메뉴 건너뛰기




Volumn 60, Issue 2, 2012, Pages 585-599

A novel hierarchical Bayesian approach for sparse semisupervised hyperspectral unmixing

Author keywords

Compressive sensing; constrained optimization; constrained sparse regression; hierarchical Bayesian analysis; hyperspectral imagery; sparse semisupervised unmixing

Indexed keywords

COMPRESSIVE SENSING; HIERARCHICAL BAYESIAN ANALYSIS; HYPERSPECTRAL IMAGERY; SEMI-SUPERVISED; SPARSE REGRESSION;

EID: 84855912794     PISSN: 1053587X     EISSN: None     Source Type: Journal    
DOI: 10.1109/TSP.2011.2174052     Document Type: Article
Times cited : (119)

References (51)
  • 1
    • 85032751896 scopus 로고    scopus 로고
    • Hyperspectral image data analysis
    • DOI 10.1109/79.974718
    • D. Landgrebe, "Hyperspectral image data analysis," IEEE Signal Process. Mag., vol. 19, pp. 17-28, Jan. 2002. (Pubitemid 34237205)
    • (2002) IEEE Signal Processing Magazine , vol.19 , Issue.1 , pp. 17-28
    • Landgrebe, D.1
  • 2
    • 85032751238 scopus 로고    scopus 로고
    • Signal processing for hyperspectral image exploitation
    • DOI 10.1109/79.974715
    • G. Shaw and D. Manolakis, "Signal processing for hyperspectral image exploitation," IEEE Signal Process. Mag., vol. 19, pp. 12-16, Jan. 2002. (Pubitemid 34237204)
    • (2002) IEEE Signal Processing Magazine , vol.19 , Issue.1 , pp. 12-16
    • Shaw, G.1    Manolakis, D.2
  • 3
  • 4
    • 0002081183 scopus 로고
    • Automating spectral unmixing of AVIRIS data using convex geometry concepts
    • Wash., DC
    • J. W. Boardman, "Automating spectral unmixing of AVIRIS data using convex geometry concepts," in Proc. Summaries 4th Ann. JPL Airborne Geosci. Workshop, Wash., DC, 1993, vol. 1, pp. 11-14.
    • (1993) Proc. Summaries 4th Ann. JPL Airborne Geosci. Workshop , vol.1 , pp. 11-14
    • Boardman, J.W.1
  • 5
    • 0033310314 scopus 로고    scopus 로고
    • N-FINDR: An algorithm for fast autonomous spectral end-member determination in hyperspectral data
    • Jul.
    • M. E. Winter, "N-FINDR: An algorithm for fast autonomous spectral end-member determination in hyperspectral data," Proc. SPIE Imaging Spectrometry V, vol. 3753, pp. 266-275, Jul. 1999.
    • (1999) Proc. SPIE imaging spectrometry V , vol.3753 , pp. 266-275
    • Winter, M.E.1
  • 6
    • 16444373735 scopus 로고    scopus 로고
    • Vertex component analysis: A fast algorithm to unmix hyperspectral data
    • DOI 10.1109/TGRS.2005.844293
    • J. M. Nascimento and J. M. Bioucas-Dias, "Vertex component analysis: A fast algorithm to unmix hyperspectral data," IEEE Trans. Geosci. Remote Sens., vol. 43, pp. 898-910, Apr. 2005. (Pubitemid 40476033)
    • (2005) IEEE Transactions on Geoscience and Remote Sensing , vol.43 , Issue.4 , pp. 898-910
    • Nascimento, J.M.P.1    Dias, J.M.B.2
  • 7
    • 0035273728 scopus 로고    scopus 로고
    • Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery
    • DOI 10.1109/36.911111, PII S0196289201020861
    • D. C. Heinz and C. I. Chang, "Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery," IEEE Trans. Geosci. Remote Sens., vol. 39, pp. 529-545, Mar. 2001. (Pubitemid 32400422)
    • (2001) IEEE Transactions on Geoscience and Remote Sensing , vol.39 , Issue.3 , pp. 529-545
    • Heinz, D.C.1    Chang, C.-I.2
  • 8
    • 0030493826 scopus 로고    scopus 로고
    • A reflective newton method for minimizing a quadratic function subject to bounds on some of the variables
    • T. F. Coleman and Y. Li, "A reflective newton method for minimizing a quadratic function subject to bounds on some of the variables," SIAM J. Optimiz., vol. 6, pp. 1040-1058, 1996.
