메뉴 건너뛰기




Volumn 56, Issue 11, 2018, Pages 6344-6360

Hyperspectral unmixing based on dual-depth sparse probabilistic latent semantic analysis

Author keywords

Hyperspectral unmixing (HU); probabilistic latent semantic analysis (pLSA); semantic representations; topic models

Indexed keywords

BIOLOGICAL SYSTEMS; COMPETITION; DATA MINING; DATA STRUCTURES; HYPERSPECTRAL IMAGING; PROBABILISTIC LOGICS; SPECTROSCOPY;

EID: 85048511702     PISSN: 01962892     EISSN: None     Source Type: Journal    
DOI: 10.1109/TGRS.2018.2837150     Document Type: Article
Times cited : (46)

References (69)
  • 1
    • 80455176882 scopus 로고    scopus 로고
    • Foreword to the special issue on spectral unmixing of remotely sensed data
    • Nov.
    • A. Plaza, Q. Du, J. M. Bioucas-Dias, X. Jia, and F. A. Kruse, "Foreword to the special issue on spectral unmixing of remotely sensed data, " IEEE Trans. Geosci. Remote Sens., vol. 49, no. 11, pp. 4103-4110, Nov. 2011.
    • (2011) IEEE Trans. Geosci. Remote Sens. , vol.49 , Issue.11 , pp. 4103-4110
    • Plaza, A.1    Du, Q.2    Bioucas-Dias, J.M.3    Jia, X.4    Kruse, F.A.5
  • 5
    • 85032751209 scopus 로고    scopus 로고
    • A signal processing perspective on hyperspectral unmixing: Insights from remote sensing
    • Jan.
    • W.-K. Ma et al., "A signal processing perspective on hyperspectral unmixing: Insights from remote sensing, " IEEE Signal Process. Mag., vol. 31, no. 1, pp. 67-81, Jan. 2014.
    • (2014) IEEE Signal Process. Mag. , vol.31 , Issue.1 , pp. 67-81
    • Ma, W.-K.1
  • 7
    • 84861772901 scopus 로고    scopus 로고
    • Hyperspectral unmixing overview: Geometrical, statistical, and sparse regression-based approaches
    • Apr.
    • J. M. Bioucas-Dias et al., "Hyperspectral unmixing overview: Geometrical, statistical, and sparse regression-based approaches, " IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 5, no. 2, pp. 354-379, Apr. 2012.
    • (2012) IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. , vol.5 , Issue.2 , pp. 354-379
    • Bioucas-Dias, J.M.1
  • 8
    • 16444373735 scopus 로고    scopus 로고
    • Vertex component analysis: A fast algorithm to unmix hyperspectral data
    • Apr
    • J. M. P. Nascimento and J. M. Bioucas-Dias, "Vertex component analysis: A fast algorithm to unmix hyperspectral data, " IEEE Trans. Geosci. Remote Sens., vol. 43, no. 4, pp. 898-910, Apr. 2005.
    • (2005) IEEE Trans. Geosci. Remote Sens. , vol.43 , Issue.4 , pp. 898-910
    • Nascimento, J.M.P.1    Bioucas-Dias, J.M.2
  • 9
    • 85027942490 scopus 로고    scopus 로고
    • Minimum volume simplex analysis: A fast algorithm for linear hyperspectral unmixing
    • Sep.
    • J. Li, A. Agathos, D. Zaharie, J. M. Bioucas-Dias, A. Plaza, and X. Li, "Minimum volume simplex analysis: A fast algorithm for linear hyperspectral unmixing, " IEEE Trans. Geosci. Remote Sens., vol. 53, no. 9, pp. 5067-5082, Sep. 2015.
    • (2015) IEEE Trans. Geosci. Remote Sens. , vol.53 , Issue.9 , pp. 5067-5082
    • Li, J.1    Agathos, A.2    Zaharie, D.3    Bioucas-Dias, J.M.4    Plaza, A.5    Li, X.6
  • 10
    • 80052775340 scopus 로고    scopus 로고
    • Hyperspectral unmixing based on mixtures of Dirichlet components
    • Mar.
    • J. M. P. Nascimento and J. M. Bioucas-Dias, "Hyperspectral unmixing based on mixtures of Dirichlet components, " IEEE Trans. Geosci. Remote Sens., vol. 50, no. 3, pp. 863-878, Mar. 2012.
