메뉴 건너뛰기




Volumn 9, Issue 1, 2018, Pages

Nuclear-resident RIG-I senses viral replication inducing antiviral immunity

Author keywords

[No Author keywords available]

Indexed keywords

INTERFERON; PREGENOMIC RNA; RETINOIC ACID INDUCIBLE PROTEIN I; RNA; UNCLASSIFIED DRUG; VIRUS RNA; ANTIVIRUS AGENT; DDX58 PROTEIN, HUMAN; PROTEIN BINDING; RIBONUCLEOPROTEIN;

EID: 85051501982     PISSN: None     EISSN: 20411723     Source Type: Journal    
DOI: 10.1038/s41467-018-05745-w     Document Type: Article
Times cited : (83)

References (64)
  • 1
    • 84925441813 scopus 로고    scopus 로고
    • Control of adaptive immunity by the innate immune system
    • PID: 25789684
    • Iwasaki, A. & Medzhitov, R. Control of adaptive immunity by the innate immune system. Nat. Immunol. 16, 343–353 (2015)
    • (2015) Nat. Immunol. , vol.16 , pp. 343-353
    • Iwasaki, A.1    Medzhitov, R.2
  • 2
    • 84896958063 scopus 로고    scopus 로고
    • Innate immune sensing and signaling of cytosolic nucleic acids
    • PID: 24655297
    • Wu, J. & Chen, Z. J. Innate immune sensing and signaling of cytosolic nucleic acids. Annu. Rev. Immunol. 32, 461–488 (2014)
    • (2014) Annu. Rev. Immunol. , vol.32 , pp. 461-488
    • Wu, J.1    Chen, Z.J.2
  • 3
    • 32944464648 scopus 로고    scopus 로고
    • Pathogen recognition and innate immunity
    • PID: 16497588
    • Akira, S., Uematsu, S. & Takeuchi, O. Pathogen recognition and innate immunity. Cell 124, 783–801 (2006)
    • (2006) Cell , vol.124 , pp. 783-801
    • Akira, S.1    Uematsu, S.2    Takeuchi, O.3
  • 4
    • 84946064660 scopus 로고    scopus 로고
    • The emerging role of nuclear viral DNA sensors
    • PID: 26354430
    • Diner, B. A., Lum, K. K. & Cristea, I. M. The emerging role of nuclear viral DNA sensors. J. Biol. Chem. 290, 26412–26421 (2015)
    • (2015) J. Biol. Chem. , vol.290 , pp. 26412-26421
    • Diner, B.A.1    Lum, K.K.2    Cristea, I.M.3
  • 5
    • 84868095535 scopus 로고    scopus 로고
    • Nuclear IFI16 induction of IRF-3 signaling during herpesviral infection and degradation of IFI16 by the viral ICP0 protein
    • PID: 23027953
    • Orzalli, M. H., DeLuca, N. A. & Knipe, D. M. Nuclear IFI16 induction of IRF-3 signaling during herpesviral infection and degradation of IFI16 by the viral ICP0 protein. Proc. Natl Acad. Sci. USA 109, E3008–E3017 (2012)
    • (2012) Proc. Natl Acad. Sci. USA , vol.109 , pp. E3008-E3017
    • Orzalli, M.H.1    DeLuca, N.A.2    Knipe, D.M.3
  • 6
    • 79956061094 scopus 로고    scopus 로고
    • IFI16 acts as a nuclear pathogen sensor to induce the inflammasome in response to Kaposi sarcoma-associated herpesvirus infection
    • PID: 21575908
    • Kerur, N. et al. IFI16 acts as a nuclear pathogen sensor to induce the inflammasome in response to Kaposi sarcoma-associated herpesvirus infection. Cell Host Microbe 9, 363–375 (2011)
    • (2011) Cell Host Microbe , vol.9 , pp. 363-375
    • Kerur, N.1
  • 7
    • 84936748794 scopus 로고    scopus 로고
    • BRCA1 regulates IFI16 mediated nuclear innate sensing of herpes viral DNA and subsequent induction of the innate inflammasome and interferon-beta responses
    • PID: 26121674
    • Dutta, D. et al. BRCA1 regulates IFI16 mediated nuclear innate sensing of herpes viral DNA and subsequent induction of the innate inflammasome and interferon-beta responses. PLoS Pathog. 11, e1005030 (2015)
