메뉴 건너뛰기




Volumn 23, Issue 12, 2014, Pages 5412-5427

Spectral unmixing via data-guided sparsity

Author keywords

Data guided Map (DgMap); Data guided Sparse (DgS); DgS NMF; Hyperspectral Unmixing (HU); Mixed Pixel; Nonnegative Matrix Factorization (NMF)

Indexed keywords

FACTORIZATION; MATRIX ALGEBRA;

EID: 84910664859     PISSN: 10577149     EISSN: None     Source Type: Journal    
DOI: 10.1109/TIP.2014.2363423     Document Type: Article
Times cited : (239)

References (57)
  • 1
    • 8144231500 scopus 로고    scopus 로고
    • A survey of spectral unmixing algorithms
    • Jan
    • N. Keshava, "A survey of spectral unmixing algorithms," Lincoln Lab. J., vol. 14, no. 1, pp. 55-78, Jan. 2003.
    • (2003) Lincoln Lab. J , vol.14 , Issue.1 , pp. 55-78
    • Keshava, N.1
  • 2
    • 84861772901 scopus 로고    scopus 로고
    • Hyperspectral unmixing overview: Geometrical, statistical, and sparse regression-based approaches
    • Apr
    • J. M. Bioucas-Dias et al., "Hyperspectral unmixing overview: Geometrical, statistical, and sparse regression-based approaches," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 5, no. 2, pp. 354-379, Apr. 2012.
    • (2012) IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens , vol.5 , Issue.2 , pp. 354-379
    • Bioucas-Dias, J.M.1
  • 3
    • 44049102958 scopus 로고    scopus 로고
    • Hyperspectral imagery visualization using double layers
    • Oct
    • S. Cai, Q. Du, and R. J. Moorhead, "Hyperspectral imagery visualization using double layers," IEEE Trans. Geosci. Remote Sens., vol. 45, no. 10, pp. 3028-3036, Oct. 2007.
    • (2007) IEEE Trans. Geosci. Remote Sens , vol.45 , Issue.10 , pp. 3028-3036
    • Cai, S.1    Du, Q.2    Moorhead, R.J.3
  • 7
    • 69949128613 scopus 로고    scopus 로고
    • L1 unmixing and its application to hyperspectral image enhancement
    • Apr
    • Z. Guo, T. Wittman, and S. Osher, "L1 unmixing and its application to hyperspectral image enhancement," Proc. SPIE, vol. 7334, no. 1, p. 73341M, Apr. 2009.
    • (2009) Proc. SPIE , vol.7334 , Issue.1 , pp. 73341M
    • Guo, Z.1    Wittman, T.2    Osher, S.3
  • 9
    • 80455174031 scopus 로고    scopus 로고
    • Hyperspectral unmixing via l1/2 sparsity-constrained nonnegative matrix factorization
    • Nov
    • Y. Qian, S. Jia, J. Zhou, and A. Robles-Kelly, "Hyperspectral unmixing via L1/2 sparsity-constrained nonnegative matrix factorization," IEEE Trans. Geosci. Remote Sens., vol. 49, no. 11, pp. 4282-4297, Nov. 2011.
    • (2011) IEEE Trans. Geosci. Remote Sens , vol.49 , Issue.11 , pp. 4282-4297
    • Qian, Y.1    Jia, S.2    Zhou, J.3    Robles-Kelly, A.4
  • 10
    • 84863127484 scopus 로고    scopus 로고
    • A compressive sensing and unmixing scheme for hyperspectral data processing
    • Mar
    • C. Li, T. Sun, K. F. Kelly, and Y. Zhang, "A compressive sensing and unmixing scheme for hyperspectral data processing," IEEE Trans. Image Process., vol. 21, no. 3, pp. 1200-1210, Mar. 2012.
    • (2012) IEEE Trans. Image Process , vol.21 , Issue.3 , pp. 1200-1210
    • Li, C.1    Sun, T.2    Kelly, K.F.3    Zhang, Y.4
  • 11
    • 84885021995 scopus 로고    scopus 로고
    • Manifold regularized sparse nmf for hyperspectral unmixing
    • May
    • X. Lu, H. Wu, Y. Yuan, P. Yan, and X. Li, "Manifold regularized sparse NMF for hyperspectral unmixing," IEEE Trans. Geosci. Remote Sens., vol. 51, no. 5, pp. 2815-2826, May 2013.
