network model. Advances in artificial intelligence, 2006, Springer, Berlin Heidelberg, 105–115.
-
(2006)
Advances in artificial intelligence
, pp. 105-115
-
-
Katsigiannis, Y.A.1
Tsikalakis, A.G.2
Georgilakis, P.S.3
Hatziargyriou, N.D.4
-
32
-
-
78049524148
-
A hybrid PSO-ANFIS approach for short-term wind power prediction in Portugal
-
[32] Pousinho, H.M.I., Mendes, V.M.F., Catalao, J.P.S., A hybrid PSO-ANFIS approach for short-term wind power prediction in Portugal. Energy Convers Manage 52 (2011), 397–402.
-
(2011)
Energy Convers Manage
, vol.52
, pp. 397-402
-
-
Pousinho, H.M.I.1
Mendes, V.M.F.2
Catalao, J.P.S.3
-
33
-
-
84930940764
-
Wind speed prediction using the hybrid model of wavelet decomposition and artificial bee colony algorithm-based on relevance vector machine
-
[33] Fei, S., He, Y., Wind speed prediction using the hybrid model of wavelet decomposition and artificial bee colony algorithm-based on relevance vector machine. Electr Power Energy Syst 73 (2015), 625–631.
-
(2015)
Electr Power Energy Syst
, vol.73
, pp. 625-631
-
-
Fei, S.1
He, Y.2
-
34
-
-
84916917658
-
Daily wind speed forecasting through hybrid KF-ANN model based on ARIMA
-
[34] Shukur, O.B., Lee, M.H., Daily wind speed forecasting through hybrid KF-ANN model based on ARIMA. Renew Energy 76 (2015), 637–647.
-
(2015)
Renew Energy
, vol.76
, pp. 637-647
-
-
Shukur, O.B.1
Lee, M.H.2
-
35
-
-
78650937809
-
An adaptive framework based on multi-model data fusion for one-day-ahead wind power forecasting
-
[35] Vaccaro, A., Mercogliano, P., Schiano, P., Villacci, D., An adaptive framework based on multi-model data fusion for one-day-ahead wind power forecasting. Electr Power Syst Res 81 (2011), 775–782.
-
(2011)
Electr Power Syst Res
, vol.81
, pp. 775-782
-
-
Vaccaro, A.1
Mercogliano, P.2
Schiano, P.3
Villacci, D.4
-
36
-
-
84903119035
-
A hybrid intelligent model for deterministic and quantile regression approach for probabilistic wind power forecasting
-
[36] Haque, A.U., Nehrir, H.M., Mandal, P., A hybrid intelligent model for deterministic and quantile regression approach for probabilistic wind power forecasting. IEEE Trans Power Syst 29 (2014), 1663–1672.
-
(2014)
IEEE Trans Power Syst
, vol.29
, pp. 1663-1672
-
-
Haque, A.U.1
Nehrir, H.M.2
Mandal, P.3
-
37
-
-
84927737833
-
Wind power forecasting based on principle component phase space reconstruction
-
[37] Han, L., Romero, C.E., Yao, Z., Wind power forecasting based on principle component phase space reconstruction. Renew Energy 81 (2015), 737–744.
-
(2015)
Renew Energy
, vol.81
, pp. 737-744
-
-
Han, L.1
Romero, C.E.2
Yao, Z.3
-
38
-
-
65249086722
-
Wind farm power prediction: a data-mining approach
-
[38] Kusiak, A., Zheng, H., Song, Z., Wind farm power prediction: a data-mining approach. Wind Eng 12 (2009), 275–293.
-
(2009)
Wind Eng
, vol.12
, pp. 275-293
-
-
Kusiak, A.1
Zheng, H.2
Song, Z.3
-
39
-
-
84926462551
-
A novel wind power forecast model: statistical hybrid wind power forecast technique (SHWIP)
-
[39] Ozkan, M.B., Karagoz, P., A novel wind power forecast model: statistical hybrid wind power forecast technique (SHWIP). IEEE Trans Ind Inform 11 (2015), 375–387.
-
(2015)
IEEE Trans Ind Inform
, vol.11
, pp. 375-387
-
-
Ozkan, M.B.1
Karagoz, P.2
-
40
-
-
84876148886
-
72 hr forecast of wind power in Manisa, Turkey by using the WRF model coupled to WindSim
-
[40] Efe, B., Mentes, S., Unal, Y., Tan, E., Unal, E., Ozdemir, T., et al. 72 hr forecast of wind power in Manisa, Turkey by using the WRF model coupled to WindSim. Proceedings of the International conference on renewable energy research and applications (ICRERA ’12), 2012, 1–6.