    • (2015) PLoS Pathog. , vol.11
    • Dutta, D.1
  • 8
    • 85012225092 scopus 로고    scopus 로고
    • IFI16 is required for DNA sensing in human macrophages by promoting production and function of cGAMP
    • PID: 28186168
    • Jonsson, K. L. et al. IFI16 is required for DNA sensing in human macrophages by promoting production and function of cGAMP. Nat. Commun. 8, 14391 (2017)
    • (2017) Nat. Commun. , vol.8
    • Jonsson, K.L.1
  • 9
    • 84980385738 scopus 로고    scopus 로고
    • Discriminating self from non-self in nucleic acid sensing
    • PID: 27455396
    • Schlee, M. & Hartmann, G. Discriminating self from non-self in nucleic acid sensing. Nat. Rev. Immunol. 16, 566–580 (2016)
    • (2016) Nat. Rev. Immunol. , vol.16 , pp. 566-580
    • Schlee, M.1    Hartmann, G.2
  • 10
    • 33646342149 scopus 로고    scopus 로고
    • Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses
    • PID: 16625202
    • Kato, H. et al. Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature 441, 101–105 (2006)
    • (2006) Nature , vol.441 , pp. 101-105
    • Kato, H.1
  • 11
    • 37349052379 scopus 로고    scopus 로고
    • Distinct RIG-I and MDA5 signaling by RNA viruses in innate immunity
    • PID: 17942531
    • Loo, Y. M. et al. Distinct RIG-I and MDA5 signaling by RNA viruses in innate immunity. J. Virol. 82, 335–345 (2008)
    • (2008) J. Virol. , vol.82 , pp. 335-345
    • Loo, Y.M.1
  • 12
    • 0004250834 scopus 로고    scopus 로고
    • 6th edn, Knipe, D. M., Howley, P. M., Lippincott Williams & Wilkins, Philadelphia
    • Shaw, M. L. & Palese, P. in Fields Virology 6th edn (eds Knipe, D. M. & Howley, P. M.) (Lippincott Williams & Wilkins, Philadelphia, 2013)
    • (2013) Fields Virology
    • Shaw, M.L.1    Palese, P.2
  • 13
    • 84967215091 scopus 로고    scopus 로고
    • Viral evasion of intracellular DNA and RNA sensing
    • PID: 27174148
    • Chan, Y. K. & Gack, M. U. Viral evasion of intracellular DNA and RNA sensing. Nat. Rev. Microbiol. 14, 360–373 (2016)
    • (2016) Nat. Rev. Microbiol. , vol.14 , pp. 360-373
    • Chan, Y.K.1    Gack, M.U.2
  • 14
    • 85030718279 scopus 로고    scopus 로고
    • Ten strategies of interferon evasion by viruses
    • PID: 28799903
    • Garcia-Sastre, A. Ten strategies of interferon evasion by viruses. Cell Host Microbe 22, 176–184 (2017)
    • (2017) Cell Host Microbe , vol.22 , pp. 176-184
    • Garcia-Sastre, A.1
  • 15
    • 77956622041 scopus 로고    scopus 로고
    • Tick-borne encephalitis virus delays interferon induction and hides its double-stranded RNA in intracellular membrane vesicles
    • PID: 20554782
    • Overby, A. K., Popov, V. L., Niedrig, M. & Weber, F. Tick-borne encephalitis virus delays interferon induction and hides its double-stranded RNA in intracellular membrane vesicles. J. Virol. 84, 8470–8483 (2010)
    • (2010) J. Virol. , vol.84 , pp. 8470-8483
    • Overby, A.K.1    Popov, V.L.2    Niedrig, M.3    Weber, F.4
  • 16
    • 84959562427 scopus 로고    scopus 로고
    • The hepatitis C virus-induced membranous web and associated nuclear transport machinery limit access of pattern recognition receptors to viral replication sites
    • PID: 26863439
    • Neufeldt, C. J. et al. The hepatitis C virus-induced membranous web and associated nuclear transport machinery limit access of pattern recognition receptors to viral replication sites. PLoS Pathog. 12, e1005428 (2016)