    • (2013) IEEE Trans. Geosci. Remote Sens , vol.51 , Issue.5 , pp. 2815-2826
    • Lu, X.1    Wu, H.2    Yuan, Y.3    Yan, P.4    Li, X.5
  • 12
    • 85027952549 scopus 로고    scopus 로고
    • An approach based on constrained nonnegative matrix factorization to unmix hyperspectral data
    • Feb
    • X. Liu, W. Xia, B. Wang, and L. Zhang, "An approach based on constrained nonnegative matrix factorization to unmix hyperspectral data," IEEE Trans. Geosci. Remote Sens., vol. 49, no. 2, pp. 757-772, Feb. 2011.
    • (2011) IEEE Trans. Geosci. Remote Sens , vol.49 , Issue.2 , pp. 757-772
    • Liu, X.1    Xia, W.2    Wang, B.3    Zhang, L.4
  • 13
    • 33847733865 scopus 로고    scopus 로고
    • Endmember extraction from highly mixed data using minimum volume constrained nonnegative matrix factorization
    • Mar
    • L. Miao and H. Qi, "Endmember extraction from highly mixed data using minimum volume constrained nonnegative matrix factorization," IEEE Trans. Geosci. Remote Sens., vol. 45, no. 3, pp. 765-777, Mar. 2007.
    • (2007) IEEE Trans. Geosci. Remote Sens , vol.45 , Issue.3 , pp. 765-777
    • Miao, L.1    Qi, H.2
  • 14
    • 84877927996 scopus 로고    scopus 로고
    • An endmember dissimilarity constrained non-negative matrix factorization method for hyperspectral unmixing
    • Apr
    • N. Wang, B. Du, and L. Zhang, "An endmember dissimilarity constrained non-negative matrix factorization method for hyperspectral unmixing," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 6, no. 2, pp. 554-569, Apr. 2013.
    • (2013) IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens , vol.6 , Issue.2 , pp. 554-569
    • Wang, N.1    Du, B.2    Zhang, L.3
  • 16
    • 16444373735 scopus 로고    scopus 로고
    • Vertex component analysis: A fast algorithm to unmix hyperspectral data
    • Apr
    • J. M. P. Nascimento and J. M. B. Dias, "Vertex component analysis: A fast algorithm to unmix hyperspectral data," IEEE Trans. Geosci. Remote Sens., vol. 43, no. 4, pp. 898-910, Apr. 2005.
    • (2005) IEEE Trans. Geosci. Remote Sens , vol.43 , Issue.4 , pp. 898-910
    • Nascimento, J.M.P.1    Dias, J.M.B.2
  • 17
    • 84887415911 scopus 로고    scopus 로고
    • A new growing method for simplex-based endmember extraction algorithm
    • Oct
    • C.-I. Chang, C.-C. Wu, W.-M. Liu, and Y.-C. Ouyang, "A new growing method for simplex-based endmember extraction algorithm," IEEE Trans. Geosci. Remote Sens., vol. 44, no. 10, pp. 2804-2819, Oct. 2006.
    • (2006) IEEE Trans. Geosci. Remote Sens , vol.44 , Issue.10 , pp. 2804-2819
    • Chang, C.-I.1    Wu, C.-C.2    Liu, W.-M.3    Ouyang, Y.-C.4
  • 18
    • 84861723546 scopus 로고    scopus 로고
    • Spatial-spectral preprocessing prior to endmember identification and unmixing of remotely sensed hyperspectral data
    • Apr
    • G. Martin and A. Plaza, "Spatial-spectral preprocessing prior to endmember identification and unmixing of remotely sensed hyperspectral data," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 5, no. 2, pp. 380-395, Apr. 2012.
    • (2012) IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens , vol.5 , Issue.2 , pp. 380-395
    • Martin, G.1    Plaza, A.2
  • 19
    • 70350493345 scopus 로고    scopus 로고
    • Joint bayesian endmember extraction and linear unmixing for hyperspectral imagery
    • Nov
    • N. Dobigeon, S. Moussaoui, M. Coulon, J.-Y. Tourneret, and A. O. Hero, "Joint Bayesian endmember extraction and linear unmixing for hyperspectral imagery," IEEE J. Sel. Topics Signal Process., vol. 57, no. 11, pp. 4355-4368, Nov. 2009.
