메뉴 건너뛰기




Volumn 73, Issue , 2015, Pages 625-631

Wind speed prediction using the hybrid model of wavelet decomposition and artificial bee colony algorithm-based relevance vector machine

Author keywords

Artificial bee colony algorithm; Embedding dimension; Speed wind prediction; Wavelet decomposition

Indexed keywords

ALGORITHMS; EVOLUTIONARY ALGORITHMS; FORECASTING; OPTIMIZATION; SIGNAL PROCESSING; SPEED; WIND;

EID: 84930940764     PISSN: 01420615     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ijepes.2015.04.019     Document Type: Article
Times cited : (66)

References (25)
  • 1
    • 84906827798 scopus 로고    scopus 로고
    • Short-term prediction method of wind speed series based on fractal interpolation
    • Chunbo Xiu, Tiantian Wang, Meng Tian, Yanqing Li, and Yi Cheng Short-term prediction method of wind speed series based on fractal interpolation Chaos, Solitons and Fractals 68 2014 89 97
    • (2014) Chaos, Solitons and Fractals , vol.68 , pp. 89-97
    • Xiu, C.1    Wang, T.2    Tian, M.3    Li, Y.4    Cheng, Y.5
  • 2
    • 84903179521 scopus 로고    scopus 로고
    • A new hybrid model optimized by an intelligent optimization algorithm for wind speed forecasting
    • Zhongyue Su, Jianzhou Wang, Haiyan Lu, and Ge Zhao A new hybrid model optimized by an intelligent optimization algorithm for wind speed forecasting Energy Convers Manage 85 2014 443 452
    • (2014) Energy Convers Manage , vol.85 , pp. 443-452
    • Su, Z.1    Wang, J.2    Lu, H.3    Zhao, G.4
  • 3
    • 84899641739 scopus 로고    scopus 로고
    • An appraisal of wind speed distribution prediction by soft computing methodologies: a comparative study
    • Dalibor Petković, Shahaboddin Shamshirband, Nor Badrul Anuar, Hadi Saboohi, Ainuddin Wahid Abdul Wahab, and Milan Protić An appraisal of wind speed distribution prediction by soft computing methodologies: a comparative study Energy Convers Manage 84 2014 133 139
    • (2014) Energy Convers Manage , vol.84 , pp. 133-139
    • Petković, D.1    Shamshirband, S.2    Anuar, N.B.3    Saboohi, H.4    Wahab, A.W.A.5    Protić, M.6
  • 4
    • 84903838917 scopus 로고    scopus 로고
    • Output power smoothing of variable speed wind farms using rotor-inertia
    • Sadegh Ghani Varzaneh, G.B. Gharehpetian, and Mehrdad Abedi Output power smoothing of variable speed wind farms using rotor-inertia Electr Power Syst Res 116 2014 208 217
    • (2014) Electr Power Syst Res , vol.116 , pp. 208-217
    • Varzaneh, S.G.1    Gharehpetian, G.B.2    Abedi, M.3
  • 5
    • 84897439866 scopus 로고    scopus 로고
    • Short term wind speed estimation in Saudi Arabia
    • Mohamed Ahmed Mohandes, and Shafiqur Rehman Short term wind speed estimation in Saudi Arabia J Wind Eng Ind Aerodyn 128 2014 37 53
    • (2014) J Wind Eng Ind Aerodyn , vol.128 , pp. 37-53
    • Mohandes, M.A.1    Rehman, S.2
  • 6
    • 77953137822 scopus 로고    scopus 로고
    • On comparing three artificial neural networks for wind speed forecasting
    • Gong Li, and Jing Shi On comparing three artificial neural networks for wind speed forecasting Appl Energy 87 7 2010 2313 2320
    • (2010) Appl Energy , vol.87 , Issue.7 , pp. 2313-2320
    • Li, G.1    Shi, J.2
  • 7
    • 84892441792 scopus 로고    scopus 로고
    • Optimal parameters selection for BP neural network based on particle swarm optimization: a case study of wind speed forecasting
    • Chao Ren, Ning An, Jianzhou Wang, Lian Li, Bin Hu, and Duo Shang Optimal parameters selection for BP neural network based on particle swarm optimization: a case study of wind speed forecasting Knowl - Based Syst 56 2014 226 239
    • (2014) Knowl - Based Syst , vol.56 , pp. 226-239
    • Ren, C.1    An, N.2    Wang, J.3    Li, L.4    Hu, B.5    Shang, D.6