    • (2016) PLoS Pathog. , vol.12
    • Neufeldt, C.J.1
  • 17
    • 75849125661 scopus 로고    scopus 로고
    • Innate immune evasion strategies of influenza viruses
    • PID: 20020828
    • Hale, B. G., Albrecht, R. A. & Garcia-Sastre, A. Innate immune evasion strategies of influenza viruses. Future Microbiol. 5, 23–41 (2010)
    • (2010) Future Microbiol. , vol.5 , pp. 23-41
    • Hale, B.G.1    Albrecht, R.A.2    Garcia-Sastre, A.3
  • 18
    • 84959511733 scopus 로고    scopus 로고
    • Influenza virus activation of the interferon system
    • PID: 25678267
    • Killip, M. J., Fodor, E. & Randall, R. E. Influenza virus activation of the interferon system. Virus Res. 209, 11–22 (2015)
    • (2015) Virus Res. , vol.209 , pp. 11-22
    • Killip, M.J.1    Fodor, E.2    Randall, R.E.3
  • 19
    • 55849083076 scopus 로고    scopus 로고
    • Influenza A replication and host nuclear compartments: many changes and many questions
    • PID: 18926763
    • Josset, L., Frobert, E. & Rosa-Calatrava, M. Influenza A replication and host nuclear compartments: many changes and many questions. J. Clin. Virol. 43, 381–390 (2008)
    • (2008) J. Clin. Virol. , vol.43 , pp. 381-390
    • Josset, L.1    Frobert, E.2    Rosa-Calatrava, M.3
  • 20
    • 33947171000 scopus 로고    scopus 로고
    • IFNbeta induction by influenza A virus is mediated by RIG-I which is regulated by the viral NS1 protein
    • PID: 17140406
    • Opitz, B. et al. IFNbeta induction by influenza A virus is mediated by RIG-I which is regulated by the viral NS1 protein. Cell Microbiol. 9, 930–938 (2007)
    • (2007) Cell Microbiol. , vol.9 , pp. 930-938
    • Opitz, B.1
  • 21
    • 75749140581 scopus 로고    scopus 로고
    • RIG-I detects viral genomic RNA during negative-strand RNA virus infection
    • PID: 20144762
    • Rehwinkel, J. et al. RIG-I detects viral genomic RNA during negative-strand RNA virus infection. Cell 140, 397–408 (2010)
    • (2010) Cell , vol.140 , pp. 397-408
    • Rehwinkel, J.1
  • 22
    • 68049089651 scopus 로고    scopus 로고
    • Recognition of 5′ triphosphate by RIG-I helicase requires short blunt double-stranded RNA as contained in panhandle of negative-strand virus
    • PID: 19576794
    • Schlee, M. et al. Recognition of 5′ triphosphate by RIG-I helicase requires short blunt double-stranded RNA as contained in panhandle of negative-strand virus. Immunity 31, 25–34 (2009)
    • (2009) Immunity , vol.31 , pp. 25-34
    • Schlee, M.1
  • 23
    • 77957997708 scopus 로고    scopus 로고
    • Preference of RIG-I for short viral RNA molecules in infected cells revealed by next-generation sequencing
    • PID: 20805493
    • Baum, A., Sachidanandam, R. & Garcia-Sastre, A. Preference of RIG-I for short viral RNA molecules in infected cells revealed by next-generation sequencing. Proc. Natl Acad. Sci. USA 107, 16303–16308 (2010)
    • (2010) Proc. Natl Acad. Sci. USA , vol.107 , pp. 16303-16308
    • Baum, A.1    Sachidanandam, R.2    Garcia-Sastre, A.3
  • 24
    • 84929630733 scopus 로고    scopus 로고
    • Influenza A virus panhandle structure is directly involved in RIG-I activation and interferon induction
    • PID: 25810557
    • Liu, G., Park, H. S., Pyo, H. M., Liu, Q. & Zhou, Y. Influenza A virus panhandle structure is directly involved in RIG-I activation and interferon induction. J. Virol. 89, 6067–6079 (2015)
    • (2015) J. Virol. , vol.89 , pp. 6067-6079