    • (2012) IEEE Trans. Geosci. Remote Sens. , vol.50 , Issue.3 , pp. 863-878
    • Nascimento, J.M.P.1    Bioucas-Dias, J.M.2
  • 13
    • 84952019880 scopus 로고    scopus 로고
    • Universality of wavelet-based non-homogeneous hidden Markov chain model features for hyperspectral signatures
    • Jun
    • S. Feng, M. F. Duarte, and M. Parente, "Universality of wavelet-based non-homogeneous hidden Markov chain model features for hyperspectral signatures, " in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. Workshops, Jun. 2015, pp. 19-27.
    • (2015) Proc. IEEE Conf. Comput. Vis. Pattern Recognit. Workshops , pp. 19-27
    • Feng, S.1    Duarte, M.F.2    Parente, M.3
  • 14
    • 85016475596 scopus 로고    scopus 로고
    • Semisupervised endmember identification in nonlinear spectral mixtures via semantic representation
    • Jun.
    • Y. Itoh, S. Feng, M. F. Duarte, and M. Parente, "Semisupervised endmember identification in nonlinear spectral mixtures via semantic representation, " IEEE Trans. Geosci. Remote Sens., vol. 55, no. 6, pp. 3272-3286, Jun. 2017.
    • (2017) IEEE Trans. Geosci. Remote Sens. , vol.55 , Issue.6 , pp. 3272-3286
    • Itoh, Y.1    Feng, S.2    Duarte, M.F.3    Parente, M.4
  • 15
    • 1542318143 scopus 로고    scopus 로고
    • Imaging spectroscopy: Earth and planetary remote sensing with the USGS Tetracorder and expert systems
    • Dec
    • R. N. Clark et al., "Imaging spectroscopy: Earth and planetary remote sensing with the USGS Tetracorder and expert systems, " J. Geophys. Res., Planets, vol. 108, no. E12, pp. 1-44, Dec. 2003.
    • (2003) J. Geophys. Res., Planets , vol.108 , Issue.E12 , pp. 1-44
    • Clark, R.N.1
  • 17
    • 84861170800 scopus 로고    scopus 로고
    • Probabilistic topic models
    • Apr.
    • D. M. Blei, "Probabilistic topic models, " Commun. ACM, vol. 55, no. 4, pp. 77-84, Apr. 2012.
    • (2012) Commun ACM , vol.55 , Issue.4 , pp. 77-84
    • Blei, D.M.1
  • 18
    • 85030708259 scopus 로고    scopus 로고
    • Learning supervised topic models for classification and regression from crowds
    • Dec.
    • F. Rodrigues, M. Lourenço, B. Ribeiro, and F. C. Pereira, "Learning supervised topic models for classification and regression from crowds, " IEEE Trans. Pattern Anal. Mach. Intell., vol. 39, no. 12, pp. 2409-2422, Dec. 2017.
    • (2017) IEEE Trans. Pattern Anal. Mach. Intell. , vol.39 , Issue.12 , pp. 2409-2422
    • Rodrigues, F.1    Lourenço, M.2    Ribeiro, B.3    Pereira, F.C.4
  • 20
    • 85029142535 scopus 로고    scopus 로고
    • Partial membership latent Dirichlet allocation for soft image segmentation
    • Dec.
    • C. Chen, A. Zare, H. N. Trinh, G. O. Omotara, J. T. Cobb, and T. A. Lagaunne, "Partial membership latent Dirichlet allocation for soft image segmentation, " IEEE Trans. Image Process., vol. 26, no. 12, pp. 5590-5602, Dec. 2017.
    • (2017) IEEE Trans. Image Process. , vol.26 , Issue.12 , pp. 5590-5602
    • Chen, C.1    Zare, A.2    Trinh, H.N.3    Omotara, G.O.4    Cobb, J.T.5    Lagaunne, T.A.6
  • 21
    • 85023762973 scopus 로고    scopus 로고
    • Knowledge-based topic model for unsupervised object discovery and localization
    • Jan.
    • Z. Niu, G. Hua, L. Wang, and X. Gao, "Knowledge-based topic model for unsupervised object discovery and localization, " IEEE Trans. Image Process., vol. 27, no. 1, pp. 50-63, Jan. 2018.
