메뉴 건너뛰기




Volumn 123, Issue , 2016, Pages 362-371

Current status of wind energy forecasting and a hybrid method for hourly predictions

Author keywords

Wind energy; Wind energy forecasting; Wind power

Indexed keywords

FUZZY INFERENCE; FUZZY SYSTEMS; NEURAL NETWORKS; WEATHER FORECASTING; WIND; WIND EFFECTS; WIND POWER;

EID: 84975869372     PISSN: 01968904     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.enconman.2016.06.053     Document Type: Review
Times cited : (232)

References (87)
  • 1
    • 84929146225 scopus 로고    scopus 로고
    • Four wind speed multi-step forecasting models using extreme learning machines and signal decomposing algorithms
    • [1] Liu, H., Tian, H.Q., Li, Y.F., Four wind speed multi-step forecasting models using extreme learning machines and signal decomposing algorithms. Energy Convers Manage 100 (2015), 16–22.
    • (2015) Energy Convers Manage , vol.100 , pp. 16-22
    • Liu, H.1    Tian, H.Q.2    Li, Y.F.3
  • 2
    • 84954424030 scopus 로고    scopus 로고
    • Linear and non-linear autoregressive models for short-term wind speed forecasting
    • [2] Lydia, M., Kumar, S.S., Selvakumar, A.I., Kumar, G.E., Linear and non-linear autoregressive models for short-term wind speed forecasting. Energy Convers Manage 112 (2016), 115–124.
    • (2016) Energy Convers Manage , vol.112 , pp. 115-124
    • Lydia, M.1    Kumar, S.S.2    Selvakumar, A.I.3    Kumar, G.E.4
  • 3
    • 84925326167 scopus 로고    scopus 로고
    • Aggregated wind power generation probabilistic forecasting based on particle filter
    • [3] Li, P., Guan, X., Wu, J., Aggregated wind power generation probabilistic forecasting based on particle filter. Energy Convers Manage 96 (2015), 579–587.
    • (2015) Energy Convers Manage , vol.96 , pp. 579-587
    • Li, P.1    Guan, X.2    Wu, J.3
  • 4
    • 84961219483 scopus 로고    scopus 로고
    • Charging, power management, and battery degradation mitigation in plug-in hybrid electric vehicles: a unified cost-optimal approach
    • [4] Hu, X., Martinez, C.M., Yang, Y., Charging, power management, and battery degradation mitigation in plug-in hybrid electric vehicles: a unified cost-optimal approach. Mech Syst Signal Process, 2016, 10.1016/j.ymssp.2016.03.004.
    • (2016) Mech Syst Signal Process
    • Hu, X.1    Martinez, C.M.2    Yang, Y.3
  • 5
    • 84860890595 scopus 로고    scopus 로고
    • Data mining and wind power prediction: a literature review
    • [5] Colak, I., Sagiroglu, S., Yesilbudak, M., Data mining and wind power prediction: a literature review. Renew Energy 42 (2012), 241–247.
    • (2012) Renew Energy , vol.42 , pp. 241-247
    • Colak, I.1    Sagiroglu, S.2    Yesilbudak, M.3
  • 6
    • 50849132200 scopus 로고    scopus 로고
    • A literature review of wind forecasting technology in the world
    • IEEE Lausanne
    • [6] Wu, Y.K., Hong, J.S., A literature review of wind forecasting technology in the world. Power Tech, 2007, IEEE, Lausanne, 504–509.
    • (2007) Power Tech , pp. 504-509
    • Wu, Y.K.1    Hong, J.S.2
  • 7
    • 84897459902 scopus 로고    scopus 로고
    • A review of combined approaches for prediction of short-term wind speed and power
    • [7] Tascikaraoglu, A., Uzunoglu, M., A review of combined approaches for prediction of short-term wind speed and power. Renew Sustain Energy Rev 34 (2014), 243–254.
    • (2014) Renew Sustain Energy Rev , vol.34 , pp. 243-254
    • Tascikaraoglu, A.1    Uzunoglu, M.2
  • 9
    • 79961126223 scopus 로고    scopus 로고
    • Current methods and advances in forecasting of wind power generation
    • [9] Foley, A.M., Leahy, P.G., Marvuglia, A., McKeogh, E.J., Current methods and advances in forecasting of wind power generation. Renew Energy 37 (2012), 1–8.