    • Liu, G.1    Park, H.S.2    Pyo, H.M.3    Liu, Q.4    Zhou, Y.5
  • 25
    • 84923281083 scopus 로고    scopus 로고
    • Viral suppressors of the RIG-I-mediated interferon response are pre-packaged in influenza virions
    • PID: 25487526
    • Liedmann, S. et al. Viral suppressors of the RIG-I-mediated interferon response are pre-packaged in influenza virions. Nat. Commun. 5, 5645 (2014)
    • (2014) Nat. Commun. , vol.5
    • Liedmann, S.1
  • 26
    • 84926139701 scopus 로고    scopus 로고
    • Influenza virus adaptation PB2-627K modulates nucleocapsid inhibition by the pathogen sensor RIG-I
    • PID: 25704008
    • Weber, M. et al. Influenza virus adaptation PB2-627K modulates nucleocapsid inhibition by the pathogen sensor RIG-I. Cell Host Microbe 17, 309–319 (2015)
    • (2015) Cell Host Microbe , vol.17 , pp. 309-319
    • Weber, M.1
  • 27
    • 84869034587 scopus 로고    scopus 로고
    • Incoming influenza A virus evades early host recognition, while influenza B virus induces interferon expression directly upon entry
    • PID: 22855501
    • Osterlund, P. et al. Incoming influenza A virus evades early host recognition, while influenza B virus induces interferon expression directly upon entry. J. Virol. 86, 11183–11193 (2012)
    • (2012) J. Virol. , vol.86 , pp. 11183-11193
    • Osterlund, P.1
  • 28
    • 84949637804 scopus 로고    scopus 로고
    • RIG-I signaling is essential for influenza B virus-induced rapid interferon gene expression
    • PID: 26378160
    • Makela, S. M. et al. RIG-I signaling is essential for influenza B virus-induced rapid interferon gene expression. J. Virol. 89, 12014–12025 (2015)
    • (2015) J. Virol. , vol.89 , pp. 12014-12025
    • Makela, S.M.1
  • 29
    • 84896950946 scopus 로고    scopus 로고
    • Activation of the interferon induction cascade by influenza a viruses requires viral RNA synthesis and nuclear export
    • PID: 24478437
    • Killip, M. J., Smith, M., Jackson, D. & Randall, R. E. Activation of the interferon induction cascade by influenza a viruses requires viral RNA synthesis and nuclear export. J. Virol. 88, 3942–3952 (2014)
    • (2014) J. Virol. , vol.88 , pp. 3942-3952
    • Killip, M.J.1    Smith, M.2    Jackson, D.3    Randall, R.E.4
  • 30
    • 85040002649 scopus 로고    scopus 로고
    • Fundamental properties of the mammalian innate immune system revealed by multispecies comparison of type I interferon responses
    • PID: 29253856
    • Shaw, A. E. et al. Fundamental properties of the mammalian innate immune system revealed by multispecies comparison of type I interferon responses. PLoS Biol. 15, e2004086 (2017)
    • (2017) PLoS Biol. , vol.15
    • Shaw, A.E.1
  • 31
    • 23344452360 scopus 로고    scopus 로고
    • Nrf2 possesses a redox-insensitive nuclear export signal overlapping with the leucine zipper motif
    • PID: 15917227
    • Li, W. et al. Nrf2 possesses a redox-insensitive nuclear export signal overlapping with the leucine zipper motif. J. Biol. Chem. 280, 28430–28438 (2005)
    • (2005) J. Biol. Chem. , vol.280 , pp. 28430-28438
    • Li, W.1
  • 32
    • 81555200097 scopus 로고    scopus 로고
    • Induction and evasion of type I interferon responses by influenza viruses
    • PID: 22027189
    • Garcia-Sastre, A. Induction and evasion of type I interferon responses by influenza viruses. Virus Res. 162, 12–18 (2011)
