메뉴 건너뛰기




Volumn 83, Issue , 2015, Pages 1066-1075

New wind speed forecasting approaches using fast ensemble empirical model decomposition, genetic algorithm, Mind Evolutionary Algorithm and Artificial Neural Networks

Author keywords

Artificial Neural Networks; Decomposition; Genetic algorithm; Mind Evolutionary Algorithm; Wind energy; Wind speed forecasting

Indexed keywords

ALGORITHMS; DECOMPOSITION; ELECTRIC POWER UTILIZATION; FORECASTING; GENETIC ALGORITHMS; NEURAL NETWORKS; SPEED; WIND; WIND EFFECTS; WIND POWER;

EID: 84930947539     PISSN: 09601481     EISSN: 18790682     Source Type: Journal    
DOI: 10.1016/j.renene.2015.06.004     Document Type: Article
Times cited : (160)

References (25)
  • 1
    • 84907974670 scopus 로고    scopus 로고
    • Comparison of new hybrid FEEMD-MLP, FEEMD-ANFIS, wavelet packet-MLP and wavelet packet-ANFIS for wind speed predictions
    • Liu H., Tian H., Li Y. Comparison of new hybrid FEEMD-MLP, FEEMD-ANFIS, wavelet packet-MLP and wavelet packet-ANFIS for wind speed predictions. Energy Convers. Manag. Jan. 2015, 89:1-11.
    • (2015) Energy Convers. Manag. , vol.89 , pp. 1-11
    • Liu, H.1    Tian, H.2    Li, Y.3
  • 2
    • 84916917658 scopus 로고    scopus 로고
    • Daily wind speed forecasting through hybrid KF-ANN model based on ARIMA
    • Shukur O.B., Lee M.H. Daily wind speed forecasting through hybrid KF-ANN model based on ARIMA. Renew. Energy Apr. 2015, 76:637-647.
    • (2015) Renew. Energy , vol.76 , pp. 637-647
    • Shukur, O.B.1    Lee, M.H.2
  • 3
    • 84912004737 scopus 로고    scopus 로고
    • Wind speed forecast model for wind farm based on a hybrid machine learning algorithm
    • Haque A.U., Mandal P., Meng J., Negnevitsky M. Wind speed forecast model for wind farm based on a hybrid machine learning algorithm. Int. J. Sustain. Energy 2015, 34(1):38-51.
    • (2015) Int. J. Sustain. Energy , vol.34 , Issue.1 , pp. 38-51
    • Haque, A.U.1    Mandal, P.2    Meng, J.3    Negnevitsky, M.4
  • 4
    • 84863508830 scopus 로고    scopus 로고
    • Ahybrid model for wind speed prediction using empirical mode decomposition and artificial neural networks
    • Liu H., Chen C., Tian H., Li Y. Ahybrid model for wind speed prediction using empirical mode decomposition and artificial neural networks. Renew. Energy Dec. 2012, 48:545-556.
    • (2012) Renew. Energy , vol.48 , pp. 545-556
    • Liu, H.1    Chen, C.2    Tian, H.3    Li, Y.4
  • 6
    • 84876731436 scopus 로고    scopus 로고
    • An experimental investigation of two wavelet-MLP hybrid frameworks for wind speed prediction using GA and PSO optimization
    • Liu H., Tian H., Chen C., Li Y. An experimental investigation of two wavelet-MLP hybrid frameworks for wind speed prediction using GA and PSO optimization. Int. J. Electr. Power Energy Syst. Nov. 2013, 52:161-173.
    • (2013) Int. J. Electr. Power Energy Syst. , vol.52 , pp. 161-173
    • Liu, H.1    Tian, H.2    Chen, C.3    Li, Y.4
  • 9
    • 84903179521 scopus 로고    scopus 로고
    • Anew hybrid model optimized by an intelligent optimization algorithm for wind speed forecasting
    • Su Z., Wang J., Lu H., Zhao G. Anew hybrid model optimized by an intelligent optimization algorithm for wind speed forecasting. Energy Convers. Manag. Sep. 2014, 85:443-452.
    • (2014) Energy Convers. Manag. , vol.85 , pp. 443-452
    • Su, Z.1    Wang, J.2    Lu, H.3    Zhao, G.4
  • 10
    • 84862213628 scopus 로고    scopus 로고
    • Comparison of two new ARIMA-ANN and ARIMA-Kalman hybrid methods for wind speed prediction
    • Liu H., Tian H., Li Y. Comparison of two new ARIMA-ANN and ARIMA-Kalman hybrid methods for wind speed prediction. Appl. Energy Oct. 2012, 98:415-424.
    • (2012) Appl. Energy , vol.98 , pp. 415-424
    • Liu, H.1    Tian, H.2    Li, Y.3
  • 11
    • 84897113752 scopus 로고    scopus 로고
    • Probabilistic wind speed forecasting using Bayesian model averaging with truncated normal components
    • Baran S. Probabilistic wind speed forecasting using Bayesian model averaging with truncated normal components. Comput. Stat. Data Anal. 2014, 75:227-238.
    • (2014) Comput. Stat. Data Anal. , vol.75 , pp. 227-238
    • Baran, S.1
  • 12
    • 84884203391 scopus 로고    scopus 로고