    • (2009) IEEE J. Sel. Topics Signal Process , vol.57 , Issue.11 , pp. 4355-4368
    • Dobigeon, N.1    Moussaoui, S.2    Coulon, M.3    Tourneret, J.-Y.4    Hero, A.O.5
  • 20
    • 72049109460 scopus 로고    scopus 로고
    • A variable splitting augmented lagrangian approach to linear spectral unmixing
    • Aug
    • J. M. Bioucas-Dias, "A variable splitting augmented Lagrangian approach to linear spectral unmixing," in Proc. 1st WHISPERS, Aug. 2009, pp. 1-4.
    • (2009) Proc. 1st WHISPERS , pp. 1-4
    • Bioucas-Dias, J.M.1
  • 21
    • 80052775340 scopus 로고    scopus 로고
    • Hyperspectral unmixing based on mixtures of dirichlet components
    • Mar
    • J. M. P. Nascimento and J. M. Bioucas-Dias, "Hyperspectral unmixing based on mixtures of Dirichlet components," IEEE Trans. Geosci. Remote Sens., vol. 50, no. 3, pp. 863-878, Mar. 2012.
    • (2012) IEEE Trans. Geosci. Remote Sens , vol.50 , Issue.3 , pp. 863-878
    • Nascimento, J.M.P.1    Bioucas-Dias, J.M.2
  • 22
    • 0033310314 scopus 로고    scopus 로고
    • N-findr: An algorithm for fast autonomous spectral end-member determination in hyperspectral data
    • Oct
    • M. E. Winter, "N-FINDR: An algorithm for fast autonomous spectral end-member determination in hyperspectral data," Proc. SPIE, vol. 3753, pp. 266-275, Oct. 1999.
    • (1999) Proc. SPIE , vol.3753 , pp. 266-275
    • Winter, M.E.1
  • 23
    • 0033592606 scopus 로고    scopus 로고
    • Learning the parts of objects by nonnegative matrix factorization
    • Oct
    • D. D. Lee and H. S. Seung, "Learning the parts of objects by nonnegative matrix factorization," Nature, vol. 401, no. 6755, pp. 788-791, Oct. 1999.
    • (1999) Nature , vol.401 , Issue.6755 , pp. 788-791
    • Lee, D.D.1    Seung, H.S.2
  • 24
    • 79959532395 scopus 로고    scopus 로고
    • Graph regularized nonnegative matrix factorization for data representation
    • Aug
    • D. Cai, X. He, J. Han, and T. S. Huang, "Graph regularized nonnegative matrix factorization for data representation," IEEE Trans. Pattern Anal. Mach. Intell., vol. 33, no. 8, pp. 1548-1560, Aug. 2011.
    • (2011) IEEE Trans. Pattern Anal. Mach. Intell , vol.33 , Issue.8 , pp. 1548-1560
    • Cai, D.1    He, X.2    Han, J.3    Huang, T.S.4
  • 25
    • 49449120034 scopus 로고
    • Hierarchical structure in perceptual representation
    • S. E. Palmer, "Hierarchical structure in perceptual representation," Cognit. Psychol., vol. 9, no. 4, pp. 441-474, 1977.
    • (1977) Cognit. Psychol , vol.9 , Issue.4 , pp. 441-474
    • Palmer, S.E.1
  • 26
  • 27
    • 0035683536 scopus 로고    scopus 로고
    • Learning spatially localized, parts-based representation
    • S. Z. Li, X. Hou, H. Zhang, and Q. Cheng, "Learning spatially localized, parts-based representation," in Proc. IEEE CVPR, 2001, pp. 207-212.
    • (2001) Proc. IEEE CVPR , pp. 207-212
    • Li, S.Z.1    Hou, X.2    Zhang, H.3    Cheng, Q.4
  • 28
    • 79959533573 scopus 로고    scopus 로고
    • Nonnegative matrix factorization with earth mover's distance metric for image analysis
    • Aug
    • R. Sandler and M. Lindenbaum, "Nonnegative matrix factorization with earth mover's distance metric for image analysis," IEEE Trans. Pattern Anal. Mach. Intell., vol. 33, no. 8, pp. 1590-1602, Aug. 2011.