    • (2011) Virus Res. , vol.162 , pp. 12-18
    • Garcia-Sastre, A.1
  • 33
    • 0345004816 scopus 로고    scopus 로고
    • Influenza A virus lacking the NS1 gene replicates in interferon-deficient systems
    • PID: 9878611
    • Garcia-Sastre, A. et al. Influenza A virus lacking the NS1 gene replicates in interferon-deficient systems. Virology 252, 324–330 (1998)
    • (1998) Virology , vol.252 , pp. 324-330
    • Garcia-Sastre, A.1
  • 34
    • 84863754680 scopus 로고    scopus 로고
    • An overlapping protein-coding region in influenza A virus segment 3 modulates the host response
    • PID: 22745253
    • Jagger, B. W. et al. An overlapping protein-coding region in influenza A virus segment 3 modulates the host response. Science 337, 199–204 (2012)
    • (2012) Science , vol.337 , pp. 199-204
    • Jagger, B.W.1
  • 35
    • 9344260238 scopus 로고    scopus 로고
    • A plasmid-based reverse genetics system for influenza A virus
    • PID: 8648766
    • Pleschka, S. et al. A plasmid-based reverse genetics system for influenza A virus. J. Virol. 70, 4188–4192 (1996)
    • (1996) J. Virol. , vol.70 , pp. 4188-4192
    • Pleschka, S.1
  • 36
    • 0028118520 scopus 로고
    • Mutational analysis of the conserved motifs of influenza A virus polymerase basic protein 1
    • PID: 8107244
    • Biswas, S. K. & Nayak, D. P. Mutational analysis of the conserved motifs of influenza A virus polymerase basic protein 1. J. Virol. 68, 1819–1826 (1994)
    • (1994) J. Virol. , vol.68 , pp. 1819-1826
    • Biswas, S.K.1    Nayak, D.P.2
  • 37
    • 33746815630 scopus 로고    scopus 로고
    • Amino acid residues in the N-terminal region of the PA subunit of influenza A virus RNA polymerase play a critical role in protein stability, endonuclease activity, cap binding, and virion RNA promoter binding
    • PID: 16873236
    • Hara, K., Schmidt, F. I., Crow, M. & Brownlee, G. G. Amino acid residues in the N-terminal region of the PA subunit of influenza A virus RNA polymerase play a critical role in protein stability, endonuclease activity, cap binding, and virion RNA promoter binding. J. Virol. 80, 7789–7798 (2006)
    • (2006) J. Virol. , vol.80 , pp. 7789-7798
    • Hara, K.1    Schmidt, F.I.2    Crow, M.3    Brownlee, G.G.4
  • 38
    • 67249108203 scopus 로고    scopus 로고
    • Genetic trans-complementation establishes a new model for influenza virus RNA transcription and replication
    • PID: 19478885
    • Jorba, N., Coloma, R. & Ortin, J. Genetic trans-complementation establishes a new model for influenza virus RNA transcription and replication. PLoS Pathog. 5, e1000462 (2009)
    • (2009) PLoS Pathog. , vol.5
    • Jorba, N.1    Coloma, R.2    Ortin, J.3
  • 39
    • 0037404535 scopus 로고    scopus 로고
    • Mutations in the N-terminal region of influenza virus PB2 protein affect virus RNA replication but not transcription
    • PID: 12692212
    • Gastaminza, P., Perales, B., Falcon, A. M. & Ortin, J. Mutations in the N-terminal region of influenza virus PB2 protein affect virus RNA replication but not transcription. J. Virol. 77, 5098–5108 (2003)
    • (2003) J. Virol. , vol.77 , pp. 5098-5108
    • Gastaminza, P.1    Perales, B.2    Falcon, A.M.3    Ortin, J.4
  • 40
    • 0036720769 scopus 로고    scopus 로고
    • A single amino acid mutation in the PA subunit of the influenza virus RNA polymerase inhibits endonucleolytic cleavage of capped RNAs