    • (2018) IEEE Trans. Image Process. , vol.27 , Issue.1 , pp. 50-63
    • Niu, Z.1    Hua, G.2    Wang, L.3    Gao, X.4
  • 22
    • 84955629583 scopus 로고    scopus 로고
    • Latent topics-based relevance feedback for video retrieval
    • Mar
    • R. Fernandez-Beltran and F. Pla, "Latent topics-based relevance feedback for video retrieval, " Pattern Recognit., vol. 51, pp. 72-84, Mar. 2016.
    • (2016) Pattern Recognit. , vol.51 , pp. 72-84
    • Fernandez-Beltran, R.1    Pla, F.2
  • 23
    • 84891025342 scopus 로고    scopus 로고
    • Semantic annotation of satellite images using author-genre-topic model
    • Feb.
    • W. Luo, H. Li, G. Liu, and L. Zeng, "Semantic annotation of satellite images using author-genre-topic model, " IEEE Trans. Geosci. Remote Sens., vol. 52, no. 2, pp. 1356-1368, Feb. 2014.
    • (2014) IEEE Trans. Geosci. Remote Sens. , vol.52 , Issue.2 , pp. 1356-1368
    • Luo, W.1    Li, H.2    Liu, G.3    Zeng, L.4
  • 24
    • 85027956142 scopus 로고    scopus 로고
    • Scene classification based on the multifeature fusion probabilistic topic model for high spatial resolution remote sensing imagery
    • Nov.
    • Y. Zhong, Q. Zhu, and L. Zhang, "Scene classification based on the multifeature fusion probabilistic topic model for high spatial resolution remote sensing imagery, " IEEE Trans. Geosci. Remote Sens., vol. 53, no. 11, pp. 6207-6222, Nov. 2015.
    • (2015) IEEE Trans. Geosci. Remote Sens. , vol.53 , Issue.11 , pp. 6207-6222
    • Zhong, Y.1    Zhu, Q.2    Zhang, L.3
  • 25
    • 85023757703 scopus 로고    scopus 로고
    • Scene classification based on the fully sparse semantic topic model
    • Oct.
    • Q. Zhu, Y. Zhong, L. Zhang, and D. Li, "Scene classification based on the fully sparse semantic topic model, " IEEE Trans. Geosci. Remote Sens., vol. 55, no. 10, pp. 5525-5538, Oct. 2017.
    • (2017) IEEE Trans. Geosci. Remote Sens. , vol.55 , Issue.10 , pp. 5525-5538
    • Zhu, Q.1    Zhong, Y.2    Zhang, L.3    Li, D.4
  • 26
    • 85034601887 scopus 로고    scopus 로고
    • Latent topicbased super-resolution for remote sensing
    • R. Fernandez-Beltran, P. Latorre-Carmona, and F. Pla, "Latent topicbased super-resolution for remote sensing, " Remote Sens. Lett., vol. 8, no. 6, pp. 498-507, 2017.
    • (2017) Remote Sens. Lett. , vol.8 , Issue.6 , pp. 498-507
    • Fernandez-Beltran, R.1    Latorre-Carmona, P.2    Pla, F.3
  • 27
    • 85038560223 scopus 로고    scopus 로고
    • Unsupervised nonlinear unmixing of hyperspectral images using sparsity constrained probabilistic latent semantic analysis
    • Jun
    • W. Wang and H. Qi, "Unsupervised nonlinear unmixing of hyperspectral images using sparsity constrained probabilistic latent semantic analysis, " in Proc. Workshop Hyperspectral Image Signal Process., Evol. Remote Sens. (WHISPERS), Jun. 2013, pp. 1-4.
    • (2013) Proc. Workshop Hyperspectral Image Signal Process., Evol. Remote Sens. (WHISPERS) , pp. 1-4
    • Wang, W.1    Qi, H.2
  • 28
    • 0034818212 scopus 로고    scopus 로고
    • Unsupervised learning by probabilistic latent semantic analysis
    • Jan
    • T. Hofmann, "Unsupervised learning by probabilistic latent semantic analysis, " Mach. Learn., vol. 42, nos. 1-2, pp. 177-196, Jan. 2001.
    • (2001) Mach. Learn. , vol.42 , Issue.1-2 , pp. 177-196
    • Hofmann, T.1
  • 29
  • 30
    • 84927932499 scopus 로고    scopus 로고
    • Incremental probabilistic latent semantic analysis for video retrieval
    • Jun
    • R. Fernandez-Beltran and F. Pla, "Incremental probabilistic latent semantic analysis for video retrieval, " Image Vis. Comput., vol. 38, pp. 1-12, Jun. 2015.