-
(2012)
Proceedings of the International conference on renewable energy research and applications (ICRERA ’12)
, pp. 1-6
-
-
Efe, B.1
Mentes, S.2
Unal, Y.3
Tan, E.4
Unal, E.5
Ozdemir, T.6
-
41
-
-
84944909341
-
Short-term wind speed and power forecasting using an ensemble of mixture density neural networks
-
[41] Men, Z., Yee, E., Lien, F.S., Wen, D., Short-term wind speed and power forecasting using an ensemble of mixture density neural networks. Renew Energy 87 (2016), 203–211.
-
(2016)
Renew Energy
, vol.87
, pp. 203-211
-
-
Men, Z.1
Yee, E.2
Lien, F.S.3
Wen, D.4
-
42
-
-
84891696241
-
A 5-day wind speed & power forecasts using a layer recurrent neural network (LRNN)
-
[42] Olaofe, Z.O., A 5-day wind speed & power forecasts using a layer recurrent neural network (LRNN). Sustain Energy Technol Assess 6 (2014), 1–24.
-
(2014)
Sustain Energy Technol Assess
, vol.6
, pp. 1-24
-
-
Olaofe, Z.O.1
-
43
-
-
84905465170
-
Extraction of the inherent nature of wind speed using wavelets and FFT
-
[43] Alam, M.M., Rehman, S., Al-Hadhrami, L.M., Meyer, J.P., Extraction of the inherent nature of wind speed using wavelets and FFT. Energy Sustain Dev 22 (2014), 34–47.
-
(2014)
Energy Sustain Dev
, vol.22
, pp. 34-47
-
-
Alam, M.M.1
Rehman, S.2
Al-Hadhrami, L.M.3
Meyer, J.P.4
-
44
-
-
84911940566
-
Medium-term wind speeds forecasting utilizing hybrid models for three different sites in Xinjiang, China
-
[44] Wang, J., Qin, S., Zhou, Q., Jiang, H., Medium-term wind speeds forecasting utilizing hybrid models for three different sites in Xinjiang, China. Renew Energy 76 (2015), 91–101.
-
(2015)
Renew Energy
, vol.76
, pp. 91-101
-
-
Wang, J.1
Qin, S.2
Zhou, Q.3
Jiang, H.4
-
45
-
-
84912004737
-
Wind speed forecast model for wind farm based on a hybrid machine learning algorithm
-
[45] Haque, A.U., Mandal, P., Meng, J., Negnevitsky, M., Wind speed forecast model for wind farm based on a hybrid machine learning algorithm. Int J Sustain Eng 34 (2015), 38–51.
-
(2015)
Int J Sustain Eng
, vol.34
, pp. 38-51
-
-
Haque, A.U.1
Mandal, P.2
Meng, J.3
Negnevitsky, M.4
-
46
-
-
84938206905
-
Wind speed prediction using reduced support vector machines with feature selection
-
[46] Kong, X., Liu, X., Shi, R., Lee, K.Y., Wind speed prediction using reduced support vector machines with feature selection. Neurocomputing 169 (2015), 449–456.
-
(2015)
Neurocomputing
, vol.169
, pp. 449-456
-
-
Kong, X.1
Liu, X.2
Shi, R.3
Lee, K.Y.4
-
47
-
-
51849142610
-
Short term wind speed forecasting in La Venta, Oaxaca, Mexico, using artificial neural networks
-
[47] Cadenas, E., Rivera, W., Short term wind speed forecasting in La Venta, Oaxaca, Mexico, using artificial neural networks. Renew Energy 34 (2009), 274–278.
-
(2009)
Renew Energy
, vol.34
, pp. 274-278
-
-
Cadenas, E.1
Rivera, W.2
-
48
-
-
55349098201
-
Short-term wind power forecasting using evolutionary algorithms for the automated specification of artificial intelligence models
-
[48] Jursa, R., Rohrig, K., Short-term wind power forecasting using evolutionary algorithms for the automated specification of artificial intelligence models. Int J Forecast 24 (2008), 694–709.