  • 8
    • 84890351420 scopus 로고    scopus 로고
    • A comparative study of artificial neural network, adaptive neuro fuzzy inference system and support vector machine for forecasting river flow in the semiarid mountain region
    • Zhibin He, Xiaohu Wen, Hu Liu, and Jun Du A comparative study of artificial neural network, adaptive neuro fuzzy inference system and support vector machine for forecasting river flow in the semiarid mountain region J Hydrol 509 2014 379 386
    • (2014) J Hydrol , vol.509 , pp. 379-386
    • He, Z.1    Wen, X.2    Liu, H.3    Du, J.4
  • 9
    • 84896498038 scopus 로고    scopus 로고
    • Approximating support vector machine with artificial neural network for fast prediction
    • Seokho Kang, and Sungzoon Cho Approximating support vector machine with artificial neural network for fast prediction Expert Syst Appl 41 10 2014 4989 4995
    • (2014) Expert Syst Appl , vol.41 , Issue.10 , pp. 4989-4995
    • Kang, S.1    Cho, S.2
  • 10
    • 84908440807 scopus 로고    scopus 로고
    • A support vector machine to identify irrigated crop types using time-series Landsat NDVI data
    • Baojuan Zheng, Soe W. Myint, Prasad S. Thenkabail, and Rimjhim M. Aggarwal A support vector machine to identify irrigated crop types using time-series Landsat NDVI data Int J Appl Earth Obs Geoinf 34 2015 103 112
    • (2015) Int J Appl Earth Obs Geoinf , vol.34 , pp. 103-112
    • Zheng, B.1    Myint, S.W.2    Thenkabail, P.S.3    Aggarwal, R.M.4
  • 12
    • 0001224048 scopus 로고    scopus 로고
    • Sparse Bayesian learning and the relevance vector machine
    • Michael E. Tipping Sparse Bayesian learning and the relevance vector machine J Machine Learning Res 1 2001 211 244
    • (2001) J Machine Learning Res , vol.1 , pp. 211-244
    • Tipping, M.E.1
  • 13
    • 70449685716 scopus 로고    scopus 로고
    • Application of the relevance vector machine to canal flow prediction in the Sevier River Basin
    • John Flake, Todd K. Moon, Mac McKee, and Jacob H. Gunther Application of the relevance vector machine to canal flow prediction in the Sevier River Basin Agric Water Manage 97 2 2010 208 214
    • (2010) Agric Water Manage , vol.97 , Issue.2 , pp. 208-214
    • Flake, J.1    Moon, T.K.2    Mckee, M.3    Gunther, J.H.4
  • 14
    • 77950189133 scopus 로고    scopus 로고
    • An artificial bee colony approach for clustering
    • Changsheng Zhang, Dantong Ouyang, and Jiaxu Ning An artificial bee colony approach for clustering Expert Syst Appl 37 7 2010 4761 4767
    • (2010) Expert Syst Appl , vol.37 , Issue.7 , pp. 4761-4767
    • Zhang, C.1    Ouyang, D.2    Ning, J.3
  • 15
    • 84897093134 scopus 로고    scopus 로고
    • An artificial bee colony algorithm for image contrast enhancement
    • Amer Draa, and Amira Bouaziz An artificial bee colony algorithm for image contrast enhancement Swarm Evolutionary Comput 16 2014 69 84
    • (2014) Swarm Evolutionary Comput , vol.16 , pp. 69-84
    • Draa, A.1    Bouaziz, A.2
  • 16
    • 84904613994 scopus 로고    scopus 로고
    • Optimal filter design using an improved artificial bee colony algorithm
    • Digbalay Bose, Subhodip Biswas, Athanasios V. Vasilakos, and Sougata Laha Optimal filter design using an improved artificial bee colony algorithm Inf Sci 281 2014 443 461
    • (2014) Inf Sci , vol.281 , pp. 443-461
    • Bose, D.1    Biswas, S.2    Vasilakos, A.V.3    Laha, S.4
  • 17
    • 84886723307 scopus 로고    scopus 로고
    • Synergizing fitness learning with proximity-based food source selection in artificial bee colony algorithm for numerical optimization