    • (2015) Image Vis. Comput. , vol.38 , pp. 1-12
    • Fernandez-Beltran, R.1    Pla, F.2
  • 32
    • 33847733865 scopus 로고    scopus 로고
    • Endmember extraction from highly mixed data using minimum volume constrained nonnegative matrix factorization
    • Mar
    • L. Miao and H. Qi, "Endmember extraction from highly mixed data using minimum volume constrained nonnegative matrix factorization, " IEEE Trans. Geosci. Remote Sens., vol. 45, no. 3, pp. 765-777, Mar. 2007.
    • (2007) IEEE Trans. Geosci. Remote Sens. , vol.45 , Issue.3 , pp. 765-777
    • Miao, L.1    Qi, H.2
  • 33
    • 78649269649 scopus 로고    scopus 로고
    • Robust hyperspectral data unmixing with spatial and spectral regularized NMF
    • Jun
    • A. Huck and M. Guillaume, "Robust hyperspectral data unmixing with spatial and spectral regularized NMF, " in Proc. Workshop Hyperspectral Image Signals Process., vol. 2, Jun. 2010, pp. 1-4.
    • (2010) Proc. Workshop Hyperspectral Image Signals Process. , vol.2 , pp. 1-4
    • Huck, A.1    Guillaume, M.2
  • 34
    • 84978953872 scopus 로고    scopus 로고
    • Robust collaborative nonnegative matrix factorization for hyperspectral unmixing
    • Oct.
    • J. Li, J. M. Bioucas-Dias, A. Plaza, and L. Liu, "Robust collaborative nonnegative matrix factorization for hyperspectral unmixing, " IEEE Trans. Geosci. Remote Sens., vol. 54, no. 10, pp. 6076-6090, Oct. 2016.
    • (2016) IEEE Trans. Geosci. Remote Sens. , vol.54 , Issue.10 , pp. 6076-6090
    • Li, J.1    Bioucas-Dias, J.M.2    Plaza, A.3    Liu, L.4
  • 37
    • 85031772911 scopus 로고    scopus 로고
    • Nonlinear hyperspectral unmixing based on geometric characteristics of bilinear mixture models
    • Feb.
    • B. Yang, B. Wang, and Z. Wu, "Nonlinear hyperspectral unmixing based on geometric characteristics of bilinear mixture models, " IEEE Trans. Geosci. Remote Sens., vol. 56, no. 2, pp. 694-714, Feb. 2017.
    • (2017) IEEE Trans. Geosci. Remote Sens. , vol.56 , Issue.2 , pp. 694-714
    • Yang, B.1    Wang, B.2    Wu, Z.3
  • 38
    • 85018888947 scopus 로고    scopus 로고
    • Higher order nonlinear hyperspectral unmixing for mineralogical analysis over extraterrestrial bodies
    • Aug.
    • A. Marinoni and H. Clenet, "Higher order nonlinear hyperspectral unmixing for mineralogical analysis over extraterrestrial bodies, " IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 10, no. 8, pp. 3722-3733, Aug. 2017.
    • (2017) IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. , vol.10 , Issue.8 , pp. 3722-3733
    • Marinoni, A.1    Clenet, H.2
  • 39
    • 85029648181 scopus 로고    scopus 로고
    • Fast hyperspectral unmixing in presence of nonlinearity or mismodeling effects
    • Jun.
    • A. Halimi, J. M. Bioucas-Dias, N. Dobigeon, G. S. Buller, and S. McLaughlin, "Fast hyperspectral unmixing in presence of nonlinearity or mismodeling effects, " IEEE Trans. Comput. Imag., vol. 3, no. 2, pp. 146-159, Jun. 2017.
    • (2017) IEEE Trans. Comput. Imag. , vol.3 , Issue.2 , pp. 146-159
    • Halimi, A.1    Bioucas-Dias, J.M.2    Dobigeon, N.3    Buller, G.S.4    McLaughlin, S.5
  • 40
    • 85012298388 scopus 로고    scopus 로고
    • Robust sparse hyperspectral unmixing with 2, 1 norm
    • Mar.
    • Y. Ma, C. Li, X. Mei, C. Liu, and J. Ma, "Robust sparse hyperspectral unmixing with 2, 1 norm, " IEEE Trans. Geosci. Remote Sens., vol. 55, no. 3, pp. 1227-1239, Mar. 2017.
