-
1
-
-
84864049234
-
Analysis of representations for domain adaptation
-
Ben-David, Shai, Blitzer, John, Crammer, Koby, Pereira, Fernando, et al. Analysis of representations for domain adaptation. Advances in neural information processing systems, 19:137, 2007.
-
(2007)
Advances in Neural Information Processing Systems
, vol.19
, pp. 137
-
-
Ben-David, S.1
Blitzer, J.2
Crammer, K.3
Pereira, F.4
-
2
-
-
84897573740
-
A theory of learning from different domains
-
Ben-David, Shai, Blitzer, John, Crammer, Koby, Kulesza, Alex, Pereira, Fernando, and Vaughan, Jennifer Wortman. A theory of learning from different domains. Machine learning, 79(1-2): 151–175, 2010.
-
(2010)
Machine Learning
, vol.79
, Issue.1-2
, pp. 151-175
-
-
Ben-David, S.1
Blitzer, J.2
Crammer, K.3
Kulesza, A.4
Pereira, F.5
Vaughan, J.W.6
-
3
-
-
84867129067
-
Marginalized denoising autoencoders for domain adaptation
-
Chen, Minmin, Xu, Zhixiang, Weinberger, Kilian, and Sha, Fei. Marginalized denoising autoencoders for domain adaptation. International Conference on Machine Learning (ICML), 2012.
-
(2012)
International Conference on Machine Learning (ICML)
-
-
Chen, M.1
Xu, Z.2
Weinberger, K.3
Sha, F.4
-
5
-
-
84985025231
-
-
arXiv e-prints, May
-
Ganin, Y., Ustinova, E., Ajakan, H., Germain, P., Larochelle, H., Laviolette, F., Marchand, M., and Lempitsky, V. Domain-Adversarial Training of Neural Networks. ArXiv e-prints, May 2015.
-
(2015)
Domain-Adversarial Training of Neural Networks
-
-
Ganin, Y.1
Ustinova, E.2
Ajakan, H.3
Germain, P.4
Larochelle, H.5
Laviolette, F.6
Marchand, M.7
Lempitsky, V.8
-
6
-
-
84864063983
-
A kernel method for the two-sample-problem
-
Gretton, Arthur, Borgwardt, Karsten M, Rasch, Malte, Schölkopf, Bernhard, and Smola, Alex J. A kernel method for the two-sample-problem. In Advances in neural information processing systems, pp. 513–520, 2006.
-
(2006)
Advances in Neural Information Processing Systems
, pp. 513-520
-
-
Gretton, A.1
Borgwardt, K.M.2
Rasch, M.3
Schölkopf, B.4
Smola, A.J.5
-
7
-
-
85123650840
-
Detecting change in data streams
-
VLDB Endowment
-
Kifer, Daniel, Ben-David, Shai, and Gehrke, Johannes. Detecting change in data streams. In Proceedings of the Thirtieth international conference on Very large data bases-Volume 30, pp. 180–191. VLDB Endowment, 2004.
-
(2004)
Proceedings of the Thirtieth International Conference on Very Large Data Bases
, vol.30
, pp. 180-191
-
-
Kifer, D.1
Ben-David, S.2
Gehrke, J.3
-
10
-
-
84930643107
-
Semi-supervised learning with deep generative models
-
Kingma, Diederik P, Mohamed, Shakir, Rezende, Danilo Jimenez, and Welling, Max. Semi-supervised learning with deep generative models. In Advances in Neural Information Processing Systems, pp. 3581–3589, 2014.
-
(2014)
Advances in Neural Information Processing Systems
, pp. 3581-3589
-
-
Kingma, D.P.1
Mohamed, S.2
Rezende, D.J.3
Welling, M.4
-
13
-
-
78149297677
-
Weighted sums of random kitchen sinks: Replacing minimization with randomization in learning
-
Rahimi, Ali and Recht, Benjamin. Weighted sums of random kitchen sinks: Replacing minimization with randomization in learning. In Advances in neural information processing systems, pp. 1313–1320, 2009.
-
(2009)
Advances in Neural Information Processing Systems
, pp. 1313-1320
-
-
Rahimi, A.1
Recht, B.2
-
15
-
-
84979928562
-
Deep domain confusion: Maximizing for domain invariance
-
Tzeng, Eric, Hoffman, Judy, Zhang, Ning, Saenko, Kate, and Darrell, Trevor. Deep domain confusion: Maximizing for domain invariance. CoRR, abs/1412.3474, 2014. URL http://arxiv.org/abs/1412.3474.
-
(2014)
CoRR
-
-
Tzeng, E.1
Hoffman, J.2
Zhang, N.3
Saenko, K.4
Darrell, T.5
-
17
-
-
84897542525
-
Learning fair representations
-
Zemel, Rich, Wu, Yu, Swersky, Kevin, Pitassi, Toni, and Dwork, Cynthia. Learning fair representations. In Proceedings of the 30th International Conference on Machine Learning (ICML-13), pp. 325–333, 2013.
-
(2013)
Proceedings of the 30th International Conference on Machine Learning (ICML-13)
, pp. 325-333
-
-
Zemel, R.1
Wu, Y.2
Swersky, K.3
Pitassi, T.4
Dwork, C.5
-
18
-
-
84929675860
-
FastMMD: Ensemble of circular discrepancy for efficient two-sample test
-
Zhao, Ji and Meng, Deyu. Fastmmd: Ensemble of circular discrepancy for efficient two-sample test. Neural computation, 2015.
-
(2015)
Neural Computation
-
-
Zhao, J.1
Meng, D.2
|