    • Swagatam Das, Subhodip Biswas, and Souvik Kundu Synergizing fitness learning with proximity-based food source selection in artificial bee colony algorithm for numerical optimization Appl Soft Comput 13 12 2013 4676 4694
    • (2013) Appl Soft Comput , vol.13 , Issue.12 , pp. 4676-4694
    • Das, S.1    Biswas, S.2    Kundu, S.3
  • 18
    • 79957449370 scopus 로고    scopus 로고
    • Application of artificial bee colony-based neural network in bottom hole pressure prediction in underbalanced drilling
    • Rasoul Irani, and Reza Nasimi Application of artificial bee colony-based neural network in bottom hole pressure prediction in underbalanced drilling J Petrol Sci Eng 78 1 2011 6 12
    • (2011) J Petrol Sci Eng , vol.78 , Issue.1 , pp. 6-12
    • Irani, R.1    Nasimi, R.2
  • 19
    • 84927621097 scopus 로고    scopus 로고
    • Gear fault diagnosis based on support vector machine optimized by artificial bee colony algorithm
    • Dalian Yang, Yilun Liu, Songbai Li, Xuejun Li, and Liyong Ma Gear fault diagnosis based on support vector machine optimized by artificial bee colony algorithm Mech Mach Theory 90 2015 219 229
    • (2015) Mech Mach Theory , vol.90 , pp. 219-229
    • Yang, D.1    Liu, Y.2    Li, S.3    Li, X.4    Ma, L.5
  • 20
    • 34548479029 scopus 로고    scopus 로고
    • On the performance of artificial bee colony (ABC) algorithm
    • D. Karaboga, and B. Basturk On the performance of artificial bee colony (ABC) algorithm Appl Soft Comput 8 1 2008 687 697
    • (2008) Appl Soft Comput , vol.8 , Issue.1 , pp. 687-697
    • Karaboga, D.1    Basturk, B.2
  • 21
    • 77957901422 scopus 로고    scopus 로고
    • A novel clustering approach: Artificial Bee Colony (ABC) algorithm
    • Dervis Karaboga, and Celal Ozturk A novel clustering approach: Artificial Bee Colony (ABC) algorithm Appl Soft Comput 11 1 2011 652 657
    • (2011) Appl Soft Comput , vol.11 , Issue.1 , pp. 652-657
    • Karaboga, D.1    Ozturk, C.2
  • 22
    • 84904191803 scopus 로고    scopus 로고
    • Parameter identification of solar cells using artificial bee colony optimization
    • Diego Oliva, Erik Cuevas, and Gonzalo Pajares Parameter identification of solar cells using artificial bee colony optimization Energy 72 2014 93 102
    • (2014) Energy , vol.72 , pp. 93-102
    • Oliva, D.1    Cuevas, E.2    Pajares, G.3
  • 23
    • 84901199742 scopus 로고    scopus 로고
    • Sparse representation of image and video using easy path wavelet transform
    • Syed Akbar Raza Naqvi, Imran Touqir, and Adil Masood Siddiqui Sparse representation of image and video using easy path wavelet transform Signal Process 103 2014 331 347
    • (2014) Signal Process , vol.103 , pp. 331-347
    • Naqvi, S.A.R.1    Touqir, I.2    Siddiqui, A.M.3
  • 24
    • 84903165030 scopus 로고    scopus 로고
    • The application of wavelet decomposition to quantify the local and regional sources of ultrafine particles in cities
    • Kelly Sabaliauskas, Cheol-Heon Jeong, Xiaohong Yao, and Greg J. Evans The application of wavelet decomposition to quantify the local and regional sources of ultrafine particles in cities Atmos Environ 95 2014 249 257
    • (2014) Atmos Environ , vol.95 , pp. 249-257
    • Sabaliauskas, K.1    Jeong, C.-H.2    Yao, X.3    Evans, G.J.4
  • 25
    • 84897819736 scopus 로고    scopus 로고
    • A hybrid fuzzy inference model based on RBFNN and artificial bee colony for predicting the uplift capacity of suction caissons
    • Min-Yuan Cheng, Minh-Tu Cao, and Duc-Hoc Tran A hybrid fuzzy inference model based on RBFNN and artificial bee colony for predicting the uplift capacity of suction caissons Autom Construction 41 2014 60 69
    • (2014) Autom Construction , vol.41 , pp. 60-69
    • Cheng, M.-Y.1    Cao, M.-T.2    Tran, D.-H.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.