    • PID: 12186883
    • Fodor, E. et al. A single amino acid mutation in the PA subunit of the influenza virus RNA polymerase inhibits endonucleolytic cleavage of capped RNAs. J. Virol. 76, 8989–9001 (2002)
    • (2002) J. Virol. , vol.76 , pp. 8989-9001
    • Fodor, E.1
  • 41
    • 3242813113 scopus 로고    scopus 로고
    • The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses
    • PID: 15208624
    • Yoneyama, M. et al. The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nat. Immunol. 5, 730–737 (2004)
    • (2004) Nat. Immunol. , vol.5 , pp. 730-737
    • Yoneyama, M.1
  • 42
    • 55949131282 scopus 로고    scopus 로고
    • Roles of RIG-I N-terminal tandem CARD and splice variant in TRIM25-mediated antiviral signal transduction
    • PID: 18948594
    • Gack, M. U. et al. Roles of RIG-I N-terminal tandem CARD and splice variant in TRIM25-mediated antiviral signal transduction. Proc. Natl Acad. Sci. USA 105, 16743–16748 (2008)
    • (2008) Proc. Natl Acad. Sci. USA , vol.105 , pp. 16743-16748
    • Gack, M.U.1
  • 43
    • 38649089789 scopus 로고    scopus 로고
    • The C-terminal regulatory domain is the RNA 5′-triphosphate sensor of RIG-I
    • PID: 18243112
    • Cui, S. et al. The C-terminal regulatory domain is the RNA 5′-triphosphate sensor of RIG-I. Mol. Cell 29, 169–179 (2008)
    • (2008) Mol. Cell , vol.29 , pp. 169-179
    • Cui, S.1
  • 44
    • 39649092731 scopus 로고    scopus 로고
    • Nonself RNA-sensing mechanism of RIG-I helicase and activation of antiviral immune responses
    • PID: 18242112
    • Takahasi, K. et al. Nonself RNA-sensing mechanism of RIG-I helicase and activation of antiviral immune responses. Mol. Cell 29, 428–440 (2008)
    • (2008) Mol. Cell , vol.29 , pp. 428-440
    • Takahasi, K.1
  • 45
    • 84928928403 scopus 로고    scopus 로고
    • ATP-dependent effector-like functions of RIG-I-like receptors
    • PID: 25891073
    • Yao, H. et al. ATP-dependent effector-like functions of RIG-I-like receptors. Mol. Cell 58, 541–548 (2015)
    • (2015) Mol. Cell , vol.58 , pp. 541-548
    • Yao, H.1
  • 46
    • 84921280194 scopus 로고    scopus 로고
    • The RNA sensor RIG-I dually functions as an innate sensor and direct antiviral factor for hepatitis B virus
    • PID: 25557055
    • Sato, S. et al. The RNA sensor RIG-I dually functions as an innate sensor and direct antiviral factor for hepatitis B virus. Immunity 42, 123–132 (2015)
    • (2015) Immunity , vol.42 , pp. 123-132
    • Sato, S.1
  • 47
    • 33846514081 scopus 로고    scopus 로고
    • Hepatitis B virus replication
    • PID: 17206754
    • Beck, J. & Nassal, M. Hepatitis B virus replication. World J. Gastroenterol. 13, 48–64 (2007)
    • (2007) World J. Gastroenterol. , vol.13 , pp. 48-64
    • Beck, J.1    Nassal, M.2
  • 48
    • 13944253573 scopus 로고    scopus 로고
    • Regulating intracellular antiviral defense and permissiveness to hepatitis C virus RNA replication through a cellular RNA helicase, RIG-I
    • PID: 15708988
    • Sumpter, R. Jr. et al. Regulating intracellular antiviral defense and permissiveness to hepatitis C virus RNA replication through a cellular RNA helicase, RIG-I. J. Virol. 79, 2689–2699 (2005)
    • (2005) J. Virol. , vol.79 , pp. 2689-2699
    • Sumpter, R.1
  • 49
    • 73949127893 scopus 로고    scopus 로고
    • Nuclear HBx binds the HBV minichromosome and modifies the epigenetic regulation of cccDNA function