    • (2011) IEEE Trans. Pattern Anal. Mach. Intell , vol.33 , Issue.8 , pp. 1590-1602
    • Sandler, R.1    Lindenbaum, M.2
  • 30
    • 25844488029 scopus 로고    scopus 로고
    • Document clustering using nonnegative matrix factorization
    • F. Shahnaz, M. W. Berry, V. P. Pauca, and R. J. Plemmons, "Document clustering using nonnegative matrix factorization," Inf. Process. Manage., vol. 42, no. 2, pp. 373-386, 2006.
    • (2006) Inf. Process. Manage , vol.42 , Issue.2 , pp. 373-386
    • Shahnaz, F.1    Berry, M.W.2    Pauca, V.P.3    Plemmons, R.J.4
  • 31
    • 0001093042 scopus 로고    scopus 로고
    • Algorithms for non-negative matrix factorization
    • Cambridge, MA, USA: MIT Press
    • D. D. Lee and H. S. Seung, "Algorithms for non-negative matrix factorization," in Advances in Neural Information Processing Systems. Cambridge, MA, USA: MIT Press, 2000, pp. 556-562.
    • (2000) Advances in Neural Information Processing Systems , pp. 556-562
    • Lee, D.D.1    Seung, H.S.2
  • 33
    • 0001287271 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso
    • R. Tibshirani, "Regression shrinkage and selection via the lasso," J. Roy. Statist. Soc., vol. 58, no. 1, pp. 267-288, 1996.
    • (1996) J. Roy. Statist. Soc , vol.58 , Issue.1 , pp. 267-288
    • Tibshirani, R.1
  • 34
    • 33645712892 scopus 로고    scopus 로고
    • Compressed sensing
    • Apr
    • D. L. Donoho, "Compressed sensing," IEEE Trans. Inf. Theory, vol. 52, no. 4, pp. 1289-1306, Apr. 1996.
    • (1996) IEEE Trans. Inf. Theory , vol.52 , Issue.4 , pp. 1289-1306
    • Donoho, D.L.1
  • 35
    • 1542784498 scopus 로고    scopus 로고
    • Variable selection via nonconcave penalized likelihood and its oracle properties
    • J. Fan and R. Li, "Variable selection via nonconcave penalized likelihood and its oracle properties," J. Amer. Statist. Assoc., vol. 96, no. 456, pp. 1348-1360, 2001.
    • (2001) J. Amer. Statist. Assoc , vol.96 , Issue.456 , pp. 1348-1360
    • Fan, J.1    Li, R.2
  • 37
    • 80054892393 scopus 로고    scopus 로고
    • Single image haze removal using dark channel prior
    • Dec
    • K. He, J. Sun, and X. Tang, "Single image haze removal using dark channel prior," IEEE Trans. Pattern Anal. Mach. Intell., vol. 33, no. 12, pp. 2341-2353, Dec. 2011.
    • (2011) IEEE Trans. Pattern Anal. Mach. Intell , vol.33 , Issue.12 , pp. 2341-2353
    • He, K.1    Sun, J.2    Tang, X.3
  • 38
    • 33845571783 scopus 로고    scopus 로고
    • A closed form solution to natural image matting
    • Jun
    • A. Levin, D. Lischinski, and Y. Weiss, "A closed form solution to natural image matting," in Proc. IEEE CVPR, Jun. 2006, pp. 61-68.
    • (2006) Proc. IEEE CVPR , pp. 61-68
    • Levin, A.1    Lischinski, D.2    Weiss, Y.3
  • 40
    • 77952742906 scopus 로고    scopus 로고
    • Globally optimized linear windowed tone mapping
    • Jul./Aug
    • Q. Shan, J. Jia, and M. S. Brown, "Globally optimized linear windowed tone mapping," IEEE Trans. Vis. Comput. Graphics, vol. 16, no. 4, pp. 663-675, Jul./Aug. 2010.
    • (2010) IEEE Trans. Vis. Comput. Graphics , vol.16 , Issue.4 , pp. 663-675
    • Shan, Q.1    Jia, J.2    Brown, M.S.3
  • 42
    • 78049248989 scopus 로고    scopus 로고
    • Turbopixel segmentation using eigen-images
    • Nov
    • S. Xiang, C. Pan, F. Nie, and C. Zhang, "Turbopixel segmentation using eigen-images," IEEE Trans. Image Process., vol. 19, no. 11, pp. 3024-3034, Nov. 2010.
