메뉴 건너뛰기




Volumn 94, Issue , 2016, Pages 629-636

Wind speed forecasting based on the hybrid ensemble empirical mode decomposition and GA-BP neural network method

Author keywords

BP neural network; EEMD; EMD; GA; Wind speed forecasting

Indexed keywords

COMPUTATIONAL EFFICIENCY; FORECASTING; GALLIUM; MATLAB; NEURAL NETWORKS; SENSITIVITY ANALYSIS; SIGNAL PROCESSING; SPEED; STOCHASTIC SYSTEMS; WIND EFFECTS; WIND POWER;

EID: 84962148959     PISSN: 09601481     EISSN: 18790682     Source Type: Journal    
DOI: 10.1016/j.renene.2016.03.103     Document Type: Article
Times cited : (619)

References (20)
  • 1
    • 0005581003 scopus 로고    scopus 로고
    • A mathematical look at a physical power prediction model
    • Landberg L. A mathematical look at a physical power prediction model. Wind Energy 1998, 1:23-28.
    • (1998) Wind Energy , vol.1 , pp. 23-28
    • Landberg, L.1
  • 2
    • 84962377388 scopus 로고    scopus 로고
    • Evaluation of the high-resolution model forecasts over the Taiwan area during GIMEX
    • Hong J.S. Evaluation of the high-resolution model forecasts over the Taiwan area during GIMEX. Weather Forecast. 1998, 18:23-28.
    • (1998) Weather Forecast. , vol.18 , pp. 23-28
    • Hong, J.S.1
  • 4
    • 33747604390 scopus 로고    scopus 로고
    • Grey predictor for wind energy conversion systems output power prediction
    • El-Fouly T.H.M., El-Saadany E.F., Salama M.M.A. Grey predictor for wind energy conversion systems output power prediction. IEEE Trans. Power Syst. 2006, 21:1450-1452.
    • (2006) IEEE Trans. Power Syst. , vol.21 , pp. 1450-1452
    • El-Fouly, T.H.M.1    El-Saadany, E.F.2    Salama, M.M.A.3
  • 6
    • 0037224608 scopus 로고    scopus 로고
    • Forecasting wind with neural networks
    • More A., Deo M.C. Forecasting wind with neural networks. Mar. Struct. 2003, 16:35-49.
    • (2003) Mar. Struct. , vol.16 , pp. 35-49
    • More, A.1    Deo, M.C.2
  • 7
    • 77953137822 scopus 로고    scopus 로고
    • On comparing three artificial neural networks for wind speed forecasting
    • Li G., Shi J. On comparing three artificial neural networks for wind speed forecasting. Appl. Energy 2010, 87:2313-2320.
    • (2010) Appl. Energy , vol.87 , pp. 2313-2320
    • Li, G.1    Shi, J.2
  • 8
    • 78650402541 scopus 로고    scopus 로고
    • Hybrid wavelet-PSO-ANFIS approach for short-term wind power forecasting in portugal
    • Catalão J.P.S., Pousinho H.M.I., Mendes V.M.F. Hybrid wavelet-PSO-ANFIS approach for short-term wind power forecasting in portugal. IEEE Trans. Sust. Energy 2011, 2:50-59.
    • (2011) IEEE Trans. Sust. Energy , vol.2 , pp. 50-59
    • Catalão, J.P.S.1    Pousinho, H.M.I.2    Mendes, V.M.F.3
  • 9
    • 84859036543 scopus 로고    scopus 로고
    • AWNN-assisted wind power forecasting using feed-forward neural network
    • Bhaskar K., Singh S.N. AWNN-assisted wind power forecasting using feed-forward neural network. IEEE Trans. Sust. Energy 2012, 3:306-315.
    • (2012) IEEE Trans. Sust. Energy , vol.3 , pp. 306-315
    • Bhaskar, K.1    Singh, S.N.2
  • 10
    • 85027956105 scopus 로고    scopus 로고
    • Vijay vittal support-vector-machine-enhanced Markov model for short-term wind power forecast
    • Yang L., He M., Zhang J.S. Vijay vittal support-vector-machine-enhanced Markov model for short-term wind power forecast. IEEE Trans. Sust. Energy 2015, 6:791-799.