    • (2012) Renew Energy , vol.37 , pp. 1-8
    • Foley, A.M.1    Leahy, P.G.2    Marvuglia, A.3    McKeogh, E.J.4
  • 10
    • 84892960976 scopus 로고    scopus 로고
    • Current status and future advances for wind speed and power forecasting
    • [10] Jung, J., Broadwater, R.P., Current status and future advances for wind speed and power forecasting. Renew Sustain Energy Rev 31 (2014), 762–777.
    • (2014) Renew Sustain Energy Rev , vol.31 , pp. 762-777
    • Jung, J.1    Broadwater, R.P.2
  • 11
    • 84893275099 scopus 로고    scopus 로고
    • Review on probabilistic forecasting of wind power generation
    • [11] Zhang, Y., Wang, J., Wang, X., Review on probabilistic forecasting of wind power generation. Renew Sustain Energy Rev 32 (2014), 255–270.
    • (2014) Renew Sustain Energy Rev , vol.32 , pp. 255-270
    • Zhang, Y.1    Wang, J.2    Wang, X.3
  • 13
    • 84997706201 scopus 로고    scopus 로고
    • Artificial neural networks applications in wind energy systems: a review
    • [13] Ata, R., Artificial neural networks applications in wind energy systems: a review. Renew Sustain Energy Rev 49 (2015), 534–562.
    • (2015) Renew Sustain Energy Rev , vol.49 , pp. 534-562
    • Ata, R.1
  • 15
    • 78049513565 scopus 로고    scopus 로고
    • Very short-term wind speed prediction: a new artificial neural network-Markov chain model
    • [15] Pourmousavi Kani, S.A., Ardehali, M.M., Very short-term wind speed prediction: a new artificial neural network-Markov chain model. Energy Convers Manage 52 (2011), 738–745.
    • (2011) Energy Convers Manage , vol.52 , pp. 738-745
    • Pourmousavi Kani, S.A.1    Ardehali, M.M.2
  • 16
    • 84865557377 scopus 로고    scopus 로고
    • Very short-term wind speed forecasting with Bayesian structural break model
    • [16] Jiang, Y., Song, Z., Kusiak, A., Very short-term wind speed forecasting with Bayesian structural break model. Renew Energy 50 (2013), 637–647.
    • (2013) Renew Energy , vol.50 , pp. 637-647
    • Jiang, Y.1    Song, Z.2    Kusiak, A.3
  • 17
    • 84901427227 scopus 로고    scopus 로고
    • Noise model based on v-support vector regression with its application to short-term wind speed forecasting
    • [17] Hu, Q., Zhang, S., Xie, Z., Mi, J., Wan, J., Noise model based on v-support vector regression with its application to short-term wind speed forecasting. Neural Netw 57 (2014), 1–11.
    • (2014) Neural Netw , vol.57 , pp. 1-11
    • Hu, Q.1    Zhang, S.2    Xie, Z.3    Mi, J.4    Wan, J.5
  • 18
    • 84934887601 scopus 로고    scopus 로고
    • Transfer learning for short-term wind speed prediction with deep neural networks
    • [18] Hu, Q., Zhang, R., Zhou, Y., Transfer learning for short-term wind speed prediction with deep neural networks. Renew Energy 85 (2016), 83–95.
    • (2016) Renew Energy , vol.85 , pp. 83-95
    • Hu, Q.1    Zhang, R.2    Zhou, Y.3
  • 19
    • 84949115095 scopus 로고    scopus 로고
    • A selection of time series models for short- to medium-term wind power forecasting
    • [19] Croonenbroeck, C., Ambach, D., A selection of time series models for short- to medium-term wind power forecasting. J Wind Eng Ind Aerodyn 136 (2015), 201–210.