    • (1996) SIAM J. Optimiz. , vol.6 , pp. 1040-1058
    • Coleman, T.F.1    Li, Y.2
  • 9
    • 46749145829 scopus 로고    scopus 로고
    • Semisupervised linear spectral unmixing using a hierarchical Bayesian model for hyperspectral imagery
    • Jul.
    • N. Dobigeon, J.-Y. Tourneret, and C.-I. Chang, "Semisupervised linear spectral unmixing using a hierarchical Bayesian model for hyperspectral imagery," IEEE Trans. Signal Process., vol. 56, no. 7, pp. 2684-2695, Jul. 2008.
    • (2008) IEEE Trans. Signal Process. , vol.56 , Issue.7 , pp. 2684-2695
    • Dobigeon, N.1    Tourneret, J.-Y.2    Chang, C.-I.3
  • 12
    • 64649083745 scopus 로고    scopus 로고
    • Signal recovery from random measurements via orthogonal matching pursuit
    • Dec.
    • J. Tropp and A. Gilbert, "Signal recovery from random measurements via orthogonal matching pursuit," IEEE Trans. Inf. Theory, vol. 53, pp. 4655-4666, Dec. 2007.
    • (2007) IEEE Trans. Inf. Theory , vol.53 , pp. 4655-4666
    • Tropp, J.1    Gilbert, A.2
  • 14
    • 44849087307 scopus 로고    scopus 로고
    • Bayesian compressive sensing
    • DOI 10.1109/TSP.2007.914345
    • S. Ji, Y. Xue, and L. Carin, "Bayesian compressive sensing," IEEE Trans. Signal Process., vol. 56, no. 6, pp. 2346-2356, Jun. 2008. (Pubitemid 351795888)
    • (2008) IEEE Transactions on Signal Processing , vol.56 , Issue.6 , pp. 2346-2356
    • Ji, S.1    Xue, Y.2    Carin, L.3
  • 17
    • 0141836275 scopus 로고    scopus 로고
    • Adaptive sparseness for supervised learning
    • Sep.
    • M. Figueiredo, "Adaptive sparseness for supervised learning," IEEE Trans. Pattern Anal. Mach. Intell., vol. 25, no. 9, pp. 1150-1159, Sep. 2003.
    • (2003) IEEE Trans. Pattern Anal. Mach. Intell. , vol.25 , Issue.9 , pp. 1150-1159
    • Figueiredo, M.1
  • 18
    • 69349103766 scopus 로고    scopus 로고
    • Hierarchical Bayesian sparse image reconstruction with application to MRFM
    • Sep.
    • N. Dobigeon, A. Hero, and J.-Y. Tourneret, "Hierarchical Bayesian sparse image reconstruction with application to MRFM," IEEE Trans. Image Process., vol. 18, no. 9, pp. 2059-2070, Sep. 2009.
    • (2009) IEEE Trans. Image Process. , vol.18 , Issue.9 , pp. 2059-2070
    • Dobigeon, N.1    Hero, A.2    Tourneret, J.-Y.3
  • 19
    • 72949095917 scopus 로고    scopus 로고
    • Bayesian compressive sensing using Laplace priors
    • Jan.
    • S. Babacan, R. Molina, and A. Katsaggelos, "Bayesian compressive sensing using Laplace priors," IEEE Trans. Image Process., vol. 19, no. 1, pp. 53-63, Jan. 2010.