-
(2008)
Int J Forecast
, vol.24
, pp. 694-709
-
-
Jursa, R.1
Rohrig, K.2
-
49
-
-
61649090211
-
Short-term prediction of wind farm power: a data mining approach
-
[49] Kusiak, A., Zheng, H., Song, Z., Short-term prediction of wind farm power: a data mining approach. IEEE Trans Energy Convers 24 (2009), 125–136.
-
(2009)
IEEE Trans Energy Convers
, vol.24
, pp. 125-136
-
-
Kusiak, A.1
Zheng, H.2
Song, Z.3
-
50
-
-
77955279506
-
Hour-ahead wind power and speed forecasting using simultaneous perturbation stochastic approximation (SPSA) algorithm and neural network with fuzzy inputs
-
[50] Hong, Y.Y., Chang, H.L., Chiu, C.S., Hour-ahead wind power and speed forecasting using simultaneous perturbation stochastic approximation (SPSA) algorithm and neural network with fuzzy inputs. Energy 35 (2010), 3870–3876.
-
(2010)
Energy
, vol.35
, pp. 3870-3876
-
-
Hong, Y.Y.1
Chang, H.L.2
Chiu, C.S.3
-
51
-
-
77958144053
-
Genetic algorithm-piecewise support vector machine model for short term wind power prediction
-
[51] Shi, J., Yang, Y., Wang, P., Liu, Y., Han, S., Genetic algorithm-piecewise support vector machine model for short term wind power prediction. Proceedings of the 8th world congress on intelligent control and automation (ICA ’10), 2010, 2254–2258.
-
(2010)
Proceedings of the 8th world congress on intelligent control and automation (ICA ’10)
, pp. 2254-2258
-
-
Shi, J.1
Yang, Y.2
Wang, P.3
Liu, Y.4
Han, S.5
-
52
-
-
77958130779
-
Short-term forecasting of wind turbine power generation based on genetic neural network
-
[52] Weidong, X., Yibing, L., Xingpei, L., Short-term forecasting of wind turbine power generation based on genetic neural network. Proceedings of the eighth world congress on intelligent control and automation (ICA ’10), 2010, 5943–5946.
-
(2010)
Proceedings of the eighth world congress on intelligent control and automation (ICA ’10)
, pp. 5943-5946
-
-
Weidong, X.1
Yibing, L.2
Xingpei, L.3
-
53
-
-
73449107489
-
Wind power prediction using wavelet transform and chaotic characteristics
-
[53] Wang, L., Dong, L., Hao, Y., Liao, X., Wind power prediction using wavelet transform and chaotic characteristics. Proceedings of the World non-grid-connected wind power and energy conference (WNWEC ’09), 2009, 1–5.
-
(2009)
Proceedings of the World non-grid-connected wind power and energy conference (WNWEC ’09)
, pp. 1-5
-
-
Wang, L.1
Dong, L.2
Hao, Y.3
Liao, X.4
-
54
-
-
78751511624
-
Actual experience on the short-term wind power forecasting at Penghu-from an island perspective
-
[54] Wu, Y.K., Lee, C.Y., Tsai, S.H., Yu, S.N., Actual experience on the short-term wind power forecasting at Penghu-from an island perspective. Proceedings of the International conference on power system technology (PST ’10), 2010, 1–8.
-
(2010)
Proceedings of the International conference on power system technology (PST ’10)
, pp. 1-8
-
-
Wu, Y.K.1
Lee, C.Y.2
Tsai, S.H.3
Yu, S.N.4
-
55
-
-
77949570119
-
A hybrid statistical method to predict wind speed and wind power
-
[55] Liu, H., Tian, H.Q., Chen, C., Li, Y.F., A hybrid statistical method to predict wind speed and wind power. Renew Energy 35 (2010), 1857–1861.
-
(2010)
Renew Energy
, vol.35
, pp. 1857-1861
-
-
Liu, H.1
Tian, H.Q.2
Chen, C.3
Li, Y.F.4
-
56
-
-
78650561071
-
Error analysis of short term wind power prediction models
-
[56] Giorgi, M.G.D., Ficarella, A., Tarantino, M., Error analysis of short term wind power prediction models. Appl Energy 88 (2011), 1298–1311.