    • (2015) J Wind Eng Ind Aerodyn , vol.136 , pp. 201-210
    • Croonenbroeck, C.1    Ambach, D.2
  • 20
    • 84949681323 scopus 로고    scopus 로고
    • A robust combination approach for short-term wind speed forecasting and analysis – combination of the ARIMA (Autoregressive Integrated Moving Average), ELM (Extreme Learning Machine), SVM (Support Vector Machine) and LSSVM (Least Square SVM) forecasts using a GPR (Gaussian Process Regression) model
    • [20] Wang, J., Hu, J., A robust combination approach for short-term wind speed forecasting and analysis – combination of the ARIMA (Autoregressive Integrated Moving Average), ELM (Extreme Learning Machine), SVM (Support Vector Machine) and LSSVM (Least Square SVM) forecasts using a GPR (Gaussian Process Regression) model. Energy 93 (2015), 41–56.
    • (2015) Energy , vol.93 , pp. 41-56
    • Wang, J.1    Hu, J.2
  • 21
    • 84860255082 scopus 로고    scopus 로고
    • Forecasting wind speed with recurrent neural networks
    • [21] Cao, Q., Ewing, B.T., Thompson, M.A., Forecasting wind speed with recurrent neural networks. Eur J Oper Res 221 (2012), 148–154.
    • (2012) Eur J Oper Res , vol.221 , pp. 148-154
    • Cao, Q.1    Ewing, B.T.2    Thompson, M.A.3
  • 22
    • 84941270020 scopus 로고    scopus 로고
    • Analysis of multi-scale chaotic characteristics of wind power based on Hilbert–Huang transform and Hurst analysis
    • [22] Liang, Z., Liang, J., Zhang, L., Wang, C., Yun, Z., Zhang, X., Analysis of multi-scale chaotic characteristics of wind power based on Hilbert–Huang transform and Hurst analysis. Appl Energy 159 (2015), 51–61.
    • (2015) Appl Energy , vol.159 , pp. 51-61
    • Liang, Z.1    Liang, J.2    Zhang, L.3    Wang, C.4    Yun, Z.5    Zhang, X.6
  • 23
    • 84907974670 scopus 로고    scopus 로고
    • Comparison of new hybrid FEEMD-MLP, FEEMD-ANFIS, Wavelet Packet-MLP and Wavelet Packet-ANFIS for wind speed predictions
    • [23] Liu, H., Tian, H.G., Li, Y.F., Comparison of new hybrid FEEMD-MLP, FEEMD-ANFIS, Wavelet Packet-MLP and Wavelet Packet-ANFIS for wind speed predictions. Energy Convers Manage 89 (2015), 1–11.
    • (2015) Energy Convers Manage , vol.89 , pp. 1-11
    • Liu, H.1    Tian, H.G.2    Li, Y.F.3
  • 24
    • 84887255451 scopus 로고    scopus 로고
    • Hybrid technique of ant colony and particle swarm optimization for short term wind energy forecasting
    • [24] Rahmani, R., Yusof, R., Seyedmahmoudian, M., Mekhilef, S., Hybrid technique of ant colony and particle swarm optimization for short term wind energy forecasting. J Wind Eng Ind Aerodyn 123 (2013), 163–170.
    • (2013) J Wind Eng Ind Aerodyn , vol.123 , pp. 163-170
    • Rahmani, R.1    Yusof, R.2    Seyedmahmoudian, M.3    Mekhilef, S.4
  • 25
    • 84929622158 scopus 로고    scopus 로고
    • Ensemble methods for wind and solar power forecasting – a state-of-the-art review
    • [25] Ren, Y., Suganthan, P.N., Srikanth, N., Ensemble methods for wind and solar power forecasting – a state-of-the-art review. Renew Sustain Energy Rev 50 (2015), 82–91.
    • (2015) Renew Sustain Energy Rev , vol.50 , pp. 82-91
    • Ren, Y.1    Suganthan, P.N.2    Srikanth, N.3
  • 27
    • 84908376968 scopus 로고    scopus 로고
    • Short-term wind power forecasting using adaptive neuro-fuzzy inference system combined with evolutionary particle swarm optimization, wavelet transform and mutual information
    • [27] Osorio, G.J., Matias, J.C.O., Catalao, J.P.S., Short-term wind power forecasting using adaptive neuro-fuzzy inference system combined with evolutionary particle swarm optimization, wavelet transform and mutual information. Renew Energy 75 (2015), 301–307.