    • (2017) IEEE Trans. Geosci. Remote Sens. , vol.55 , Issue.3 , pp. 1227-1239
    • Ma, Y.1    Li, C.2    Mei, X.3    Liu, C.4    Ma, J.5
  • 41
    • 46749145829 scopus 로고    scopus 로고
    • Semi-supervised linear spectral unmixing using a hierarchical Bayesian model for hyperspectral imagery
    • Jul
    • N. Dobigeon, J.-Y. Tourneret, and C.-I. Chang, "Semi-supervised linear spectral unmixing using a hierarchical Bayesian model for hyperspectral imagery, " IEEE Trans. Signal Process., vol. 56, no. 7, pp. 2684-2695, Jul. 2008.
    • (2008) IEEE Trans. Signal Process. , vol.56 , Issue.7 , pp. 2684-2695
    • Dobigeon, N.1    Tourneret, J.-Y.2    Chang, C.-I.3
  • 42
    • 84855912794 scopus 로고    scopus 로고
    • A novel hierarchical Bayesian approach for sparse semisupervised hyperspectral unmixing
    • Feb.
    • K. E. Themelis, A. Rontogiannis, and K. D. Koutroumbas, "A novel hierarchical Bayesian approach for sparse semisupervised hyperspectral unmixing, " IEEE Trans. Signal Process., vol. 60, no. 2, pp. 585-599, Feb. 2012.
    • (2012) IEEE Trans. Signal Process. , vol.60 , Issue.2 , pp. 585-599
    • Themelis, K.E.1    Rontogiannis, A.2    Koutroumbas, K.D.3
  • 43
    • 84987908287 scopus 로고    scopus 로고
    • Bayesian nonlinear hyperspectral unmixing with spatial residual component analysis
    • Sep.
    • Y. Altmann, M. Pereyra, and S. McLaughlin, "Bayesian nonlinear hyperspectral unmixing with spatial residual component analysis, " IEEE Trans. Comput. Imag., vol. 1, no. 3, pp. 174-185, Sep. 2015.
    • (2015) IEEE Trans. Comput. Imag. , vol.1 , Issue.3 , pp. 174-185
    • Altmann, Y.1    Pereyra, M.2    McLaughlin, S.3
  • 44
    • 85013499501 scopus 로고    scopus 로고
    • Toward a sparse Bayesian Markov random field approach to hyperspectral unmixing and classification
    • Jan.
    • P. Chen, J. D. B. Nelson, and J.-Y. Tourneret, "Toward a sparse Bayesian Markov random field approach to hyperspectral unmixing and classification, " IEEE Trans. Image Process., vol. 26, no. 1, pp. 426-438, Jan. 2017.
    • (2017) IEEE Trans. Image Process. , vol.26 , Issue.1 , pp. 426-438
    • Chen, P.1    Nelson, J.D.B.2    Tourneret, J.-Y.3
  • 45
  • 46
    • 85021685313 scopus 로고    scopus 로고
    • Hyperspectral unmixing using double reweighted sparse regression and total variation
    • Jul.
    • R. Wang, H.-C. Li, A. Pizurica, J. Li, A. Plaza, and W. J. Emery, "Hyperspectral unmixing using double reweighted sparse regression and total variation, " IEEE Geosci. Remote Sens. Lett., vol. 14, no. 7, pp. 1146-1150, Jul. 2017.
    • (2017) IEEE Geosci. Remote Sens. Lett. , vol.14 , Issue.7 , pp. 1146-1150
    • Wang, R.1    Li, H.-C.2    Pizurica, A.3    Li, J.4    Plaza, A.5    Emery, W.J.6
  • 47
    • 85028500180 scopus 로고    scopus 로고
    • Structured sparse coding-based hyperspectral imagery denoising with intracluster filtering
    • Dec.
    • W. Wei, L. Zhang, C. Tian, A. Plaza, and Y. Zhang, "Structured sparse coding-based hyperspectral imagery denoising with intracluster filtering, " IEEE Trans. Geosci. Remote Sens., vol. 55, no. 12, pp. 6860-6876, Dec. 2017.
    • (2017) IEEE Trans. Geosci. Remote Sens. , vol.55 , Issue.12 , pp. 6860-6876
    • Wei, W.1    Zhang, L.2    Tian, C.3    Plaza, A.4    Zhang, Y.5
  • 48
    • 0030287048 scopus 로고    scopus 로고
    • The expectation-maximization algorithm
    • Nov
    • T. K. Moon, "The expectation-maximization algorithm, " IEEE Signal Process. Mag., vol. 13, no. 6, pp. 47-60, Nov. 1996.
