메뉴 건너뛰기




Volumn 23, Issue , 2014, Pages 452-459

Forecasting wind speed using empirical mode decomposition and Elman neural network

Author keywords

Elman neural network; EMD; Hybrid model; PACF; Wind speed prediction

Indexed keywords

COMPLEX NETWORKS; FORECASTING; NEURAL NETWORKS; SIGNAL PROCESSING;

EID: 84905494402     PISSN: 15684946     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.asoc.2014.06.027     Document Type: Article
Times cited : (253)

References (42)
  • 2
    • 0042230835 scopus 로고    scopus 로고
    • Electricity consumption and economic growth in China
    • DOI 10.1016/S0301-4215(02)00250-1, PII S0301421502002501
    • A. Shiu, and P.L. Lam Electricity consumption and economic growth in China Energy Policy 32 1 2004 47 54 (Pubitemid 36996891)
    • (2004) Energy Policy , vol.32 , Issue.1 , pp. 47-54
    • Shiu, A.1    Lam, P.-L.2
  • 3
    • 81855186989 scopus 로고    scopus 로고
    • Development of offshore wind power in China
    • J.J. Chen Development of offshore wind power in China Renew. Sustain. Energy Rev. 15 9 2011 5013 5020
    • (2011) Renew. Sustain. Energy Rev. , vol.15 , Issue.9 , pp. 5013-5020
    • Chen, J.J.1
  • 4
    • 79952183962 scopus 로고    scopus 로고
    • A corrected hybrid approach for wind speed prediction in Hexi Corridor of China
    • Z.H. Guo, J. Zhao, W.Y. Zhang, and J.Z. Wang A corrected hybrid approach for wind speed prediction in Hexi Corridor of China Energy 36 3 2011 1668 1679
    • (2011) Energy , vol.36 , Issue.3 , pp. 1668-1679
    • Guo, Z.H.1    Zhao, J.2    Zhang, W.Y.3    Wang, J.Z.4
  • 5
    • 78650562310 scopus 로고    scopus 로고
    • ARMA based approaches for forecasting the tuple of wind speed and direction
    • E. Erdem, and J. Shi ARMA based approaches for forecasting the tuple of wind speed and direction Appl. Energy 88 2011 1405 1414
    • (2011) Appl. Energy , vol.88 , pp. 1405-1414
    • Erdem, E.1    Shi, J.2
  • 6
    • 84862213628 scopus 로고    scopus 로고
    • Comparison of two new ARIMA-ANN and ARIMA-Kalman hybrid methods for wind speed prediction
    • H. Liu, H.Q. Tian, and Y.F. Li Comparison of two new ARIMA-ANN and ARIMA-Kalman hybrid methods for wind speed prediction Appl. Energy 98 2012 415 424
    • (2012) Appl. Energy , vol.98 , pp. 415-424
    • Liu, H.1    Tian, H.Q.2    Li, Y.F.3
  • 7
    • 84860254202 scopus 로고    scopus 로고
    • A method for short-term wind power prediction with multiple observation points
    • M. Khalid, and A.V. Savkin A method for short-term wind power prediction with multiple observation points IEEE Trans. Pow. Syst. 27 2 2012 579 586
    • (2012) IEEE Trans. Pow. Syst. , vol.27 , Issue.2 , pp. 579-586
    • Khalid, M.1    Savkin, A.V.2
  • 8
    • 78649814612 scopus 로고    scopus 로고
    • Prediction of wind speed time series using modified Taylor Kriging method
    • H.P. Liu, J. Shi, and E. Erdem Prediction of wind speed time series using modified Taylor Kriging method Energy 35 2010 4870 4879
    • (2010) Energy , vol.35 , pp. 4870-4879
    • Liu, H.P.1    Shi, J.2    Erdem, E.3
  • 10
    • 71849084254 scopus 로고    scopus 로고
    • A methodology to generate statistically dependent wind speed scenarios
    • J.M. Morales, R. Mínguez, and A.J. Conejo A methodology to generate statistically dependent wind speed scenarios Appl. Energy 87 3 2010 843 855
    • (2010) Appl. Energy , vol.87 , Issue.3 , pp. 843-855
    • Morales, J.M.1    Mínguez, R.2    Conejo, A.J.3
  • 11
    • 71849085127 scopus 로고    scopus 로고