    • (2015) IEEE Trans. Sust. Energy , vol.6 , pp. 791-799
    • Yang, L.1    He, M.2    Zhang, J.S.3
  • 11
    • 54149110925 scopus 로고    scopus 로고
    • A new strategy for wind speed forecasting using artificial intelligent methods
    • Monfared M., Rastegar H., Kojabadi H.M. A new strategy for wind speed forecasting using artificial intelligent methods. Renew. Energy 2009, 34:845-848.
    • (2009) Renew. Energy , vol.34 , pp. 845-848
    • Monfared, M.1    Rastegar, H.2    Kojabadi, H.M.3
  • 12
    • 84861423084 scopus 로고    scopus 로고
    • Comparing the applications of EMD and EEMD on time-frequency analysis of seismic signal
    • Tong W., Mingcai Z., Qihao Y., Huyuan Z. Comparing the applications of EMD and EEMD on time-frequency analysis of seismic signal. J. Appl. Geophys. 2012, 83:29-34.
    • (2012) J. Appl. Geophys. , vol.83 , pp. 29-34
    • Tong, W.1    Mingcai, Z.2    Qihao, Y.3    Huyuan, Z.4
  • 13
    • 58949088453 scopus 로고    scopus 로고
    • Application of the EEMD method to rotor fault diagnosis of rotating machinery
    • Lei Y., He Z., Zi Y. Application of the EEMD method to rotor fault diagnosis of rotating machinery. Mech. Syst. Signal Process. 2009, 23:1327-1338.
    • (2009) Mech. Syst. Signal Process. , vol.23 , pp. 1327-1338
    • Lei, Y.1    He, Z.2    Zi, Y.3
  • 14
    • 79955647441 scopus 로고    scopus 로고
    • Feed-axis gearbox condition monitoring using built-in position sensors and EEMD method
    • Zhou Y., Tao T., Mei X., Jiang G., Sun N. Feed-axis gearbox condition monitoring using built-in position sensors and EEMD method. Robot. Comput.-Integr. Manuf. 2011, 27:785-793.
    • (2011) Robot. Comput.-Integr. Manuf. , vol.27 , pp. 785-793
    • Zhou, Y.1    Tao, T.2    Mei, X.3    Jiang, G.4    Sun, N.5
  • 15
    • 77952629975 scopus 로고    scopus 로고
    • Application of the VLF-EM method with EEMD to the study of a mud volcano in southern Taiwan
    • Lin M.J., Jeng Y. Application of the VLF-EM method with EEMD to the study of a mud volcano in southern Taiwan. Geomorphology 2010, 119:97-110.
    • (2010) Geomorphology , vol.119 , pp. 97-110
    • Lin, M.J.1    Jeng, Y.2
  • 16
    • 5444236478 scopus 로고    scopus 로고
    • The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis
    • Huang N.E., Shen Z., Long S.R., Wu M.L., Shih H.H., Zheng Q., et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. Roy. Soc. Lond. A 1998, 454:903-995.
    • (1998) Proc. Roy. Soc. Lond. A , vol.454 , pp. 903-995
    • Huang, N.E.1    Shen, Z.2    Long, S.R.3    Wu, M.L.4    Shih, H.H.5    Zheng, Q.6
  • 17
    • 80052078099 scopus 로고    scopus 로고
    • Ensemble empirical mode decomposition: a noise assisted data analysis method
    • Wu Z.H., Huang N.E. Ensemble empirical mode decomposition: a noise assisted data analysis method. Adv. Adapt. Data Anal. 2009, 1:1-41.
    • (2009) Adv. Adapt. Data Anal. , vol.1 , pp. 1-41
    • Wu, Z.H.1    Huang, N.E.2
  • 19
    • 2542525254 scopus 로고    scopus 로고
    • A study of the characteristics of white noise using the empirical mode decomposition method
    • Wu Z.H., Huang N.E. A study of the characteristics of white noise using the empirical mode decomposition method. Proc. R. Soc. Lond. A 2004, 460:1597-1611.
    • (2004) Proc. R. Soc. Lond. A , vol.460 , pp. 1597-1611
    • Wu, Z.H.1    Huang, N.E.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.