    • (2015) Renew Energy , vol.75 , pp. 301-307
    • Osorio, G.J.1    Matias, J.C.O.2    Catalao, J.P.S.3
  • 28
    • 84939164474 scopus 로고    scopus 로고
    • Short-term wind speed forecasting based on spectral clustering and optimized echo state networks
    • [28] Liu, D., Wang, J., Wang, H., Short-term wind speed forecasting based on spectral clustering and optimized echo state networks. Renew Energy 78 (2015), 599–608.
    • (2015) Renew Energy , vol.78 , pp. 599-608
    • Liu, D.1    Wang, J.2    Wang, H.3
  • 30
    • 84937909008 scopus 로고    scopus 로고
    • Wind speed forecasting for wind farms: a method based on support vector regression
    • [30] Santamaría-Bonfil, G., Reyes-Ballesteros, A., Gershenson, C., Wind speed forecasting for wind farms: a method based on support vector regression. Renew Energy 85 (2016), 790–809.
    • (2016) Renew Energy , vol.85 , pp. 790-809
    • Santamaría-Bonfil, G.1    Reyes-Ballesteros, A.2    Gershenson, C.3
  • 31
    • 33745813525 scopus 로고    scopus 로고
    • Improved wind power forecasting using a combined neuro-fuzzy and artificial neural network model
    • Springer Berlin Heidelberg
    • [31] Katsigiannis, Y.A., Tsikalakis, A.G., Georgilakis, P.S., Hatziargyriou, N.D., Improved wind power forecasting using a combined neuro-fuzzy and artificial neural network model. Advances in artificial intelligence, 2006, Springer, Berlin Heidelberg, 105–115.
    • (2006) Advances in artificial intelligence , pp. 105-115
    • Katsigiannis, Y.A.1    Tsikalakis, A.G.2    Georgilakis, P.S.3    Hatziargyriou, N.D.4
  • 32
    • 78049524148 scopus 로고    scopus 로고
    • A hybrid PSO-ANFIS approach for short-term wind power prediction in Portugal
    • [32] Pousinho, H.M.I., Mendes, V.M.F., Catalao, J.P.S., A hybrid PSO-ANFIS approach for short-term wind power prediction in Portugal. Energy Convers Manage 52 (2011), 397–402.
    • (2011) Energy Convers Manage , vol.52 , pp. 397-402
    • Pousinho, H.M.I.1    Mendes, V.M.F.2    Catalao, J.P.S.3
  • 33
    • 84930940764 scopus 로고    scopus 로고
    • Wind speed prediction using the hybrid model of wavelet decomposition and artificial bee colony algorithm-based on relevance vector machine
    • [33] Fei, S., He, Y., Wind speed prediction using the hybrid model of wavelet decomposition and artificial bee colony algorithm-based on relevance vector machine. Electr Power Energy Syst 73 (2015), 625–631.
    • (2015) Electr Power Energy Syst , vol.73 , pp. 625-631
    • Fei, S.1    He, Y.2
  • 34
    • 84916917658 scopus 로고    scopus 로고
    • Daily wind speed forecasting through hybrid KF-ANN model based on ARIMA
    • [34] Shukur, O.B., Lee, M.H., Daily wind speed forecasting through hybrid KF-ANN model based on ARIMA. Renew Energy 76 (2015), 637–647.
    • (2015) Renew Energy , vol.76 , pp. 637-647
    • Shukur, O.B.1    Lee, M.H.2
  • 35
    • 78650937809 scopus 로고    scopus 로고
    • An adaptive framework based on multi-model data fusion for one-day-ahead wind power forecasting
    • [35] Vaccaro, A., Mercogliano, P., Schiano, P., Villacci, D., An adaptive framework based on multi-model data fusion for one-day-ahead wind power forecasting. Electr Power Syst Res 81 (2011), 775–782.