    • The application of artificial neural networks to mapping of wind speed profile for energy application in Nigeria
    • D.A. Fadare The application of artificial neural networks to mapping of wind speed profile for energy application in Nigeria Appl. Energy 87 3 2010 934 942
    • (2010) Appl. Energy , vol.87 , Issue.3 , pp. 934-942
    • Fadare, D.A.1
  • 12
    • 0033086885 scopus 로고    scopus 로고
    • Short-term prediction of the power production from wind farms
    • DOI 10.1016/S0167-6105(98)00192-5, PII S0167610598001925
    • L. Landberg Short-term prediction of the power production from wind farms J. Wind Eng. Ind. Aerodyn. 80 1-2 1999 207 220 (Pubitemid 30024264)
    • (1999) Journal of Wind Engineering and Industrial Aerodynamics , vol.80 , Issue.1-2 , pp. 207-220
    • Landberg, L.1
  • 13
    • 0005581003 scopus 로고    scopus 로고
    • A mathematical look at a physical power prediction model
    • L. Landberg A mathematical look at a physical power prediction model Wind Energy 1 1 1998 23 28
    • (1998) Wind Energy , vol.1 , Issue.1 , pp. 23-28
    • Landberg, L.1
  • 14
    • 35549001332 scopus 로고    scopus 로고
    • Short term wind speed forecasting for wind turbine applications using linear prediction method
    • DOI 10.1016/j.renene.2007.01.014, PII S0960148107000237
    • G.H. Riahy, and M. Abedi Short term wind speed forecasting for wind turbine applications using linear prediction method Renew. Energy 33 1 2008 35 41 (Pubitemid 350008057)
    • (2008) Renewable Energy , vol.33 , Issue.1 , pp. 35-41
    • Riahy, G.H.1    Abedi, M.2
  • 15
    • 58949103845 scopus 로고    scopus 로고
    • Day-ahead wind speed forecasting using f-ARIMA models
    • R.G. Kavasseri, and K. Seetharaman Day-ahead wind speed forecasting using f-ARIMA models Renew. Energy 34 2009 1388 1393
    • (2009) Renew. Energy , vol.34 , pp. 1388-1393
    • Kavasseri, R.G.1    Seetharaman, K.2
  • 16
    • 0001931325 scopus 로고    scopus 로고
    • Time series models to simulate and forecast hourly averaged wind speed in Quetta: Pakistan
    • K. Lalarukh, and Z.J. Yasmin Time series models to simulate and forecast hourly averaged wind speed in Quetta: Pakistan Solar Energy 61 1 1997 23 32
    • (1997) Solar Energy , vol.61 , Issue.1 , pp. 23-32
    • Lalarukh, K.1    Yasmin, Z.J.2
  • 17
    • 20444437286 scopus 로고    scopus 로고
    • Forecast of hourly average wind speed with ARMA models in Navarre
    • J.L. Torres, A. García, M. De Blas, and A. De Francisco Forecast of hourly average wind speed with ARMA models in Navarre Sol. Energy 79 1 2005 65 77
    • (2005) Sol. Energy , vol.79 , Issue.1 , pp. 65-77
    • Torres, J.L.1    García, A.2    De Blas, M.3    De Francisco, A.4
  • 18
    • 7444227472 scopus 로고    scopus 로고
    • Application of a control algorithm for wind speed prediction and active power generation
    • DOI 10.1016/j.renene.2004.07.015, PII S0960148104002915
    • P. Flores, A. Tapia, and G. Tapia Application of a control algorithm for wind speed prediction and active power generation Renew. Energy 30 4 2005 523 536 (Pubitemid 39447654)
    • (2005) Renewable Energy , vol.30 , Issue.4 , pp. 523-536
    • Flores, P.1    Tapia, A.2    Tapia, G.3
  • 20
    • 51849142610 scopus 로고    scopus 로고
    • Short term wind speed forecasting in la Venta: Oaxaca, México, using artificial neural networks
    • E. Cadenas, and W. Rivera Short term wind speed forecasting in La Venta: Oaxaca, México, using artificial neural networks Renew. Energy 34 1 2009 274 278