    • (2010) IEEE Trans. Image Process. , vol.19 , Issue.1 , pp. 53-63
    • Babacan, S.1    Molina, R.2    Katsaggelos, A.3
  • 20
    • 49549105778 scopus 로고    scopus 로고
    • The bayesian lasso
    • Jun.
    • T. Park and C. George, "The Bayesian Lasso," J. Amer. Statist. Assoc., vol. 103, no. 482, pp. 681-686, Jun. 2008.
    • (2008) J. Amer. Statist. Assoc. , vol.103 , Issue.482 , pp. 681-686
    • Park, T.1    George, C.2
  • 21
    • 33846114377 scopus 로고    scopus 로고
    • The adaptive Lasso and its oracle properties
    • Dec.
    • H. Zou, "The adaptive Lasso and its oracle properties," J. Amer. Statist. Assoc., vol. 101, pp. 1418-1429, Dec. 2006.
    • (2006) J. Amer. Statist. Assoc. , vol.101 , pp. 1418-1429
    • Zou, H.1
  • 22
    • 0021518209 scopus 로고
    • Stochastic relaxation, gibbs distributions, and the bayesian restoration of images
    • S. Geman and D. Geman, "Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images," IEEE Trans. Pattern Anal. Mach. Intell., vol. PAMI-6, no. 6, pp. 721-741, Nov. 1984. (Pubitemid 15453722)
    • (1984) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.PAMI-6 , Issue.6 , pp. 721-741
    • Geman, S.1    Geman, D.2
  • 23
    • 0033225865 scopus 로고    scopus 로고
    • Introduction to variational methods for graphical models
    • DOI 10.1023/A:1007665907178
    • M. I. Jordan, Z. Ghahramani, T. S. Jaakkola, and L. K. Saul, "An introduction to variational methods for graphical models," Mach. Learn., vol. 37, pp. 183-233, Jan. 1999. (Pubitemid 30544678)
    • (1999) Machine Learning , vol.37 , Issue.2 , pp. 183-233
    • Jordan, M.I.1    Ghahramani, Z.2    Jaakkola, T.S.3    Saul, L.K.4
  • 24
    • 84898964031 scopus 로고    scopus 로고
    • A variational Bayesian framework for graphical models
    • Cambridge, MA: MIT Press
    • H. Attias, "A variational Bayesian framework for graphical models," in Advances in Neural Information Processing Systems. Cambridge, MA: MIT Press, 2000, vol. 12, pp. 209-215.
    • (2000) Advances in Neural Information Processing Systems , vol.12 , pp. 209-215
    • Attias, H.1
  • 25
    • 0042685161 scopus 로고    scopus 로고
    • Bayesian parameter estimation via variational methods
    • Jan.
    • T. S. Jaakkola and M. I. Jordan, "Bayesian parameter estimation via variational methods," Statist. Comput., vol. 10, pp. 25-37, Jan. 2000.
    • (2000) Statist. Comput. , vol.10 , pp. 25-37
    • Jaakkola, T.S.1    Jordan, M.I.2
  • 26
    • 0000013152 scopus 로고
    • On the statistical analysis of dirty pictures
    • Mar.
    • J. Besag, "On the statistical analysis of dirty pictures," J. Royal Statist. Soc. Ser. B (Methodological), vol. 48, pp. 259-302, Mar. 1986.
    • (1986) J. Royal Statist. Soc. Ser. B (Methodological) , vol.48 , pp. 259-302
    • Besag, J.1
  • 27
    • 0001224048 scopus 로고    scopus 로고
    • Sparse bayesian learning and the relevance vector machine
    • DOI 10.1162/15324430152748236
    • M. E. Tipping, "Sparse Bayesian learning and the relevance vector machine," J. Mach. Learn. Res., vol. 1, pp. 211-244, 2001. (Pubitemid 33687203)
    • (2001) Journal of Machine Learning Research , vol.1 , Issue.3 , pp. 211-244
    • Tipping, M.E.1
  • 28
    • 0001287271 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the Lasso
    • R. Tibshirani, "Regression shrinkage and selection via the Lasso," J. Royal Statist. Soc., vol. 58, no. 1, pp. 267-288, 1996.