    • (2011) Electr Power Syst Res , vol.81 , pp. 775-782
    • Vaccaro, A.1    Mercogliano, P.2    Schiano, P.3    Villacci, D.4
  • 36
    • 84903119035 scopus 로고    scopus 로고
    • A hybrid intelligent model for deterministic and quantile regression approach for probabilistic wind power forecasting
    • [36] Haque, A.U., Nehrir, H.M., Mandal, P., A hybrid intelligent model for deterministic and quantile regression approach for probabilistic wind power forecasting. IEEE Trans Power Syst 29 (2014), 1663–1672.
    • (2014) IEEE Trans Power Syst , vol.29 , pp. 1663-1672
    • Haque, A.U.1    Nehrir, H.M.2    Mandal, P.3
  • 37
    • 84927737833 scopus 로고    scopus 로고
    • Wind power forecasting based on principle component phase space reconstruction
    • [37] Han, L., Romero, C.E., Yao, Z., Wind power forecasting based on principle component phase space reconstruction. Renew Energy 81 (2015), 737–744.
    • (2015) Renew Energy , vol.81 , pp. 737-744
    • Han, L.1    Romero, C.E.2    Yao, Z.3
  • 38
    • 65249086722 scopus 로고    scopus 로고
    • Wind farm power prediction: a data-mining approach
    • [38] Kusiak, A., Zheng, H., Song, Z., Wind farm power prediction: a data-mining approach. Wind Eng 12 (2009), 275–293.
    • (2009) Wind Eng , vol.12 , pp. 275-293
    • Kusiak, A.1    Zheng, H.2    Song, Z.3
  • 39
    • 84926462551 scopus 로고    scopus 로고
    • A novel wind power forecast model: statistical hybrid wind power forecast technique (SHWIP)
    • [39] Ozkan, M.B., Karagoz, P., A novel wind power forecast model: statistical hybrid wind power forecast technique (SHWIP). IEEE Trans Ind Inform 11 (2015), 375–387.
    • (2015) IEEE Trans Ind Inform , vol.11 , pp. 375-387
    • Ozkan, M.B.1    Karagoz, P.2
  • 41
    • 84944909341 scopus 로고    scopus 로고
    • Short-term wind speed and power forecasting using an ensemble of mixture density neural networks
    • [41] Men, Z., Yee, E., Lien, F.S., Wen, D., Short-term wind speed and power forecasting using an ensemble of mixture density neural networks. Renew Energy 87 (2016), 203–211.
    • (2016) Renew Energy , vol.87 , pp. 203-211
    • Men, Z.1    Yee, E.2    Lien, F.S.3    Wen, D.4
  • 42
    • 84891696241 scopus 로고    scopus 로고
    • A 5-day wind speed & power forecasts using a layer recurrent neural network (LRNN)
    • [42] Olaofe, Z.O., A 5-day wind speed & power forecasts using a layer recurrent neural network (LRNN). Sustain Energy Technol Assess 6 (2014), 1–24.
    • (2014) Sustain Energy Technol Assess , vol.6 , pp. 1-24
    • Olaofe, Z.O.1
  • 43
    • 84905465170 scopus 로고    scopus 로고
    • Extraction of the inherent nature of wind speed using wavelets and FFT
    • [43] Alam, M.M., Rehman, S., Al-Hadhrami, L.M., Meyer, J.P., Extraction of the inherent nature of wind speed using wavelets and FFT. Energy Sustain Dev 22 (2014), 34–47.
    • (2014) Energy Sustain Dev , vol.22 , pp. 34-47
    • Alam, M.M.1    Rehman, S.2    Al-Hadhrami, L.M.3    Meyer, J.P.4
  • 44
    • 84911940566 scopus 로고    scopus 로고
    • Medium-term wind speeds forecasting utilizing hybrid models for three different sites in Xinjiang, China
    • [44] Wang, J., Qin, S., Zhou, Q., Jiang, H., Medium-term wind speeds forecasting utilizing hybrid models for three different sites in Xinjiang, China. Renew Energy 76 (2015), 91–101.
    • (2015) Renew Energy , vol.76 , pp. 91-101
    • Wang, J.1    Qin, S.2    Zhou, Q.3    Jiang, H.4
  • 45
    • 84912004737 scopus 로고    scopus 로고
    • Wind speed forecast model for wind farm based on a hybrid machine learning algorithm
    • [45] Haque, A.U., Mandal, P., Meng, J., Negnevitsky, M., Wind speed forecast model for wind farm based on a hybrid machine learning algorithm. Int J Sustain Eng 34 (2015), 38–51.