-
(2011)
Appl Energy
, vol.88
, pp. 1298-1311
-
-
Giorgi, M.G.D.1
Ficarella, A.2
Tarantino, M.3
-
57
-
-
67650413303
-
Application of recurrent neural network to long-term-ahead generating power forecasting for wind power generator
-
[57] Senjyu, T., Yona, A., Urasaki, N., Funabashi, T., Application of recurrent neural network to long-term-ahead generating power forecasting for wind power generator. IEEE PES power systems conference and exposition, 2006, 1260–1265.
-
(2006)
IEEE PES power systems conference and exposition
, pp. 1260-1265
-
-
Senjyu, T.1
Yona, A.2
Urasaki, N.3
Funabashi, T.4
-
58
-
-
33244470907
-
Long-term wind speed and power forecasting using local recurrent neural network models
-
[58] Barbounis, T.G., Theocharis, J.B., Alexiadis, M.C., Dokopoulos, P.S., Long-term wind speed and power forecasting using local recurrent neural network models. IEEE Trans Energy Convers 21 (2006), 273–284.
-
(2006)
IEEE Trans Energy Convers
, vol.21
, pp. 273-284
-
-
Barbounis, T.G.1
Theocharis, J.B.2
Alexiadis, M.C.3
Dokopoulos, P.S.4
-
59
-
-
78751541892
-
Neuro-fuzzy networks for short-term wind power forecasting
-
[59] Xia, J., Zhao, P., Dai, Y., Neuro-fuzzy networks for short-term wind power forecasting. Proceedings of the International conference on power system technology (PST ’10), 2010, 1–5.
-
(2010)
Proceedings of the International conference on power system technology (PST ’10)
, pp. 1-5
-
-
Xia, J.1
Zhao, P.2
Dai, Y.3
-
60
-
-
51349095945
-
Short term wind power forecasting using adaptive neuro-fuzzy inference systems
-
[60] Johnson, P.L., Negnevitsky, M., Muttaqi, K.M., Short term wind power forecasting using adaptive neuro-fuzzy inference systems. Australasian universities power engineering conference (AUPEC ‘07), 2007, 1–6.
-
(2007)
Australasian universities power engineering conference (AUPEC ‘07)
, pp. 1-6
-
-
Johnson, P.L.1
Negnevitsky, M.2
Muttaqi, K.M.3
-
62
-
-
76549098897
-
An artificial neural network approach for short-term wind power forecasting in Portugal
-
[62] Catalao, J.P.S., Pousinho, H.M.I., Mendes, V.M.F., An artificial neural network approach for short-term wind power forecasting in Portugal. Proceedings of the 15th international conference on intelligent system applications to power systems (ISAPS ’09), 2009, 1–5.
-
(2009)
Proceedings of the 15th international conference on intelligent system applications to power systems (ISAPS ’09)
, pp. 1-5
-
-
Catalao, J.P.S.1
Pousinho, H.M.I.2
Mendes, V.M.F.3
-
63
-
-
78649450621
-
Short-term wind power forecasting in Portugal by neural networks and wavelet transform
-
[63] Catalao, J.P.S., Pousinho, H.M.I., Mendes, V.M.F., Short-term wind power forecasting in Portugal by neural networks and wavelet transform. Renew Energy 36 (2011), 1245–1251.
-
(2011)
Renew Energy
, vol.36
, pp. 1245-1251
-
-
Catalao, J.P.S.1
Pousinho, H.M.I.2
Mendes, V.M.F.3
-
65
-
-
77956436725
-
Very short-term probabilistic wind power forecasting based on Markov chain models
-
[65] Carpinone, A., Langella, R., Testa, A., Giorgio, M., Very short-term probabilistic wind power forecasting based on Markov chain models. Proceedings of the 11th international conference on probabilistic methods applied to power systems (PMAPS ’10), 2010, 107–112.
-
(2010)
Proceedings of the 11th international conference on probabilistic methods applied to power systems (PMAPS ’10)
, pp. 107-112
-
-
Carpinone, A.1
Langella, R.2
Testa, A.3
Giorgio, M.4
-
66
-
-
77958045687
-
Data mining techniques for very short term prediction of wind power
-
[66] Vargas, L., Paredes, G., Bustos, G., Data mining techniques for very short term prediction of wind power. Bulk power system dynamics and control (iREP)-VIII, 2010 iREP symposium, 2010, 1–7.
