메뉴 건너뛰기




Volumn 52, Issue 1, 2011, Pages 738-745

Very short-term wind speed prediction: A new artificial neural network-Markov chain model

Author keywords

Artificial neural network; Markov chain approach; Very short term prediction; Wind speed prediction

Indexed keywords

CHAINS; FORECASTING; MARKOV PROCESSES; NEURAL NETWORKS; SPEED; WIND;

EID: 78049513565     PISSN: 01968904     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.enconman.2010.07.053     Document Type: Conference Paper
Times cited : (175)

References (29)
  • 3
    • 35948948124 scopus 로고    scopus 로고
    • Dynamic wind turbine energy extraction showing the benefits of short term wind prediction
    • Darwin, Australia, October
    • Riahy G, Freere P. Dynamic wind turbine energy extraction showing the benefits of short term wind prediction, In: Proceedings of the Solar'96 conference, Darwin, Australia, October 1996.
    • (1996) Proceedings of the Solar'96 Conference
    • Riahy, G.1    Freere, P.2
  • 4
    • 35549001332 scopus 로고    scopus 로고
    • Short term wind speed forecasting for wind turbine applications using linear prediction method
    • DOI 10.1016/j.renene.2007.01.014, PII S0960148107000237
    • Riahy GH, Abedi M. Short term wind speed forecasting for wind turbine applications using linear prediction method. Renew Energy 2008;33(1):35-41. (Pubitemid 350008057)
    • (2008) Renewable Energy , vol.33 , Issue.1 , pp. 35-41
    • Riahy, G.H.1    Abedi, M.2
  • 6
    • 70049106089 scopus 로고    scopus 로고
    • Information and Mathematical Modeling Technical University of Denmark
    • Lars Christian Henriksen. Model predictive control of a wind turbine, Information and Mathematical Modeling Technical University of Denmark, 2007.
    • (2007) Model Predictive Control of a Wind Turbine
    • Henriksen, L.C.1
  • 7
    • 0031208883 scopus 로고    scopus 로고
    • Predictive control of wind turbines in small power systems at high turbulent wind speeds
    • DOI 10.1016/S0967-0661(97)00097-X, PII S096706619700097X
    • Nanayakkara N, Nakamura M, Hatazaki H. Predictive control of wind turbines in small power systems at high turbulent wind speeds. Control Eng Pract 1997;5(8):1063-9. (Pubitemid 27480190)
    • (1997) Control Engineering Practice , vol.5 , Issue.8 , pp. 1063-1069
    • Nanayakkara, N.1    Nakamura, M.2    Hatazaki, H.3
  • 8
    • 54049114613 scopus 로고    scopus 로고
    • An optimization approach for wind turbine commitment and dispatch in a wind park
    • Moyano Carlos F, Pecas Lopes João A. An optimization approach for wind turbine commitment and dispatch in a wind park. Electric Power Syst Res 2009;79(1):71-9.
    • (2009) Electric Power Syst Res , vol.79 , Issue.1 , pp. 71-79
    • Moyano Carlos, F.1    Pecas Lopes João, A.2
  • 11
    • 33646352206 scopus 로고    scopus 로고
    • Very short-term wind forecasting for tasmanian power generation
    • Potter C, Negnevitsky M. Very short-term wind forecasting for tasmanian power generation. IEEE Trans Power Syst 2006;21(2):965-72.
    • (2006) IEEE Trans Power Syst , vol.21 , Issue.2 , pp. 965-972
    • Potter, C.1    Negnevitsky, M.2
  • 12
    • 14344258897 scopus 로고    scopus 로고
    • On-line assessment of prediction risk for wind power production forecasts
    • DOI 10.1002/we.114
    • Pinson P, Kariniotakis G. On-line assessment of prediction risk for wind power production forecasts. Wind Energy 2004;7(2):119-32. (Pubitemid 40290421)
    • (2004) Wind Energy , vol.7 , Issue.2 , pp. 119-132
    • Pinson, P.1    Kariniotakis, G.2
  • 13
    • 54149110925 scopus 로고    scopus 로고
    • A new strategy for wind speed forecasting using artificial intelligent methods