    • (2009) Renew. Energy , vol.34 , Issue.1 , pp. 274-278
    • Cadenas, E.1    Rivera, W.2
  • 21
    • 0034286972 scopus 로고    scopus 로고
    • A comparison of various forecasting techniques applied to mean hourly wind speed time series
    • DOI 10.1016/S0960-1481(99)00125-1, PII S0960148199001251
    • A. Sfetsos A comparison of various forecasting techniques applied to mean hourly wind speed time series Renew. Energy 21 1 2000 23 35 (Pubitemid 30306417)
    • (2000) Renewable Energy , vol.21 , Issue.1 , pp. 23-35
    • Sfetsos, A.1
  • 22
    • 33847369874 scopus 로고    scopus 로고
    • A locally recurrent fuzzy neural network with application to the wind speed prediction using spatial correlation
    • DOI 10.1016/j.neucom.2006.01.032, PII S0925231206002505, Advances in Computational Intelligence and Learning 14th European Symposium on Artificial Neural Networks 2006
    • T.G. Barbounis, and J.B. Theocharis A locally recurrent fuzzy neural network with application to the wind speed prediction using spatial correlation Neurocomputing 70 7-9 2007 1525 1542 (Pubitemid 46336755)
    • (2007) Neurocomputing , vol.70 , Issue.7-9 , pp. 1525-1542
    • Barbounis, T.G.1    Theocharis, J.B.2
  • 23
    • 0442296729 scopus 로고    scopus 로고
    • Support vector machines for wind speed prediction
    • DOI 10.1016/j.renene.2003.11.009
    • M.A. Mohandes, T.O. Halawani, S. Rehman, and A.A. Hussain Support vector machines for wind speed prediction Renew. Energy 29 2004 939 947 (Pubitemid 38242182)
    • (2004) Renewable Energy , vol.29 , Issue.6 , pp. 939-947
    • Mohandes, M.A.1    Halawani, T.O.2    Rehman, S.3    Hussain, A.A.4
  • 29
    • 77955311883 scopus 로고    scopus 로고
    • Chaotic time series prediction with residual analysis method using hybrid Elman-NARX neural networks
    • M. Ardalani-Farsa, and S. Zolfaghari Chaotic time series prediction with residual analysis method using hybrid Elman-NARX neural networks Neurocomputing 73 2010 2540 2553
    • (2010) Neurocomputing , vol.73 , pp. 2540-2553
    • Ardalani-Farsa, M.1    Zolfaghari, S.2
  • 30
    • 84862823570 scopus 로고    scopus 로고
    • Cooperative coevolution of Elman recurrent neural networks for chaotic time series prediction
    • R. Chandra, and M.J. Zhang Cooperative coevolution of Elman recurrent neural networks for chaotic time series prediction Neurocomputing 86 2012 116 123
    • (2012) Neurocomputing , vol.86 , pp. 116-123
    • Chandra, R.1    Zhang, M.J.2
  • 31
    • 84865624966 scopus 로고    scopus 로고
    • Elman neural networks for characterizing voids in welded strips: A study
    • M. Cacciola, G. Megali, D. Pellicano, and F.C. Morabito Elman neural networks for characterizing voids in welded strips: a study Neural Comput. Appl. 21 2012 869 875
    • (2012) Neural Comput. Appl. , vol.21 , pp. 869-875
    • Cacciola, M.1    Megali, G.2    Pellicano, D.3    Morabito, F.C.4
  • 33
    • 84155186340 scopus 로고    scopus 로고
    • Forecasting tourism demand based on empirical mode decomposition and neural network
    • C.F. Chen, M.C. Lai, and C.C. Yeh Forecasting tourism demand based on empirical mode decomposition and neural network Knowl. Based Syst. 26 2012 281 287
    • (2012) Knowl. Based Syst. , vol.26 , pp. 281-287
    • Chen, C.F.1    Lai, M.C.2    Yeh, C.C.3
  • 34
    • 27744580640 scopus 로고    scopus 로고
    • A fault diagnosis approach for roller bearings based on EMD method and AR model