-
(2010)
Bulk power system dynamics and control (iREP)-VIII, 2010 iREP symposium
, pp. 1-7
-
-
Vargas, L.1
Paredes, G.2
Bustos, G.3
-
67
-
-
78649936397
-
Short-horizon prediction of wind power: a data driven approach
-
[67] Kusiak, A., Zhang, Z., Short-horizon prediction of wind power: a data driven approach. IEEE Trans Energy Convers 25 (2010), 1112–1122.
-
(2010)
IEEE Trans Energy Convers
, vol.25
, pp. 1112-1122
-
-
Kusiak, A.1
Zhang, Z.2
-
68
-
-
77958190421
-
Very short-term wind power forecasting with neural networks and adaptive Bayesian learning
-
[68] Blonbou, R., Very short-term wind power forecasting with neural networks and adaptive Bayesian learning. Renew Energy 36 (2011), 1118–1124.
-
(2011)
Renew Energy
, vol.36
, pp. 1118-1124
-
-
Blonbou, R.1
-
69
-
-
79955623964
-
Wind farm power prediction based on wavelet decomposition and chaotic time series
-
[69] An, X., Jiang, D., Liu, C., Zhao, M., Wind farm power prediction based on wavelet decomposition and chaotic time series. Expert Syst Appl 38 (2011), 11280–11285.
-
(2011)
Expert Syst Appl
, vol.38
, pp. 11280-11285
-
-
An, X.1
Jiang, D.2
Liu, C.3
Zhao, M.4
-
70
-
-
33646352206
-
Very short-term wind forecasting for Tasmanian power generation
-
[70] Potter, C.W., Negnevitsky, M., Very short-term wind forecasting for Tasmanian power generation. IEEE Trans Power Syst 21 (2006), 9656–9972.
-
(2006)
IEEE Trans Power Syst
, vol.21
, pp. 9656-9972
-
-
Potter, C.W.1
Negnevitsky, M.2
-
71
-
-
67349211771
-
Forecasting the wind generation using a two-stage network based on meteorological information
-
[71] Fan, S., Liao, J.R., Yokoyama, R., Chen, L., Lee, W.-J., Forecasting the wind generation using a two-stage network based on meteorological information. IEEE Trans Energy Convers 24 (2009), 474–482.
-
(2009)
IEEE Trans Energy Convers
, vol.24
, pp. 474-482
-
-
Fan, S.1
Liao, J.R.2
Yokoyama, R.3
Chen, L.4
Lee, W.-J.5
-
72
-
-
35549001332
-
Short term wind speed forecasting for wind turbine applications using linear prediction method
-
[72] Riahy, G.H., Abedi, M., Short term wind speed forecasting for wind turbine applications using linear prediction method. Renew Energy 33 (2008), 35–41.
-
(2008)
Renew Energy
, vol.33
, pp. 35-41
-
-
Riahy, G.H.1
Abedi, M.2
-
74
-
-
0030418613
-
Wind power forecasting using advanced neural networks models
-
[74] Kariniotakis, G.N., Stavrakakis, G.S., Nogaret, E.F., Wind power forecasting using advanced neural networks models. IEEE Trans Energy Convers 11 (1996), 762–767.
-
(1996)
IEEE Trans Energy Convers
, vol.11
, pp. 762-767
-
-
Kariniotakis, G.N.1
Stavrakakis, G.S.2
Nogaret, E.F.3
-
76
-
-
0033313265
-
Wind speed and power forecasting based on spatial correlation models
-
[76] Alexiadis, M.C., Dokopoulos, P.S., Sahsamanoglou, H.S., Wind speed and power forecasting based on spatial correlation models. IEEE Trans Energy Convers 14 (1999), 836–842.
-
(1999)
IEEE Trans Energy Convers
, vol.14
, pp. 836-842
-
-
Alexiadis, M.C.1
Dokopoulos, P.S.2
Sahsamanoglou, H.S.3
-
77
-
-
77953137822
-
On comparing three artificial neural networks for wind speed forecasting
-
[77] Li, G., Shi, J., On comparing three artificial neural networks for wind speed forecasting. Appl Energy 87 (2010), 2313–2320.
-
(2010)
Appl Energy
, vol.87
, pp. 2313-2320
-
-
Li, G.1
Shi, J.2
-
78
-
-
64649107427
-
Mycielski approach for wind speed prediction
-
[78] Hocaoglu, F.O., Fidan, M., Gerek, O.N., Mycielski approach for wind speed prediction. Energy Convers Manage 50 (2009), 1436–1443.