    • Neural network based hybrid computing model for wind speed prediction
    • Gnana Sheela K., Deepa S.N. Neural network based hybrid computing model for wind speed prediction. Neurocomputing Dec. 2013, 122:425-429.
    • (2013) Neurocomputing , vol.122 , pp. 425-429
    • Gnana Sheela, K.1    Deepa, S.N.2
  • 13
    • 84911940566 scopus 로고    scopus 로고
    • Medium-term wind speeds forecasting utilizing hybrid models for three different sites in Xinjiang, China
    • Wang J., Qin S., Zhou Q., Jiang H. Medium-term wind speeds forecasting utilizing hybrid models for three different sites in Xinjiang, China. Renew. Energy 2015, 76:91-101.
    • (2015) Renew. Energy , vol.76 , pp. 91-101
    • Wang, J.1    Qin, S.2    Zhou, Q.3    Jiang, H.4
  • 14
    • 84908046994 scopus 로고    scopus 로고
    • ACoral Reefs optimization algorithm with Harmony search operators for accurate wind speed prediction
    • Salcedo-Sanz S., Pastor-Sánchez A., Del Ser J., Prieto L., Geem Z.W. ACoral Reefs optimization algorithm with Harmony search operators for accurate wind speed prediction. Renew. Energy 2015, 75:93-101.
    • (2015) Renew. Energy , vol.75 , pp. 93-101
    • Salcedo-Sanz, S.1    Pastor-Sánchez, A.2    Del Ser, J.3    Prieto, L.4    Geem, Z.W.5
  • 15
    • 84898018602 scopus 로고    scopus 로고
    • Long-term wind speed forecasting and general pattern recognition using neural networks
    • Azad H.B., Mekhilef S., Ganapathy V.G. Long-term wind speed forecasting and general pattern recognition using neural networks. IEEE Trans. Sustain. Energy 2014, 5(2):546-553.
    • (2014) IEEE Trans. Sustain. Energy , vol.5 , Issue.2 , pp. 546-553
    • Azad, H.B.1    Mekhilef, S.2    Ganapathy, V.G.3
  • 17
    • 80052078099 scopus 로고    scopus 로고
    • Ensemble empirical mode decomposition: a noise-assisted data analysis method
    • Wu Z., Huang N.E. Ensemble empirical mode decomposition: a noise-assisted data analysis method. Adv. Adapt. Data Anal. 2009, 1(1):1-41.
    • (2009) Adv. Adapt. Data Anal. , vol.1 , Issue.1 , pp. 1-41
    • Wu, Z.1    Huang, N.E.2
  • 18
    • 77957598733 scopus 로고    scopus 로고
    • The multi-dimensional ensemble empirical mode decomposition method
    • Wu Z., Huang N.E., Chen X. The multi-dimensional ensemble empirical mode decomposition method. Adv. Adapt. Data Anal. 2009, 1(3):339-372.
    • (2009) Adv. Adapt. Data Anal. , vol.1 , Issue.3 , pp. 339-372
    • Wu, Z.1    Huang, N.E.2    Chen, X.3
  • 20
    • 84903154442 scopus 로고    scopus 로고
    • Multi-objective optimization by means of multi-dimensional mlp neural networks
    • Rafei M., Sorkhabi S.E., Mosavi M.R. Multi-objective optimization by means of multi-dimensional mlp neural networks. Neural Netw. World 2014, 24(1):31-56.
    • (2014) Neural Netw. World , vol.24 , Issue.1 , pp. 31-56
    • Rafei, M.1    Sorkhabi, S.E.2    Mosavi, M.R.3
  • 21
    • 84875115854 scopus 로고    scopus 로고
    • Forecasting models for wind speed using wavelet, wavelet packet, time series and artificial neural networks
    • Liu H., Tian H., Pan D., Li Y. Forecasting models for wind speed using wavelet, wavelet packet, time series and artificial neural networks. Appl. Energy Jul. 2013, 107:191-208.
    • (2013) Appl. Energy , vol.107 , pp. 191-208
    • Liu, H.1    Tian, H.2    Pan, D.3    Li, Y.4
  • 22
    • 84920167958 scopus 로고    scopus 로고
    • Comparison of four Adaboost algorithm based artificial neural networks in wind speed predictions
    • Liu H., Tian H., Li Y., Zhang L. Comparison of four Adaboost algorithm based artificial neural networks in wind speed predictions. Energy Convers. Manag. Mar. 2015, 92:67-81.
    • (2015) Energy Convers. Manag. , vol.92 , pp. 67-81
    • Liu, H.1    Tian, H.2    Li, Y.3    Zhang, L.4
  • 24
    • 33847253344 scopus 로고    scopus 로고
    • An extended mind evolutionary computation model for optimizations
    • Jie J., Zeng J., Han C. An extended mind evolutionary computation model for optimizations. Appl. Math. Comput. Feb. 2007, 185(2):1038-1049.
    • (2007) Appl. Math. Comput. , vol.185 , Issue.2 , pp. 1038-1049
    • Jie, J.1    Zeng, J.2    Han, C.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.