    • (2015) Int J Sustain Eng , vol.34 , pp. 38-51
    • Haque, A.U.1    Mandal, P.2    Meng, J.3    Negnevitsky, M.4
  • 46
    • 84938206905 scopus 로고    scopus 로고
    • Wind speed prediction using reduced support vector machines with feature selection
    • [46] Kong, X., Liu, X., Shi, R., Lee, K.Y., Wind speed prediction using reduced support vector machines with feature selection. Neurocomputing 169 (2015), 449–456.
    • (2015) Neurocomputing , vol.169 , pp. 449-456
    • Kong, X.1    Liu, X.2    Shi, R.3    Lee, K.Y.4
  • 47
    • 51849142610 scopus 로고    scopus 로고
    • Short term wind speed forecasting in La Venta, Oaxaca, Mexico, using artificial neural networks
    • [47] Cadenas, E., Rivera, W., Short term wind speed forecasting in La Venta, Oaxaca, Mexico, using artificial neural networks. Renew Energy 34 (2009), 274–278.
    • (2009) Renew Energy , vol.34 , pp. 274-278
    • Cadenas, E.1    Rivera, W.2
  • 48
    • 55349098201 scopus 로고    scopus 로고
    • Short-term wind power forecasting using evolutionary algorithms for the automated specification of artificial intelligence models
    • [48] Jursa, R., Rohrig, K., Short-term wind power forecasting using evolutionary algorithms for the automated specification of artificial intelligence models. Int J Forecast 24 (2008), 694–709.
    • (2008) Int J Forecast , vol.24 , pp. 694-709
    • Jursa, R.1    Rohrig, K.2
  • 49
    • 61649090211 scopus 로고    scopus 로고
    • Short-term prediction of wind farm power: a data mining approach
    • [49] Kusiak, A., Zheng, H., Song, Z., Short-term prediction of wind farm power: a data mining approach. IEEE Trans Energy Convers 24 (2009), 125–136.
    • (2009) IEEE Trans Energy Convers , vol.24 , pp. 125-136
    • Kusiak, A.1    Zheng, H.2    Song, Z.3
  • 50
    • 77955279506 scopus 로고    scopus 로고
    • Hour-ahead wind power and speed forecasting using simultaneous perturbation stochastic approximation (SPSA) algorithm and neural network with fuzzy inputs
    • [50] Hong, Y.Y., Chang, H.L., Chiu, C.S., Hour-ahead wind power and speed forecasting using simultaneous perturbation stochastic approximation (SPSA) algorithm and neural network with fuzzy inputs. Energy 35 (2010), 3870–3876.
    • (2010) Energy , vol.35 , pp. 3870-3876
    • Hong, Y.Y.1    Chang, H.L.2    Chiu, C.S.3
  • 55
    • 77949570119 scopus 로고    scopus 로고
    • A hybrid statistical method to predict wind speed and wind power
    • [55] Liu, H., Tian, H.Q., Chen, C., Li, Y.F., A hybrid statistical method to predict wind speed and wind power. Renew Energy 35 (2010), 1857–1861.
    • (2010) Renew Energy , vol.35 , pp. 1857-1861
    • Liu, H.1    Tian, H.Q.2    Chen, C.3    Li, Y.F.4
  • 56
    • 78650561071 scopus 로고    scopus 로고
    • Error analysis of short term wind power prediction models
    • [56] Giorgi, M.G.D., Ficarella, A., Tarantino, M., Error analysis of short term wind power prediction models. Appl Energy 88 (2011), 1298–1311.
    • (2011) Appl Energy , vol.88 , pp. 1298-1311
    • Giorgi, M.G.D.1    Ficarella, A.2    Tarantino, M.3
  • 57
    • 67650413303 scopus 로고    scopus 로고
    • Application of recurrent neural network to long-term-ahead generating power forecasting for wind power generator
    • [57] Senjyu, T., Yona, A., Urasaki, N., Funabashi, T., Application of recurrent neural network to long-term-ahead generating power forecasting for wind power generator. IEEE PES power systems conference and exposition, 2006, 1260–1265.