    • (1996) J. Royal Statist. Soc. , vol.58 , Issue.1 , pp. 267-288
    • Tibshirani, R.1
  • 29
    • 0003071947 scopus 로고
    • Scale mixtures of normal distributions
    • D. F. Andrews and C. L. Mallows, "Scale mixtures of normal distributions," J. Royal Statist. Soc., Ser. B, vol. 36, no. 1, pp. 99-102, 1974.
    • (1974) J. Royal Statist. Soc., Ser. B , vol.36 , Issue.1 , pp. 99-102
    • Andrews, D.F.1    Mallows, C.L.2
  • 30
    • 33645136947 scopus 로고    scopus 로고
    • Bayesian wavelet-based image deconvolution: A GEM algorithm exploiting a class of heavy-tailed priors
    • Apr.
    • J. Bioucas-Dias, "Bayesian wavelet-based image deconvolution: A GEM algorithm exploiting a class of heavy-tailed priors," IEEE Trans. Image Process., vol. 15, no. 4, pp. 937-951, Apr. 2006.
    • (2006) IEEE Trans. Image Process. , vol.15 , Issue.4 , pp. 937-951
    • Bioucas-Dias, J.1
  • 31
    • 78049484065 scopus 로고    scopus 로고
    • Penalized regression, standard errors, and Bayesian Lassos
    • Feb.
    • M. Kyung, J. Gilly, M. Ghoshz, and G. Casella, "Penalized regression, standard errors, and Bayesian Lassos," Bayesian Anal., vol. 5, pp. 369-412, Feb. 2010.
    • (2010) Bayesian Anal. , vol.5 , pp. 369-412
    • Kyung, M.1    Gilly, J.2    Ghoshz, M.3    Casella, G.4
  • 32
    • 84937730674 scopus 로고
    • Explaining the Gibbs sampler
    • Aug.
    • G. Casella and E. I. George, "Explaining the Gibbs sampler," Amer. Statist., vol. 46, pp. 167-174, Aug. 1992.
    • (1992) Amer. Statist. , vol.46 , pp. 167-174
    • Casella, G.1    George, E.I.2
  • 34
    • 33947270567 scopus 로고    scopus 로고
    • Bayesian blind separation of generalized hyperbolic processes in noisy and underdeterminate mixtures
    • DOI 10.1109/TSP.2006.877660
    • H. Snoussi and J. Idier, "Bayesian blind separation of generalized hyperbolic processes in noisy and underdeterminate mixtures," IEEE Trans. Signal Process., vol. 54, no. 9, pp. 3257-3269, Sep. 2006. (Pubitemid 46414207)
    • (2006) IEEE Transactions on Signal Processing , vol.54 , Issue.9 , pp. 3257-3269
    • Snoussi, H.1    Idier, J.2
  • 36
    • 0001153986 scopus 로고
    • Simulation of truncated normal variables
    • C. P. Robert, "Simulation of truncated normal variables," Statist. Comput., vol. 5, pp. 121-125, 1995.
    • (1995) Statist. Comput. , vol.5 , pp. 121-125
    • Robert, C.P.1
  • 39
    • 55349132734 scopus 로고    scopus 로고
    • On the uniqueness of nonnegative sparse solutions to underdetermined systems of equations
    • Nov.
    • A. Bruckstein, M. Elad, and M. Zibulevsky, "On the uniqueness of nonnegative sparse solutions to underdetermined systems of equations," IEEE Trans. Inf. Theory, vol. 54, no. 11, pp. 4813-4820, Nov. 2008.