    • J.S. Cheng, D.J. Yu, and Y. Yang A fault diagnosis approach for roller bearings based on EMD method and AR model Mech. Syst. Signal Process. 20 2 2006 350 362
    • (2006) Mech. Syst. Signal Process. , vol.20 , Issue.2 , pp. 350-362
    • Cheng, J.S.1    Yu, D.J.2    Yang, Y.3
  • 35
    • 39749128487 scopus 로고    scopus 로고
    • A new approach for crude oil price analysis based on Empirical Mode Decomposition
    • DOI 10.1016/j.eneco.2007.02.012, PII S0140988307000436
    • X. Zhang, K.K. Lai, and S.Y. Wang A new approach for crude oil price analysis based on Empirical Mode Decomposition Energy Econ. 30 3 2008 905 918 (Pubitemid 351292427)
    • (2008) Energy Economics , vol.30 , Issue.3 , pp. 905-918
    • Zhang, X.1    Lai, K.K.2    Wang, S.-Y.3
  • 36
    • 18144397499 scopus 로고    scopus 로고
    • Empirical mode decomposition: A method for analyzing neural data
    • DOI 10.1016/j.neucom.2004.10.077, PII S0925231204004655
    • H.L. Liang, S.L. Bressler, R. Desimone, and P. Fries Empirical mode decomposition: a method for analyzing neural data Neurocomputing 65-66 2005 801 807 (Pubitemid 40613619)
    • (2005) Neurocomputing , vol.65-66 , Issue.SPEC. ISS. , pp. 801-807
    • Liang, H.1    Bressler, S.L.2    Desimone, R.3    Fries, P.4
  • 37
    • 26444565569 scopus 로고
    • Finding structure in time
    • J. Elman Finding structure in time Cognitive 15 1990 179 211
    • (1990) Cognitive , vol.15 , pp. 179-211
    • Elman, J.1
  • 38
    • 51849142610 scopus 로고    scopus 로고
    • Short term wind speed forecasting in la Venta, Oaxaca, México, using artificial neural networks
    • E. Cadenas, and W. Rivera Short term wind speed forecasting in La Venta, Oaxaca, México, using artificial neural networks Renew. Energy 34 2009 274 278
    • (2009) Renew. Energy , vol.34 , pp. 274-278
    • Cadenas, E.1    Rivera, W.2
  • 39
    • 71549129522 scopus 로고    scopus 로고
    • ARIMA model estimated by particle swarm optimization algorithm for consumer price index forecasting, lecture notes in computer Science
    • H. Wang, and W. Zhao ARIMA model estimated by particle swarm optimization algorithm for consumer price index forecasting, lecture notes in computer Science Artif. Intell. Comput. Intell. 5855 2009 48 58
    • (2009) Artif. Intell. Comput. Intell. , vol.5855 , pp. 48-58
    • Wang, H.1    Zhao, W.2
  • 40
    • 79961127156 scopus 로고    scopus 로고
    • Multi-step forecasting for wind speed using a modified EMD-based artificial neural network model
    • Z.H. Guo, W.G. Zhao, H.Y. Lu, and J.Z. Wang Multi-step forecasting for wind speed using a modified EMD-based artificial neural network model Renew. Energy 37 2012 241 249
    • (2012) Renew. Energy , vol.37 , pp. 241-249
    • Guo, Z.H.1    Zhao, W.G.2    Lu, H.Y.3    Wang, J.Z.4
  • 41
    • 20744444912 scopus 로고    scopus 로고
    • Optimisation of the predictive ability of artificial neural network (ANN) models: A comparison of three ANN programs and four classes of training algorithm
    • DOI 10.1016/j.ejps.2005.04.010, PII S092809870500134X
    • A.P. Plumb, R.C. Rowe, P. York, and M. Brown Optimisation of the predictive ability of artificial neural network (ANN) models: a comparison of three ANN programs and four classes of training algorithm Eur. J. Pharm. Sci. 25 2005 395 405 (Pubitemid 40853867)
    • (2005) European Journal of Pharmaceutical Sciences , vol.25 , Issue.4-5 , pp. 395-405
    • Plumb, A.P.1    Rowe, R.C.2    York, P.3    Brown, M.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.