-
(2009)
Energy Convers Manage
, vol.50
, pp. 1436-1443
-
-
Hocaoglu, F.O.1
Fidan, M.2
Gerek, O.N.3
-
79
-
-
58949103845
-
Day-ahead wind speed forecasting using f-ARIMA models
-
[79] Kavasseri, R.G., Seetharaman, K., Day-ahead wind speed forecasting using f-ARIMA models. Renew Energy 34 (2009), 1388–1393.
-
(2009)
Renew Energy
, vol.34
, pp. 1388-1393
-
-
Kavasseri, R.G.1
Seetharaman, K.2
-
80
-
-
75049083283
-
Wind forecasts for wind power generation using the Eta model
-
[80] Lazic, L., Pejanovic, G., Zivkovic, M., Wind forecasts for wind power generation using the Eta model. Renew Energy 35 (2010), 1236–1243.
-
(2010)
Renew Energy
, vol.35
, pp. 1236-1243
-
-
Lazic, L.1
Pejanovic, G.2
Zivkovic, M.3
-
82
-
-
59049092945
-
Hybridizing the fifth generation mesoscale model with artificial neural networks for short-term wind speed prediction
-
[82] Salcedo-Sanz, S., Perez-Bellido, A.M., Ortiz-Garcia, E.G., Portilla-Figueras, A., Prieto, L., Paredes, D., Hybridizing the fifth generation mesoscale model with artificial neural networks for short-term wind speed prediction. Renew Energy 34 (2009), 1451–1457.
-
(2009)
Renew Energy
, vol.34
, pp. 1451-1457
-
-
Salcedo-Sanz, S.1
Perez-Bellido, A.M.2
Ortiz-Garcia, E.G.3
Portilla-Figueras, A.4
Prieto, L.5
Paredes, D.6
-
83
-
-
60949099322
-
Comparison of two new short-term wind-power forecasting systems
-
[83] Ramirez-Rosado, I.J., Fernandez-Jimenez, L.A., Monteiro, C., Sousa, J., Bessa, R., Comparison of two new short-term wind-power forecasting systems. Renew Energy 34 (2009), 1848–1854.
-
(2009)
Renew Energy
, vol.34
, pp. 1848-1854
-
-
Ramirez-Rosado, I.J.1
Fernandez-Jimenez, L.A.2
Monteiro, C.3
Sousa, J.4
Bessa, R.5
-
84
-
-
33947303690
-
An advanced statistical method for wind power forecasting
-
[84] Sideratos, G., Hatziargyriou, N.D., An advanced statistical method for wind power forecasting. IEEE Trans Power Syst 22 (2007), 258–265.
-
(2007)
IEEE Trans Power Syst
, vol.22
, pp. 258-265
-
-
Sideratos, G.1
Hatziargyriou, N.D.2
-
85
-
-
51649108022
-
Complex-valued prediction of wind profile using augmented complex statistics
-
[85] Mandic, D.P., Javidi, S., Goh, S.L., Kuh, A., Aihara, K., Complex-valued prediction of wind profile using augmented complex statistics. Renew Energy 34 (2009), 196–201.
-
(2009)
Renew Energy
, vol.34
, pp. 196-201
-
-
Mandic, D.P.1
Javidi, S.2
Goh, S.L.3
Kuh, A.4
Aihara, K.5
-
86
-
-
2942570109
-
A fuzzy model for wind speed prediction and power generation in wind parks using spatial correlation
-
[86] Damousis, I.G., Alexiadis, M.C., Theocharis, J.B., Dokopoulos, P.S., A fuzzy model for wind speed prediction and power generation in wind parks using spatial correlation. IEEE Trans Energy Convers 19 (2004), 352–361.
-
(2004)
IEEE Trans Energy Convers
, vol.19
, pp. 352-361
-
-
Damousis, I.G.1
Alexiadis, M.C.2
Theocharis, J.B.3
Dokopoulos, P.S.4
-
87
-
-
85050168124
-
Advanced machine learning approach for lithium-ion battery state estimation in electric vehicles
-
[87] Hu, X., Li, S., Yang, Y., Advanced machine learning approach for lithium-ion battery state estimation in electric vehicles. IEEE Trans Transport Electrific 99 (2015), 1–10, 10.1109/TTE.2015.2512237.
-
(2015)
IEEE Trans Transport Electrific
, vol.99
, pp. 1-10
-
-
Hu, X.1
Li, S.2
Yang, Y.3
|