    • (2006) IEEE PES power systems conference and exposition , pp. 1260-1265
    • Senjyu, T.1    Yona, A.2    Urasaki, N.3    Funabashi, T.4
  • 63
    • 78649450621 scopus 로고    scopus 로고
    • Short-term wind power forecasting in Portugal by neural networks and wavelet transform
    • [63] Catalao, J.P.S., Pousinho, H.M.I., Mendes, V.M.F., Short-term wind power forecasting in Portugal by neural networks and wavelet transform. Renew Energy 36 (2011), 1245–1251.
    • (2011) Renew Energy , vol.36 , pp. 1245-1251
    • Catalao, J.P.S.1    Pousinho, H.M.I.2    Mendes, V.M.F.3
  • 67
    • 78649936397 scopus 로고    scopus 로고
    • Short-horizon prediction of wind power: a data driven approach
    • [67] Kusiak, A., Zhang, Z., Short-horizon prediction of wind power: a data driven approach. IEEE Trans Energy Convers 25 (2010), 1112–1122.
    • (2010) IEEE Trans Energy Convers , vol.25 , pp. 1112-1122
    • Kusiak, A.1    Zhang, Z.2
  • 68
    • 77958190421 scopus 로고    scopus 로고
    • Very short-term wind power forecasting with neural networks and adaptive Bayesian learning
    • [68] Blonbou, R., Very short-term wind power forecasting with neural networks and adaptive Bayesian learning. Renew Energy 36 (2011), 1118–1124.
    • (2011) Renew Energy , vol.36 , pp. 1118-1124
    • Blonbou, R.1
  • 69
    • 79955623964 scopus 로고    scopus 로고
    • Wind farm power prediction based on wavelet decomposition and chaotic time series
    • [69] An, X., Jiang, D., Liu, C., Zhao, M., Wind farm power prediction based on wavelet decomposition and chaotic time series. Expert Syst Appl 38 (2011), 11280–11285.
    • (2011) Expert Syst Appl , vol.38 , pp. 11280-11285
    • An, X.1    Jiang, D.2    Liu, C.3    Zhao, M.4
  • 70
    • 33646352206 scopus 로고    scopus 로고
    • Very short-term wind forecasting for Tasmanian power generation
    • [70] Potter, C.W., Negnevitsky, M., Very short-term wind forecasting for Tasmanian power generation. IEEE Trans Power Syst 21 (2006), 9656–9972.
    • (2006) IEEE Trans Power Syst , vol.21 , pp. 9656-9972
    • Potter, C.W.1    Negnevitsky, M.2
  • 71
    • 67349211771 scopus 로고    scopus 로고
    • Forecasting the wind generation using a two-stage network based on meteorological information
    • [71] Fan, S., Liao, J.R., Yokoyama, R., Chen, L., Lee, W.-J., Forecasting the wind generation using a two-stage network based on meteorological information. IEEE Trans Energy Convers 24 (2009), 474–482.
    • (2009) IEEE Trans Energy Convers , vol.24 , pp. 474-482
    • Fan, S.1    Liao, J.R.2    Yokoyama, R.3    Chen, L.4    Lee, W.-J.5
  • 72
    • 35549001332 scopus 로고    scopus 로고
    • Short term wind speed forecasting for wind turbine applications using linear prediction method
    • [72] Riahy, G.H., Abedi, M., Short term wind speed forecasting for wind turbine applications using linear prediction method. Renew Energy 33 (2008), 35–41.
    • (2008) Renew Energy , vol.33 , pp. 35-41
    • Riahy, G.H.1    Abedi, M.2
  • 77
    • 77953137822 scopus 로고    scopus 로고
    • On comparing three artificial neural networks for wind speed forecasting
    • [77] Li, G., Shi, J., On comparing three artificial neural networks for wind speed forecasting. Appl Energy 87 (2010), 2313–2320.
    • (2010) Appl Energy , vol.87 , pp. 2313-2320
    • Li, G.1    Shi, J.2
  • 78
    • 64649107427 scopus 로고    scopus 로고
    • Mycielski approach for wind speed prediction
    • [78] Hocaoglu, F.O., Fidan, M., Gerek, O.N., Mycielski approach for wind speed prediction. Energy Convers Manage 50 (2009), 1436–1443.