    • (2010) IEEE Trans. Image Process , vol.19 , Issue.11 , pp. 3024-3034
    • Xiang, S.1    Pan, C.2    Nie, F.3    Zhang, C.4
  • 43
    • 80052903676 scopus 로고    scopus 로고
    • Regression reformulations of lle and ltsa with locally linear transformation
    • Oct
    • S. Xiang, F. Nie, C. Pan, and C. Zhang, "Regression reformulations of LLE and LTSA with locally linear transformation," IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 41, no. 5, pp. 1250-1262, Oct. 2011.
    • (2011) IEEE Trans. Syst., Man, Cybern. B, Cybern , vol.41 , Issue.5 , pp. 1250-1262
    • Xiang, S.1    Nie, F.2    Pan, C.3    Zhang, C.4
  • 44
    • 0002629270 scopus 로고
    • Maximum likelihood from incomplete data via the em algorithm
    • A. P. Dempster, N. M. Laird, and D. B. Rubin, "Maximum likelihood from incomplete data via the EM algorithm," Roy. Statist. Soc., vol. 39, no. 1, pp. 1-38, 1977.
    • (1977) Roy. Statist. Soc , vol.39 , Issue.1 , pp. 1-38
    • Dempster, A.P.1    Laird, N.M.2    Rubin, D.B.3
  • 45
    • 84855164240 scopus 로고    scopus 로고
    • Lipschitz-killing curvature based expected euler characteristics for p-value correction in fnirs
    • Feb
    • H. Li, S. Tak, and J. C. Ye, "Lipschitz-Killing curvature based expected Euler characteristics for p-value correction in fNIRS," J. Neurosci. Methods, vol. 204, no. 1, pp. 61-67, Feb. 2012.
    • (2012) J. Neurosci. Methods , vol.204 , Issue.1 , pp. 61-67
    • Li, H.1    Tak, S.2    Ye, J.C.3
  • 46
    • 85022948951 scopus 로고    scopus 로고
    • Aggregate and mixed-order markov models for statistical language processing
    • L. Saul and F. Pereira, "Aggregate and mixed-order Markov models for statistical language processing," in Proc. Conf. Empirical Methods Natural Lang. Process, 1997, pp. 81-89.
    • (1997) Proc. Conf. Empirical Methods Natural Lang. Process , pp. 81-89
    • Saul, L.1    Pereira, F.2
  • 51
    • 0003994186 scopus 로고    scopus 로고
    • [Online]. Available: accessed 2013
    • MathWorks. [Online]. Available: http://www.mathworks.cn/cn/help/matlab/math/sparse-matrix-operations.html#brc1y0o accessed 2013.
    • MathWorks
  • 54
    • 58149131252 scopus 로고    scopus 로고
    • Constrained nonnegative matrix factorization for hyperspectral unmixing
    • Jan
    • S. Jia and Y. Qian, "Constrained nonnegative matrix factorization for hyperspectral unmixing," IEEE Trans. Geosci. Remote Sens., vol. 47, no. 1, pp. 161-173, Jan. 2009.
    • (2009) IEEE Trans. Geosci. Remote Sens , vol.47 , Issue.1 , pp. 161-173
    • Jia, S.1    Qian, Y.2
  • 55
    • 84910667846 scopus 로고    scopus 로고
    • Envi-Tutorials.[Online]. Available
    • Envi-Tutorials. (2013). An Overview of Hyperspectral Remote Sensing. [Online]. Available: http://www.cossa.csiro.au/hswww/Overview.htm
    • (2013) An Overview of Hyperspectral Remote Sensing
  • 57
    • 84900510076 scopus 로고    scopus 로고
    • Non-negative matrix factorization with sparseness constraints
    • P. O. Hoyer and P. Dayan, "Non-negative matrix factorization with sparseness constraints," J. Mach. Learn. Res., vol. 5, no. 12, pp. 1457-1469, 2004.
    • (2004) J. Mach. Learn. Res , vol.5 , Issue.12 , pp. 1457-1469
    • Hoyer, P.O.1    Dayan, P.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.