    • (2008) IEEE Trans. Inf. Theory , vol.54 , Issue.11 , pp. 4813-4820
    • Bruckstein, A.1    Elad, M.2    Zibulevsky, M.3
  • 40
    • 0004236492 scopus 로고    scopus 로고
    • Johns Hopkins Studies in Mathematical Sciences), 3rd ed. Baltimore, MD: The Johns Hopkins Univ. Press
    • G. H. Golub and C. F. Van Loan, Matrix Computations (Johns Hopkins Studies in Mathematical Sciences), 3rd ed. Baltimore, MD: The Johns Hopkins Univ. Press, 1996.
    • (1996) Matrix Computations (
    • Golub, G.H.1    Van Loan, C.F.2
  • 42
    • 84855940455 scopus 로고    scopus 로고
    • AVIRIS Free Standard Data Products [Online]. Available:
    • AVIRIS Free Standard Data Products [Online]. Available: Http://aviris. jpl.nasa.gov/html/aviris.freedata.html
  • 43
    • 0347213857 scopus 로고
    • Imaging spectroscopy: Earth and planetary remote sensing with the usgs tetracorder and expert systems
    • Dec.
    • R. N. Clark et al., "Imaging Spectroscopy: Earth and Planetary Remote Sensing With the Usgs Tetracorder and Expert Systems," J. Geophys. Res., vol. 108, no. E12, pp. 5-1-5-44, Dec. 1993.
    • (1993) J. Geophys. Res. , vol.108 , Issue.E12 , pp. 515-544
    • Clark, R.N.1
  • 44
    • 33847733865 scopus 로고    scopus 로고
    • Endmember extraction from highly mixed data using minimum volume constrained nonnegative matrix factorization
    • DOI 10.1109/TGRS.2006.888466
    • L. Miao and H. Qi, "Endmember extraction from highly mixed data using minimum volume constrained nonnegative matrix factorization," IEEE Trans. Geosci. Remote Sens., vol. 45, no. 3, pp. 765-777, Mar. 2007. (Pubitemid 46375748)
    • (2007) IEEE Transactions on Geoscience and Remote Sensing , vol.45 , Issue.3 , pp. 765-777
    • Miao, L.1    Qi, H.2
  • 45
    • 70350488509 scopus 로고    scopus 로고
    • A convex analysis- based minimum-volume enclosing simplex algorithm for hyperspectral unmixing
    • Nov.
    • T.-H. Chan, C.-Y. Chi, Y.-M. Huang, and W.-K. Ma, "A convex analysis- based minimum-volume enclosing simplex algorithm for hyperspectral unmixing," IEEE Trans. Signal Process., vol. 57, no. 11, pp. 4418-4432, Nov. 2009.
    • (2009) IEEE Trans. Signal Process. , vol.57 , Issue.11 , pp. 4418-4432
    • Chan, T.-H.1    Chi, C.-Y.2    Huang, Y.-M.3    Ma, W.-K.4
  • 49
    • 84950453304 scopus 로고
    • Sampling-based approaches to calculating marginal densities
    • Jun.
    • A. E. Gelfand and A. F. M. Smith, "Sampling-based approaches to calculating marginal densities," J. Amer. Statist. Assoc., vol. 85, pp. 398-409, Jun. 1990.
    • (1990) J. Amer. Statist. Assoc. , vol.85 , pp. 398-409
    • Gelfand, A.E.1    Smith, A.F.M.2
  • 50
    • 0001789822 scopus 로고
    • Covariance structure of the Gibbs sampler with applications to the comparisons of estimators and augmentation schemes
    • J. S. Liu, W. H.Wong, and A.Kong, "Covariance structure of the Gibbs sampler with applications to the comparisons of estimators and augmentation schemes," Biometrika, vol. 81, no. 1, pp. 27-40, 1994.
    • (1994) Biometrika , vol.81 , Issue.1 , pp. 27-40
    • Liu, J.S.1    Wong, W.H.2    Kong, A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.