    • (2009) Energy Convers Manage , vol.50 , pp. 1436-1443
    • Hocaoglu, F.O.1    Fidan, M.2    Gerek, O.N.3
  • 79
    • 58949103845 scopus 로고    scopus 로고
    • Day-ahead wind speed forecasting using f-ARIMA models
    • [79] Kavasseri, R.G., Seetharaman, K., Day-ahead wind speed forecasting using f-ARIMA models. Renew Energy 34 (2009), 1388–1393.
    • (2009) Renew Energy , vol.34 , pp. 1388-1393
    • Kavasseri, R.G.1    Seetharaman, K.2
  • 80
    • 75049083283 scopus 로고    scopus 로고
    • Wind forecasts for wind power generation using the Eta model
    • [80] Lazic, L., Pejanovic, G., Zivkovic, M., Wind forecasts for wind power generation using the Eta model. Renew Energy 35 (2010), 1236–1243.
    • (2010) Renew Energy , vol.35 , pp. 1236-1243
    • Lazic, L.1    Pejanovic, G.2    Zivkovic, M.3
  • 82
    • 59049092945 scopus 로고    scopus 로고
    • Hybridizing the fifth generation mesoscale model with artificial neural networks for short-term wind speed prediction
    • [82] Salcedo-Sanz, S., Perez-Bellido, A.M., Ortiz-Garcia, E.G., Portilla-Figueras, A., Prieto, L., Paredes, D., Hybridizing the fifth generation mesoscale model with artificial neural networks for short-term wind speed prediction. Renew Energy 34 (2009), 1451–1457.
    • (2009) Renew Energy , vol.34 , pp. 1451-1457
    • Salcedo-Sanz, S.1    Perez-Bellido, A.M.2    Ortiz-Garcia, E.G.3    Portilla-Figueras, A.4    Prieto, L.5    Paredes, D.6
  • 84
    • 33947303690 scopus 로고    scopus 로고
    • An advanced statistical method for wind power forecasting
    • [84] Sideratos, G., Hatziargyriou, N.D., An advanced statistical method for wind power forecasting. IEEE Trans Power Syst 22 (2007), 258–265.
    • (2007) IEEE Trans Power Syst , vol.22 , pp. 258-265
    • Sideratos, G.1    Hatziargyriou, N.D.2
  • 85
    • 51649108022 scopus 로고    scopus 로고
    • Complex-valued prediction of wind profile using augmented complex statistics
    • [85] Mandic, D.P., Javidi, S., Goh, S.L., Kuh, A., Aihara, K., Complex-valued prediction of wind profile using augmented complex statistics. Renew Energy 34 (2009), 196–201.
    • (2009) Renew Energy , vol.34 , pp. 196-201
    • Mandic, D.P.1    Javidi, S.2    Goh, S.L.3    Kuh, A.4    Aihara, K.5
  • 86
    • 2942570109 scopus 로고    scopus 로고
    • A fuzzy model for wind speed prediction and power generation in wind parks using spatial correlation
    • [86] Damousis, I.G., Alexiadis, M.C., Theocharis, J.B., Dokopoulos, P.S., A fuzzy model for wind speed prediction and power generation in wind parks using spatial correlation. IEEE Trans Energy Convers 19 (2004), 352–361.
    • (2004) IEEE Trans Energy Convers , vol.19 , pp. 352-361
    • Damousis, I.G.1    Alexiadis, M.C.2    Theocharis, J.B.3    Dokopoulos, P.S.4
  • 87
    • 85050168124 scopus 로고    scopus 로고
    • Advanced machine learning approach for lithium-ion battery state estimation in electric vehicles
    • [87] Hu, X., Li, S., Yang, Y., Advanced machine learning approach for lithium-ion battery state estimation in electric vehicles. IEEE Trans Transport Electrific 99 (2015), 1–10, 10.1109/TTE.2015.2512237.
    • (2015) IEEE Trans Transport Electrific , vol.99 , pp. 1-10
    • Hu, X.1    Li, S.2    Yang, Y.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.