    • (1996) IEEE Signal Process. Mag. , vol.13 , Issue.6 , pp. 47-60
    • Moon, T.K.1
  • 49
    • 79952313379 scopus 로고    scopus 로고
    • Understanding bag-of-words model: A statistical framework
    • Dec.
    • Y. Zhang, R. Jin, and Z. Zhou, "Understanding bag-of-words model: A statistical framework, " Int. J. Mach. Learn. Cybern., vol. 1, nos. 1-4, pp. 43-52, Dec. 2010.
    • (2010) Int. J. Mach. Learn. Cybern. , vol.1 , Issue.1-4 , pp. 43-52
    • Zhang, Y.1    Jin, R.2    Zhou, Z.3
  • 50
    • 84863442455 scopus 로고    scopus 로고
    • On endmember identification in hyperspectral images without pure pixels: A comparison of algorithms
    • Feb.
    • J. Plaza, E. M. T. Hendrix, I. Garciá, G. Martín, and A. Plaza, "On endmember identification in hyperspectral images without pure pixels: A comparison of algorithms, " J. Math. Imag. Vis., vol. 42, nos. 2-3, pp. 163-175, Feb. 2012.
    • (2012) J. Math. Imag. Vis. , vol.42 , Issue.2-3 , pp. 163-175
    • Plaza, J.1    Hendrix, E.M.T.2    Garciá, I.3    Martín, G.4    Plaza, A.5
  • 52
    • 84942474315 scopus 로고    scopus 로고
    • Sparse unmixing-based change detection for multitemporal hyperspectral images
    • Feb.
    • A. Ertürk, M.-D. Iordache, and A. Plaza, "Sparse unmixing-based change detection for multitemporal hyperspectral images, " IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 9, no. 2, pp. 708-719, Feb. 2016.
    • (2016) IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. , vol.9 , Issue.2 , pp. 708-719
    • Ertürk, A.1    Iordache, M.-D.2    Plaza, A.3
  • 53
    • 85017164196 scopus 로고    scopus 로고
    • Total variation regularized reweighted sparse nonnegative matrix factorization for hyperspectral unmixing
    • Jul.
    • W. He, H. Zhang, and L. Zhang, "Total variation regularized reweighted sparse nonnegative matrix factorization for hyperspectral unmixing, " IEEE Trans. Geosci. Remote Sens., vol. 55, no. 7, pp. 3909-3921, Jul. 2017.
    • (2017) IEEE Trans. Geosci. Remote Sens. , vol.55 , Issue.7 , pp. 3909-3921
    • He, W.1    Zhang, H.2    Zhang, L.3
  • 54
    • 85009863198 scopus 로고    scopus 로고
    • A novel endmember extraction method for hyperspectral imagery based on quantum-behaved particle swarm optimization
    • Apr.
    • R. Liu, L. Zhang, and B. Du, "A novel endmember extraction method for hyperspectral imagery based on quantum-behaved particle swarm optimization, " IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 10, no. 4, pp. 1610-1631, Apr. 2017.
    • (2017) IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. , vol.10 , Issue.4 , pp. 1610-1631
    • Liu, R.1    Zhang, L.2    Du, B.3
  • 55
    • 85017161032 scopus 로고    scopus 로고
    • Maximin distance based band selection for endmember extraction in hyperspectral images using simplex growing algorithm
    • Mar.
    • V. S. K. Ganesan and V. S, "Maximin distance based band selection for endmember extraction in hyperspectral images using simplex growing algorithm, " Multimedia Tools Appl., vol. 77, no. 6, pp. 7221-7237, Mar. 2018.