    • PID: 19906987
    • Belloni, L. et al. Nuclear HBx binds the HBV minichromosome and modifies the epigenetic regulation of cccDNA function. Proc. Natl Acad. Sci. USA 106, 19975–19979 (2009)
    • (2009) Proc. Natl Acad. Sci. USA , vol.106 , pp. 19975-19979
    • Belloni, L.1
  • 50
    • 85016959780 scopus 로고    scopus 로고
    • Single-cell studies of IFN-beta promoter activation by wild-type and NS1-defective influenza A viruses
    • PID: 27983470
    • Killip, M. J., Jackson, D., Perez-Cidoncha, M., Fodor, E. & Randall, R. E. Single-cell studies of IFN-beta promoter activation by wild-type and NS1-defective influenza A viruses. J. Gen. Virol. 98, 357–363 (2017)
    • (2017) J. Gen. Virol. , vol.98 , pp. 357-363
    • Killip, M.J.1    Jackson, D.2    Perez-Cidoncha, M.3    Fodor, E.4    Randall, R.E.5
  • 51
    • 84906330873 scopus 로고    scopus 로고
    • Interactions between the influenza A virus RNA polymerase components and retinoic acid-inducible gene I
    • PID: 24942585
    • Li, W., Chen, H., Sutton, T., Obadan, A. & Perez, D. R. Interactions between the influenza A virus RNA polymerase components and retinoic acid-inducible gene I. J. Virol. 88, 10432–10447 (2014)
    • (2014) J. Virol. , vol.88 , pp. 10432-10447
    • Li, W.1    Chen, H.2    Sutton, T.3    Obadan, A.4    Perez, D.R.5
  • 52
    • 85032382654 scopus 로고    scopus 로고
    • Nuclear TRIM25 specifically targets influenza virus ribonucleoproteins to block the onset of RNA chain elongation
    • PID: 29107643
    • Meyerson, N. R. et al. Nuclear TRIM25 specifically targets influenza virus ribonucleoproteins to block the onset of RNA chain elongation. Cell Host Microbe 22, 627–638 e627 (2017)
    • (2017) Cell Host Microbe , vol.22 , pp. 627-638 e627
    • Meyerson, N.R.1
  • 54
    • 33744913266 scopus 로고    scopus 로고
    • Dissociation of a MAVS/IPS-1/VISA/Cardif-IKKepsilon molecular complex from the mitochondrial outer membrane by hepatitis C virus NS3-4A proteolytic cleavage
    • PID: 16731946
    • Lin, R. et al. Dissociation of a MAVS/IPS-1/VISA/Cardif-IKKepsilon molecular complex from the mitochondrial outer membrane by hepatitis C virus NS3-4A proteolytic cleavage. J. Virol. 80, 6072–6083 (2006)
    • (2006) J. Virol. , vol.80 , pp. 6072-6083
    • Lin, R.1
  • 55
    • 1542286155 scopus 로고    scopus 로고
    • Intimate contacts of mitochondria with nuclear envelope as a potential energy gateway for nucleo-cytoplasmic mRNA transport
    • PID: 15113124
    • Prachar, J. Intimate contacts of mitochondria with nuclear envelope as a potential energy gateway for nucleo-cytoplasmic mRNA transport. Gen. Physiol. Biophys. 22, 525–534 (2003)
    • (2003) Gen. Physiol. Biophys. , vol.22 , pp. 525-534
    • Prachar, J.1
  • 56
    • 84929648590 scopus 로고    scopus 로고
    • Influenza virus-induced caspase-dependent enlargement of nuclear pores promotes nuclear export of viral ribonucleoprotein complexes
    • PID: 25810542
    • Muhlbauer, D. et al. Influenza virus-induced caspase-dependent enlargement of nuclear pores promotes nuclear export of viral ribonucleoprotein complexes. J. Virol. 89, 6009–6021 (2015)
    • (2015) J. Virol. , vol.89 , pp. 6009-6021
    • Muhlbauer, D.1
  • 57
    • 84861181618 scopus 로고    scopus 로고
    • The mitochondrial targeting chaperone 14-3-3epsilon regulates a RIG-I translocon that mediates membrane association and innate antiviral immunity