    • Monfared M, Rastegar H, Madadi Kojabadi H. A new strategy for wind speed forecasting using artificial intelligent methods. Renew Energy 2009;34(3):845-8.
    • (2009) Renew Energy , vol.34 , Issue.3 , pp. 845-848
    • Monfared, M.1    Rastegar, H.2    Kojabadi, H.M.3
  • 15
    • 0442296729 scopus 로고    scopus 로고
    • Support vector machines for wind speed prediction
    • DOI 10.1016/j.renene.2003.11.009
    • Mohandes MA, Halawani TO, Rehman S, Hussain AA. Support vector machines for wind speed prediction. Renew Energy 2004;29(6):939-47. (Pubitemid 38242182)
    • (2004) Renewable Energy , vol.29 , Issue.6 , pp. 939-947
    • Mohandes, M.A.1    Halawani, T.O.2    Rehman, S.3    Hussain, A.A.4
  • 16
    • 7444227472 scopus 로고    scopus 로고
    • Application of a control algorithm for wind speed prediction and active power generation
    • DOI 10.1016/j.renene.2004.07.015, PII S0960148104002915
    • Flores P, Tapia A, Tapia G. Application of a control algorithm for wind speed prediction and active power generation. Renew Energy 2005;30(4):523-36. (Pubitemid 39447654)
    • (2005) Renewable Energy , vol.30 , Issue.4 , pp. 523-536
    • Flores, P.1    Tapia, A.2    Tapia, G.3
  • 19
    • 33947151102 scopus 로고    scopus 로고
    • Wind speed forecasting in the South Coast of Oaxaca, México
    • DOI 10.1016/j.renene.2006.10.005, PII S0960148106002801
    • Cadenas E, Rivera W. Wind speed forecasting in the south coast of, Oaxaca, Mexico. Renew Energy 2007;32(12):2116-28. (Pubitemid 46394521)
    • (2007) Renewable Energy , vol.32 , Issue.12 , pp. 2116-2128
    • Cadenas, E.1    Rivera, W.2
  • 22
    • 38349108557 scopus 로고    scopus 로고
    • Analysis of wind power generation and prediction using ANN: A case study
    • Carolin Mabel M, Fernandez E. Analysis of wind power generation and prediction using ANN: a case study. Renew Energy 2008;33(5):986-92.
    • (2008) Renew Energy , vol.33 , Issue.5 , pp. 986-992
    • Carolin Mabel, M.1    Fernandez, E.2
  • 23
  • 24
    • 64649107427 scopus 로고    scopus 로고
    • Mycielski approach for wind speed prediction
    • Hocaoǧlu Fatih O, Fidan Mehmet, Gere Ömer N. Mycielski approach for wind speed prediction. Energy Convers Manage 2009;50(6):1436-43.
    • (2009) Energy Convers Manage , vol.50 , Issue.6 , pp. 1436-1443
    • Fatih, O.H.1    Mehmet, F.2    Ömer, G.N.3
  • 26
    • 0035280498 scopus 로고    scopus 로고
    • First-order Markov chain approach to wind speed modelling
    • DOI 10.1016/S0167-6105(00)00081-7, PII S0167610500000817
    • Sahin AD, Sen Z. First-order Markov chain approach to wind speed modelling. J Wind Eng Ind Aerod 2001;89(3-4):263-9. (Pubitemid 32235786)
    • (2001) Journal of Wind Engineering and Industrial Aerodynamics , vol.89 , Issue.3-4 , pp. 263-269
    • Sahin, A.D.1    Sen, Z.2
  • 27
    • 4644313517 scopus 로고    scopus 로고
    • First and second order Markov chain models for synthetic generation of wind speed time series
    • DOI 10.1016/j.energy.2004.05.026, PII S0360544204002609
    • Shamshad A, Bawadi MA, Wan Hussin WMA, Majid TA, Sanusi SAM. First and second order Markov chain models for synthetic generation of wind speed time series. Energy 2005;30(August):693-708. (Pubitemid 39333086)
    • (2005) Energy , vol.30 , Issue.5 , pp. 693-708
    • Shamshad, A.1    Bawadi, M.A.2    Wan Hussin, W.M.A.3    Majid, T.A.4    Sanusi, S.A.M.5
  • 29
    • 1642400386 scopus 로고    scopus 로고
    • Methods to improve prediction performance of ANN models
    • Yin C, Rosendahl L, Luo Zh. Methods to improve prediction performance of ANN models. Simulat Model Pract Theory 2003;11(3-4):211-22.
    • (2003) Simulat Model Pract Theory , vol.11 , Issue.3-4 , pp. 211-222
    • Yin, C.1    Rosendahl, L.2    Luo, Zh.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.