    • (2018) Multimedia Tools Appl. , vol.77 , Issue.6 , pp. 7221-7237
    • Ganesan, V.S.K.1
  • 56
    • 85055855836 scopus 로고    scopus 로고
    • Accessed: Mar 12, 2018. [Online]
    • (2016). Hypermix Toolbox. Accessed: Mar. 12, 2018. [Online]. Available: Http://www.hypercomp.es/hypermix
    • (2016) Hypermix Toolbox
  • 57
    • 85032864878 scopus 로고    scopus 로고
    • Accessed: Jan. 5, 2018. [Online]
    • (2016). Hyperspectral Unmixing Datasets and Ground Truths. Accessed: Jan. 5, 2018. [Online]. Available: Http://www.escience. cn/people/feiyunZHU/Dataset-GT.html
    • (2016) Hyperspectral Unmixing Datasets and Ground Truths
  • 59
    • 84961573944 scopus 로고    scopus 로고
    • Effective spectral unmixing via robust representation and learning-based sparsity
    • F. Zhu, Y. Wang, B. Fan, G. Meng, and C. Pan, "Effective spectral unmixing via robust representation and learning-based sparsity, " CoRR, 2014. [Online]. Available: Https://arxiv.org/abs/1409.0685
    • (2014) Corr
    • Zhu, F.1    Wang, Y.2    Fan, B.3    Meng, G.4    Pan, C.5
  • 60
    • 84939245424 scopus 로고    scopus 로고
    • Robust hyperspectral unmixing with correntropy-based metric
    • Nov.
    • Y. Wang, C. Pan, S. Xiang, and F. Zhu, "Robust hyperspectral unmixing with correntropy-based metric, " IEEE Trans. Image Process., vol. 24, no. 11, pp. 4027-4040, Nov. 2015.
    • (2015) IEEE Trans. Image Process. , vol.24 , Issue.11 , pp. 4027-4040
    • Wang, Y.1    Pan, C.2    Xiang, S.3    Zhu, F.4
  • 61
    • 0033592606 scopus 로고    scopus 로고
    • Learning the parts of objects by nonnegative matrix factorization
    • Oct
    • D. D. Lee and H. S. Seung, "Learning the parts of objects by nonnegative matrix factorization, " Nature, vol. 401, pp. 788-791, Oct. 1999.
    • (1999) Nature , vol.401 , pp. 788-791
    • Lee, D.D.1    Seung, H.S.2
  • 62
    • 0001093042 scopus 로고    scopus 로고
    • Algorithms for non-negative matrix factorization
    • D. D. Lee and H. S. Seung, "Algorithms for non-negative matrix factorization, " in Proc. Neural Inf. Process. Syst., 2000, pp. 556-562.
    • (2000) Proc. Neural Inf. Process. Syst. , pp. 556-562
    • Lee, D.D.1    Seung, H.S.2
  • 63
    • 84900510076 scopus 로고    scopus 로고
    • Non-negative matrix factorization with sparseness constraints
    • Dec
    • P. O. Hoyer, "Non-negative matrix factorization with sparseness constraints, " J. Mach. Learn. Res., vol. 5, pp. 1457-1469, Dec. 2004.
    • (2004) J. Mach. Learn. Res. , vol.5 , pp. 1457-1469
    • Hoyer, P.O.1
  • 67
    • 36348990884 scopus 로고    scopus 로고
    • Spectral and spatial complexity-based hyperspectral unmixing
    • Dec
    • S. Jia and Y. Qian, "Spectral and spatial complexity-based hyperspectral unmixing, " IEEE Trans. Geosci. Remote Sens., vol. 45, no. 12, pp. 3867-3879, Dec. 2007.
    • (2007) IEEE Trans. Geosci. Remote Sens. , vol.45 , Issue.12 , pp. 3867-3879
    • Jia, S.1    Qian, Y.2
  • 68
    • 58149131252 scopus 로고    scopus 로고
    • Constrained nonnegative matrix factorization for hyperspectral unmixing
    • Jan
    • S. Jia and Y. Qian, "Constrained nonnegative matrix factorization for hyperspectral unmixing, " IEEE Trans. Geosci. Remote Sens., vol. 47, no. 1, pp. 161-173, Jan. 2009.
    • (2009) IEEE Trans. Geosci. Remote Sens. , vol.47 , Issue.1 , pp. 161-173
    • Jia, S.1    Qian, Y.2
  • 69
    • 1842481516 scopus 로고    scopus 로고
    • Estimation of number of spectrally distinct signal sources in hyperspectral imagery
    • Mar
    • C.-I. Chang and Q. Du, "Estimation of number of spectrally distinct signal sources in hyperspectral imagery, " IEEE Trans. Geosci. Remote Sens., vol. 42, no. 3, pp. 608-619, Mar. 2004.
    • (2004) IEEE Trans. Geosci. Remote Sens. , vol.42 , Issue.3 , pp. 608-619
    • Chang, C.-I.1    Du, Q.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.