    • PID: 22607805
    • Liu, H. M. et al. The mitochondrial targeting chaperone 14-3-3epsilon regulates a RIG-I translocon that mediates membrane association and innate antiviral immunity. Cell Host Microbe 11, 528–537 (2012)
    • (2012) Cell Host Microbe , vol.11 , pp. 528-537
    • Liu, H.M.1
  • 58
    • 85035083737 scopus 로고    scopus 로고
    • Viral unmasking of cellular 5S rRNA pseudogene transcripts induces RIG-I-mediated immunity
    • PID: 29180807
    • Chiang, J. J. et al. Viral unmasking of cellular 5S rRNA pseudogene transcripts induces RIG-I-mediated immunity. Nat. Immunol. 19, 53–62 (2018)
    • (2018) Nat. Immunol. , vol.19 , pp. 53-62
    • Chiang, J.J.1
  • 59
    • 33749134437 scopus 로고    scopus 로고
    • DExD/H box RNA helicases: multifunctional proteins with important roles in transcriptional regulation
    • PID: 16935882
    • Fuller-Pace, F. V. DExD/H box RNA helicases: multifunctional proteins with important roles in transcriptional regulation. Nucleic Acids Res. 34, 4206–4215 (2006)
    • (2006) Nucleic Acids Res. , vol.34 , pp. 4206-4215
    • Fuller-Pace, F.V.1
  • 60
    • 0034705225 scopus 로고    scopus 로고
    • DNA transfection system for generation of influenza A virus from eight plasmids
    • PID: 10801978
    • Hoffmann, E., Neumann, G., Kawaoka, Y., Hobom, G. & Webster, R. G. A. DNA transfection system for generation of influenza A virus from eight plasmids. Proc. Natl Acad. Sci. USA 97, 6108–6113 (2000)
    • (2000) Proc. Natl Acad. Sci. USA , vol.97 , pp. 6108-6113
    • Hoffmann, E.1    Neumann, G.2    Kawaoka, Y.3    Hobom, G.4    Webster, R.G.A.5
  • 61
    • 84887010498 scopus 로고    scopus 로고
    • Genome engineering using the CRISPR-Cas9 system
    • PID: 24157548
    • Ran, F. A. et al. Genome engineering using the CRISPR-Cas9 system. Nat. Protoc. 8, 2281–2308 (2013)
    • (2013) Nat. Protoc. , vol.8 , pp. 2281-2308
    • Ran, F.A.1
  • 62
    • 84878522822 scopus 로고    scopus 로고
    • Colocalization of different influenza viral RNA segments in the cytoplasm before viral budding as shown by single-molecule sensitivity FISH analysis
    • PID: 23671419
    • Chou, Y. Y. et al. Colocalization of different influenza viral RNA segments in the cytoplasm before viral budding as shown by single-molecule sensitivity FISH analysis. PLoS Pathog. 9, e1003358 (2013)
    • (2013) PLoS Pathog. , vol.9
    • Chou, Y.Y.1
  • 63
    • 84960981842 scopus 로고    scopus 로고
    • DDX3 interacts with influenza A virus NS1 and NP proteins and exerts antiviral function through regulation of stress granule formation
    • PID: 26792746
    • Thulasi Raman, S. N. et al. DDX3 interacts with influenza A virus NS1 and NP proteins and exerts antiviral function through regulation of stress granule formation. J. Virol. 90, 3661–3675 (2016)
    • (2016) J. Virol. , vol.90 , pp. 3661-3675
    • Thulasi Raman, S.N.1
  • 64
    • 84947727979 scopus 로고    scopus 로고
    • HBx truncation mutants differentially modulate SREBP-1a and -1c transcription and HBV replication
    • PID: 26191620
    • Wu, Q. & Liu, Q. HBx truncation mutants differentially modulate SREBP-1a and -1c transcription and HBV replication. Virus Res. 210, 46–53 (2015)
    • (2015) Virus Res. , vol.210 , pp. 46-53
    • Wu, Q.1    Liu, Q.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.